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Abstract: In this paper, we study the application of the known generalized (G
′

G )-expansion method for seeking
more exact traveling solutions solutions and soliton solutions of the ZK-MEW equation and the (2+1) dimensional
Boiti-Leon-Pempinelli equation. As a result, we come to the conclusion that the traveling wave solutions for
the two non-linear equations are obtained in three arbitrary functions including hyperbolic function solutions,
trigonometric function solutions and rational solutions. The method appears to be easier and faster by means of
some mathematical software.
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1 Introduction
In the nonlinear sciences, it is well known that many
nonlinear partial differential equations are widely
used to describe the complex phenomena. The pow-
erful and efficient methods to find analytic solutions
and numerical solutions of nonlinear equations have
drawn a lot of interest by a diverse group of scientists.
Many efficient methods have been presented so far
such as in [1-7].

Among the possible exact solutions of NLEEs,
certain solutions for special form may depend only
on a single combination of variables such as traveling
wave variables. Also there is a wide variety of
approaches to nonlinear problems for constructing
traveling wave solutions. Some of these approaches
are the homogeneous balance method [8,9], the
hyperbolic tangent expansion method [10,11], the
trial function method [12], the tanh-method [13-15],
the non-linear transform method [16], the inverse
scattering transform [17], the Backlund transform
[18,19], the Hirotas bilinear method [20,21], the
generalized Riccati equation [22,23], the Weierstrass
elliptic function method [24], the theta function
method [25-27], the sineCcosine method [28], the Ja-
cobi elliptic function expansion [29,30], the complex
hyperbolic function method [31-33], the truncated
Painleve expansion [34], the F-expansion method

[35], the rank analysis method [36], the exp-function
expansion method [37] and so on.

In [38], Mingliang Wang proposed a new method

called (G
′

G )-expansion method. Recently several
authors have studied some nonlinear equations by this

method [39-42]. The value of the (G
′

G )-expansion
method is that one can treat nonlinear problems by
essentially linear methods. The method is based
on the explicit linearization of NLEEs for traveling
waves with a certain substitution which leads to a
second-order differential equation with constant coef-
ficients. Moreover, it transforms a nonlinear equation
to a simple algebraic computation. The main merits

of the (G
′

G )-expansion method over the other methods
are that it gives more general solutions with some free
parameters and it handles NLEEs in a direct manner
with no requirement for initial/boundary condition or
initial trial function at the outset.

Our aim in this paper is to present an applica-

tion of the (G
′

G )-expansion method to some nonlin-
ear problems to be solved by this method. The rest
of the paper is organized as follows. In Section 2,

we describe the (G
′

G )-expansion method for finding
traveling wave solutions of nonlinear evolution equa-
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tions, and give the main steps of the method. In the
subsequent sections, we will apply the method to the
ZK-MEW equation and the (2+1) dimensional Boiti-
Leon-Pempinelli equation. In the last Section, the fea-

tures of the (G
′

G )-expansion method are briefly sum-
marized.

2 Description of the (G
′

G )-expansion
method

In this section we describe the (G
′

G )-expansion
method for finding traveling wave solutions of non-
linear evolution equations. Suppose that a nonlinear
equation, say in two independent variables x, t, is
given by

P (u, ut, ux, utt, uxt, uxx, ...) = 0, (2.1)

or in three independent variables x, y and t, is
given by

P (u, ut, ux, uy, utt, uxt, uyt, uxx, uyy, ...) = 0,
(2.2)

where u = u(x, t) or u = u(x, y, t) is an
unknown function, P is a polynomial in u = u(x, t)
or u = u(x, y, t) and its various partial derivatives,
in which the highest order derivatives and nonlinear
terms are involved. In the following, we will give the

main steps of the (G
′

G )-expansion method.

Step 1. Suppose that

u(x, t) = u(ξ), ξ = ξ(x, t) (2.3)

or

u(x, y, t) = u(ξ), ξ = ξ(x, y, t) (2.4)

The traveling wave variable (2.3) or (2.4) per-
mits us reducing (2.1) or (2.2) to an ODE for u = u(ξ)

P (u, u′, u′′, ...) = 0. (2.5)

Step 2. Suppose that the solution of (2.5) can be

expressed by a polynomial in (G
′

G ) as follows:

u(ξ) = αm(
G′

G
)m + ... (2.6)

where G = G(ξ) satisfies the second order LODE
in the form

G′′ + λG′ + µG = 0 (2.7)

αm, ..., λ and µ are constants to be determined
later, αm 6= 0. The unwritten part in (2.6) is also a

polynomial in (G
′

G ), the degree of which is generally
equal to or less than m − 1. The positive integer m
can be determined by considering the homogeneous
balance between the highest order derivatives and
nonlinear terms appearing in (2.5).

Step 3. Substituting (2.6) into (2.5) and using
second order LODE (2.7), collecting all terms with

the same order of (G
′

G ) together, the left-hand side of

(2.5) is converted into another polynomial in (G
′

G ).
Equating each coefficient of this polynomial to zero,
yields a set of algebraic equations for αm, ..., λ and
µ.

Step 4. Assuming that the constants αm, ..., λ and
µ can be obtained by solving the algebraic equations
in Step 3. Since the general solutions of the second
order LODE (2.7) have been well known for us, then
substituting αm, ... and the general solutions of (2.7)
into (2.6) we have traveling wave solutions of the non-
linear evolution equation (2.1) or (2.2).

3 Application Of The (G
′

G )-
Expansion Method For The ZK-
MEW Equation

In the following two sections, we will apply the (G
′

G )-
expansion method to construct the traveling wave so-
lutions for some nonlinear partial differential equa-
tions in mathematical physics.

We begin with the ZK-MEW equation [43]:

ut + a(u3)x + (buxt + ruyy)x = 0 (3.1)

where a, b and r are known constants.
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In order to obtain the traveling wave solutions of
Eq.(3.1), we suppose that

u(x, y, t) = u(ξ), ξ = x + y − V t (3.2)

V is a constant that to be determined later.
By using the wave variable (3.2), (3.1) is con-

verted into an ODE

−V u′ + a(u3)′ − bV u′′′ + ru′′′ = 0 (3.3)

Integrating (3.3) with respect to ξ once, we obtain

C − V u + au3 + (r − bV )u′′ = 0 (3.4)

where C is the integration constant that can be
determined later.

Suppose that the solution of (3.4) can be ex-

pressed by a polynomial in (G
′

G ) as follows:

u(ξ) =
m∑

i=0

ai(
G′

G
)i (3.5)

where ai are constants, G = G(ξ) satisfies the
second order LODE in the form:

G′′ + λG′ + µG = 0 (3.6)

where λ and µ are constants.

Balancing the order of u′′ and u3 in Eq.(3.4), we
have

m + 2 = 3m ⇒ m = 1

So Eq.(3.5) can be rewritten as

u(ξ) = a1(
G′

G
) + a0, a1 6= 0 (3.7)

a1, a0 are constants to be determined later. Then
we can obtain

u′(ξ) = a1[−λ(
G′

G
)− µ− (

G′

G
)2]

u′′(ξ) = 2a1(
G′

G
)3 + 3λa1(

G′

G
)2

+(λ2a1 + 2a1µ)(
G′

G
) + λµa1

Substituting (3.7) into (3.4) and collecting all

the terms with the same power of (G
′

G ) together
and equating each coefficient to zero, yields a set of
simultaneous algebraic equations as follows:

(
G′

G
)0 : C − V a0 + aa3

0 + (r − bV )λµa1 = 0

(
G′

G
)1 : 3aa1a

2
0 + (r − bV )(λ2a1 + 2a1µ)

−a1V = 0

(
G′

G
)2 : 3aa0a

2
1 + 3λa1(r − bV ) = 0

(
G′

G
)3 : aa3

1 + 2(r − bV )a1 = 0

Solving the algebraic equations above, yields two
different cases in view of the positive or negative of

r
a[b(λ2 − 4µ)− 2]

:

Case (I): If r
a[b(λ2 − 4µ)− 2]

> 0, then

a1 = ±2
√

r

a[b(λ2 − 4µ)− 2]

a0 = ±λ

√
r

a[b(λ2 − 4µ)− 2]
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V =
r(λ2 − 4µ)

b(λ2 − 4µ)− 2

C = 0 (3.8)

Substituting (3.8) into (3.7), we have

u(ξ) = ±2
√

r

a[b(λ2 − 4µ)− 2]
(
G′

G
)

±λ

√
r

a[b(λ2 − 4µ)− 2]

ξ = x + y − r(λ2 − 4µ)
b(λ2 − 4µ)− 2

t (3.9)

Substituting the general solutions of Eq.(3.6) into
(3.9), we have three types of traveling wave solutions
of the ZK-MEW equation (3.1) as follows:

When λ2 − 4µ > 0

u1,2(ξ) = ±

√√√√ r(λ2 − 4µ)
a[b(λ2 − 4µ)− 2]

×

C1 sinh
1
2

√
λ2 − 4µξ + C2 cosh

1
2

√
λ2 − 4µξ

C1 cosh
1
2

√
λ2 − 4µξ + C2 sinh

1
2

√
λ2 − 4µξ



where

ξ = x + y − r(λ2 − 4µ)
b(λ2 − 4µ)− 2

t

C1 and C2 are two arbitrary constants. In particular, if

C1 = 1, C2 = 0, µ = 0, λ = 2, a = 2, b = 1, r = 1,

then we can obtain the exact traveling wave solutions
as follows

u(x, y, t) = ± tanh(x + y − 2t).

When λ2 − 4µ < 0

u3,4(ξ) = ±

√√√√ r(4µ− λ2)
a[b(λ2 − 4µ)− 2]

×

−C1 sin
1
2

√
4µ− λ2)ξ + C2 cos

1
2

√
4µ− λ2)ξ

C1 cos
1
2

√
4µ− λ2)ξ + C2 sin

1
2

√
4µ− λ2)ξ



where

ξ = x + y − r(λ2 − 4µ)
b(λ2 − 4µ)− 2

t

C1 and C2 are two arbitrary constants. In particular,
if C1 = 1, C2 = 0, λ2 − 4µ = −4, a = 2, b =
−1, r = 1, then it is obvious that

u(x, y, t) = ± tan(x + y + 2t).

When λ2 − 4µ = 0

u5(ξ) = ±λ

√
r

−2a
±2

√
r

−2a

[
2C2 − C1λ− C2λξ

2(C1 + C2ξ)

]

where
ξ = x + y

C1 and C2 are two arbitrary constants. In particular, if
C1 = C2 = 1, µ = 1, λ = 2, a = −1, r = 2, then
we have

u(x, y, t) = ±2
1

1 + x + y
.

Case (II): If r
a[b(λ2 − 4µ)− 2]

< 0, then

a1 = ±2i

√
−r

a[b(λ2 − 4µ)− 2]

a0 = ±λi

√
−r

a[b(λ2 − 4µ)− 2]

V =
r(λ2 − 4µ)

b(λ2 − 4µ)− 2
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C = 0 (3.10)

Substituting (3.10) into (3.7), we have

When λ2 − 4µ > 0

u1,2(ξ) = ±i

√√√√ −r(λ2 − 4µ)
a[b(λ2 − 4µ)− 2]

×

C1 sinh
1
2

√
λ2 − 4µξ + C2 cosh

1
2

√
λ2 − 4µξ

C1 cosh
1
2

√
λ2 − 4µξ + C2 sinh

1
2

√
λ2 − 4µξ



where

ξ = x + y − r(λ2 − 4µ)
b(λ2 − 4µ)− 2

t

C1 and C2 are two arbitrary constants. In particular, if

C1 = 1, C2 = 0, µ = 0, λ = 2, a = 2, b = 1, r = −1,

then we can obtain the exact traveling wave solutions
as follows

u(x, y, t) = ±i tanh(x + y + 2t).

When λ2 − 4µ < 0

u3,4(ξ) = ±i

√√√√ r(λ2 − 4µ)
a[b(λ2 − 4µ)− 2]

×

−C1 sin
1
2

√
4µ− λ2)ξ + C2 cos

1
2

√
4µ− λ2)ξ

C1 cos
1
2

√
4µ− λ2)ξ + C2 sin

1
2

√
4µ− λ2)ξ



where

ξ = x + y − r(λ2 − 4µ)
b(λ2 − 4µ)− 2

t

C1 and C2 are two arbitrary constants. In particular,
if C1 = 1, C2 = 0, λ2 − 4µ = −4, a = 2, b =
−1, r = −1, then it is obvious that

u(x, y, t) = ±i tan(x + y − 2t).

When λ2 − 4µ = 0

u5(ξ) = ±λi

√
r

2a
± 2i

√
r

2a
.[

2C2 − C1λ− C2λξ

2(C1 + C2ξ)

]

where
ξ = x + y

C1 and C2 are two arbitrary constants. In particular, if
C1 = C2 = 1, µ = 1, λ = 2, a = 1, r = 2, then we
have

u(x, y, t) = ±2i
1

1 + x + y
.

4 Application Of The (G
′

G )-
Expansion Method For The
(2+1) Dimensional Boiti-Leon-
Pempinelli Equation

We consider the (2+1) dimensional Boiti-Leon-
Pempinelli equation:

uty = (u2 − ux)xy + 2vxxx (4.1)

vt = vxx + 2uvx (4.2)

Supposing that

ξ = k(x + y − ct) (4.3)

By (4.3), (4.1) and (4.2) are converted into ODEs

−cu′′ = (u2)′′ − ku′′′ + 2kv′′′ (4.4)

−cv′ = kv′′ + 2uv′ (4.5)

Suppose that the solution of (4.4) and (4.5) can be

expressed by a polynomial in (G
′

G ) as follows:

u(ξ) =
m∑

i=0

ai(
G′

G
)i (4.6)
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v(ξ) =
n∑

i=0

bi(
G′

G
)i (4.7)

where ai, bi are constants, G = G(ξ) satisfies the
second order LODE in the form:

G′′ + λG′ + µG = 0 (4.8)

where λ and µ are constants.

Balancing the order of u′′′ and v′′′ in Eq.(4.6), the
order of v′′ and uv′ in Eq.(4.7), then we can obtain
m + 3 = n + 3, n + 2 = m + n + 1 ⇒ m = n = 1,
so Eq.(4.6) and (4.7) can be rewritten as

u(ξ) = a1(
G′

G
) + a0, a1 6= 0 (4.9)

v(ξ) = b1(
G′

G
) + b0, b1 6= 0 (4.10)

a1, a0, b1, b0 are constants to be determined
later.

Substituting (4.9) and (4.10) into (4.4) and (4.5)
and collecting all the terms with the same power

of (G
′

G ) together, equating each coefficient to zero,
yields a set of simultaneous algebraic equations as
follows:

For Eq.(4.4):

(
G′

G
)0 : 2kb1λ

2µ− 2ka1µ
2 − ca1λµ

−ka1λ
2µ− 2a1a0λµ + 4kb1µ

2 − 2a2
1µ

2 = 0

(
G′

G
)1 : −2ca1µ− ca1λ

2 − 6a2
1λµ

+2kb1λ
3 + 16kb1λµ− 4a1a0µ

−ka1λ
3 − 2a1a0λ

2 − 8ka1λµ = 0

(
G′

G
)2 : 14kb1λ

2 − 6a1a0λ− 8a2
1µ

−7ka1λ
2 − 8ka1µ− 4a2

1λ
2

−3ca1λ + 16kb1µ = 0

(
G′

G
)3 : −12ka1λ− 2ca1 − 4a1a0

−10a2
1λ + 24kb1λ = 0

(
G′

G
)4 : −6ka1 + 12kb1 − 6a2

1 = 0

For Eq.(4.5):

(
G′

G
)0 : −kb1λµ + cb1µ + 2b1a0µ = 0

(
G′

G
)1 : −2kb1µ− kb1λ

2 + cb1λ

+2b1a0λ + 2b1a1µ = 0

(
G′

G
)2 : cb1 + 2b1a1λ− 3kb1λ + 2b1a0 = 0

(
G′

G
)3 : −2kb1 + 2b1a1 = 0

Solving the algebraic equations above yields:

a1 = k, a0 = a0

b1 = k, b0 = b0

k = k, c = kλ− 2a0 (4.11)

WSEAS TRANSACTIONS on MATHEMATICS Bin Zheng

ISSN: 1109-2769 473 Issue 6, Volume 9, June 2010



where a0, b0, k are arbitrary constant, k 6= 0.

Substituting (4.11) into (4.9) and (4.10), yields:

u(ξ) = k(
G′

G
) + a0 (4.12)

v(ξ) = k(
G′

G
) + b0 (4.13)

where

ξ = k[x + y − (kλ− 2a0)t]

Substituting the general solutions of (4.8) into
(4.12) and (4.13), we have:

When λ2 − 4µ > 0

u1(ξ) = −kλ

2
+

k
√

λ2 − 4µ

2

.

C1 sinh
1
2

√
λ2 − 4µξ + C2 cosh

1
2

√
λ2 − 4µξ

C1 cosh
1
2

√
λ2 − 4µξ + C2 sinh

1
2

√
λ2 − 4µξ


+a0

v1(ξ) = −kλ

2
+

k
√

λ2 − 4µ

2

.

C1 sinh
1
2

√
λ2 − 4µξ + C2 cosh

1
2

√
λ2 − 4µξ

C1 cosh
1
2

√
λ2 − 4µξ + C2 sinh

1
2

√
λ2 − 4µξ


+b0

Where

ξ = k[x + y − (kλ− 2a0)t],

a0, b0, k are arbitrary constant, k 6= 0.

When λ2 − 4µ < 0

u2(ξ) = −kλ

2
+

k
√

4µ− λ2

2

.

−C1 sin
1
2

√
4µ− λ2ξ + C2 cos

1
2

√
4µ− λ2ξ

C1 cos
1
2

√
4µ− λ2ξ + C2 sin

1
2

√
4µ− λ2ξ


+a0

v2(ξ) = −kλ

2
+

k
√

4µ− λ2

2−C1 sin
1
2

√
4µ− λ2ξ + C2 cos

1
2

√
4µ− λ2ξ

C1 cos
1
2

√
4µ− λ2ξ + C2 sin

1
2

√
4µ− λ2ξ


+b0

Where

ξ = k[x + y − (kλ− 2a0)t],

a0, b0, k are arbitrary constant, k 6= 0.

When λ2 − 4µ = 0

u3(ξ) =
k(2C2 − C1λ− C2λξ)

2k(C1 + C2ξ)
+ a0

v3(ξ) =
k(2C2 − C1λ− C2λξ)

2(C1 + C2ξ)
+ b0

Where

ξ = k[x + y − (kλ− 2a0)t],

a0, b0, k are arbitrary constant, k 6= 0.
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5 Conclusions
In this paper we have seen that the traveling wave
solutions of the ZK-MEW equation and the (2+1)
dimensional Boiti-Leon-Pempinelli equation are suc-

cessfully found by using the (G
′

G )-expansion method.
Now we briefly summarize the method in the follow-
ing.

The main points of the method are that assuming
the solution of the ODE reduced by using the trav-
eling wave variable as well as integrating can be ex-

pressed by an m-th degree polynomial in (G
′

G ), where
G = G(ξ) is the general solutions of a second or-
der LODE. The positive integer m is determined by
the homogeneous balance between the highest order
derivatives and nonlinear terms appearing in the re-
duced ODE, and the coefficients of the polynomial
can be obtained by solving a set of simultaneous al-
gebraic equations resulted from the process of using
the method.

Compared to the methods used before, one can
see that this method is direct, concise and effective.
As we can use the MATHEMATICA or MAPLE to
find out a useful solution of the algebraic equations
resulted, so we can also avoids tedious calculations.
This method can also be used to many other nonlinear
equations.
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