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Abstract: – Assessment of the quality of the logistic regression model is central to the conclusion. Application 

of logistic regression modeling techniques without subsequent performance analysis regarding predictive 

ability of the fitted model can result in poorly fitting results that inaccurately predict outcomes on new subjects. 

It is not unusual for statisticians to check fitted model with validation. Validation of predictions from logistic 

regression models is of paramount importance. Model validation is possibly the most important step in the 

model building sequence. Model validity refers to the stability and reasonableness of the logistic regression 

coefficients, the plausibility and usability of the fitted logistic regression function, and the ability to generalize 

inferences drawn from the analysis. The aim of this study is to evaluate and measure how effectively the fitted 

logistic regression model describes the outcome variable both in the sample and in the population. A 

straightforward and fairly popular split-sample approach has been used here to validate the model. The present 

study have dealt with how to measure the quality of the fit of a given model and how to evaluate its 

performance regarding the predictive ability in order to avoid poorly fitted model. Different summary measures 

of goodness-of-fit and other supplementary indices of predictive ability of the fitted model indicate that the 

fitted binary logistic regression model can be used to predict the new subjects. 

 

Key-Words: – Validation, training sample, deviance, prediction error rate, ROC curve.   

 

1.  Introduction 
Logistic regression techniques have become an 

integral component of any data analysis. It describes 

the relationship between a response variable and one 

or more explanatory variables in which the outcome 

variable is often discrete and takes on two possible 

values. When the response variable is binary, the 

shape of the response function is usually sigmoidal. 

Over the last decade, binary logistic regression 

model has become, in many fields, the standard 

method of data analysis. Thus they are widely used 

in a number of different contexts. An important 

problem is whether results of the logistic regression 

analysis on the sample can be extended to the 

corresponding population. If this happens, then we 

say that the model has a good fit and we refer to this 

question as a goodness-of-fit analysis, performance 

analysis or model validation analysis for the model 

[12], [9], [11]. Application of modeling techniques 

without subsequent performance analysis of the 

obtained models can result in poorly fitting results 

that inaccurately predict outcomes on new subjects. 

In view of the fact that the principal aim of 

predictive modeling is generalization which implies 

the ability to predict the outcome on novel cases. In 

the prediction problem the statistician has available a 

set of cases, collectively called the training set and 

each case consists of two parts namely vector of 

predictors and a response vector. On the basis of 

training set, a prediction rule or model is constructed 

and use it to predict a future unobserved response on 

the basis of its predicted response vector [4]. 

 Model validation is possibly the most important 

step in the model building sequence. It is also one of 

the most overlooked sections. Model validity refers 

to the stability and reasonableness of the logistic 

regression coefficients, the plausibility and usability 

of the fitted logistic regression function, and the 

ability to generalize inferences drawn from the 

analysis. Often the validation of a model seems to 

consist of nothing more than quoting the Cox and 

Snell [7] R
2
 or Nagelkerke [17] adjusted R

2
 statistic 

as well as Correct Classification Rate (CCR) from 

the fit which measures the fraction of the total 

variability in the response that is accounted for by 

the model. Unfortunately, a high R
2
 value and high 

percentage of CCR in logistic regression model do 

not guarantee that the model fits the data well. Use 

of a model that does not fit the data well cannot 

provide good answer to the underlying prediction or 

scientific questions under investigation [15,19,21]. 

Hence validation is a useful and necessary part of the 

model-building process. 

 There are many statistical tools for model 

validation in binary logistic regression, but the 

primary tool for most process modeling applications 
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is summary measures of goodness-of-fit analysis. 

Different types of summary measures of goodness-

of-fit from a fitted model provide information on the 

adequacy of different aspects of the model. 

Graphical methods for model validation, such as 

residual analysis are also useful, but usually to a 

lesser degree than numerical methods due to binary 

outcomes. Numerical methods have an advantage 

over graphical methods for model validation because 

they readily illustrate a broad range of complex 

aspects of the relationship between the model and 

the data. Graphical methods for model validation 

tend to be narrowly focused on particular aspects of 

the relationship between the model and the data and 

often try to compress that information into two band 

of the graph in binary logistic regression. Thus the 

logistic regression with binary data is the area in 

which graphical residual analysis can be difficult to 

interpret as a model validation [3]. In addition, the 

binary regression residuals are not homosedastic and 

follow the property of heteroscedasticity, which is 

the another cause of interpret as a model validation 

[13, 14] 

    In some situations, it may be possible to exclude 

a sub sample of our observations, develop a model 

based on the remaining subjects, and then test the 

model in the originally excluded subjects. In other 

situations it may be possible to obtain a new sample 

of data to assess the goodness-of-fit of a previously 

developed model. This type of assessment is often 

called model validation, and may be especially 

important when the fitted model is used to predict 

outcome for future subjects. In some situations it 

may be possible to obtain a new sample of data from 

the same population or from a similar population. 

This new sample can then be used to assess the 

goodness-of-fit of a previously developed model by 

applying the model as it is to the new sample. This 

type of assessment is called external validation [11]. 

External validation is the most stringent and 

unbiased test for the model and for the entire data 

collection process. Nonetheless, most of the time it 

is not possible to obtain a new independent external 

sample from the same population or a similar one. It 

may then be possible to internally validate the 

model. The most accredited methods for obtaining a 

good internal validation of a model performance are 

data-splitting, repeated data-splitting, jackknife 

technique and bootstrapping. The core concept of 

these methods is similar in order to exclude a sub 

sample of observations, develop a model based on 

the remaining subjects, and then test the model in the 

originally excluded subjects. In order to validate the 

fitted model the study used the data-splitting 

technique. This is a straightforward and fairly 

popular approach in which the training data is 

randomly split into two parts; one to develop the 

model, and another to measure its performance. With 

the data-splitting approach, model performance is 

determined on similar, but independent data. 

Common split is 50:50, 60:40 or 2/3:1/3. In order to 

check the internal validity of logistic regression 

model the study select 60% observations randomly 

as a training sample and the rest 40% of the 

observations as a validation sample [18], because the 

validation data set will need to be smaller than the 

model-building or training data set.  

 The reason for considering this type of 

assessment of model performance is that the fitted 

model always performs in an optimistic manner on 

the training data set. The purpose of this study is to 

present a comprehensive approach to the internal 

validation of logistic regression as a predictive 

model. Our focus is to measure the predictive 

performance of a model, i.e. its ability to accurately 

predict the outcome variable on new subjects. Thus 

the aim of this study is to assess the goodness-of-fit 

of a given model, and to determine whether the 

model can be used to predict the outcome of a new 

subject not included in the original or training 

sample.  

 

 

2.  Materials and Methods 
The Bangladesh Demographic and Health Survey 

(BDHS-2004) is part of the worldwide Demographic 

and Health Surveys program, which is designed to 

collect data on fertility, family planning, maternal 

and child health. The BDHS is a source of 

population and health data for policymakers and the 

research community. In this study women’s data file 

is used. A total of 11,440 eligible women were 

furnished their responses. But in this analysis there 

are only 2,212 eligible women those are able to bear 

and desire more children are considered. The women 

under sterilization, declared in fecund, divorced, 

widowed, having more than and less than two living 

children are not involved in the analysis. Those 

women who have two living children and able to 

bear and desire more children are only considered 

here during the period of global two children 

campaign. In BDHS- 2004, there are three types of 

questionnaires, namely the household’s, women’s 

and men’s. The information’s obtained from the 

field are recorded in their respective data files. In 

this study, the information’s corresponding to the 

women’s data file is used. The variable age of the 

respondent, fertility preference, place of residence, 

highest year of education, working status and 
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expected number of children are considered in the 

analysis. The variable fertility preference involving 

responses corresponding to the question, would you 

like to have (a/another) child? The responses are 

coded 0 for ‘no more’ and 1 for ‘have another’ is 

considered as desire for children which is the binary 

response variable (Y) in the analysis. The age of the 

respondent (X1), place of residence (X2) is coded 0 

for ‘urban’ and 1 for ‘rural’, highest year of 

education (X3), working status of respondent (X4) is 

coded 0 for ‘not working’ and 1 for ‘working’ and 

expected number of children (X5) is coded 0 for ‘two 

or less’ and 1 for ‘more than two’ are considered as 

covariates in the binary logistic regression model. 

 Data splitting approach has been used to validate 

the fitted model. In accordance with the principles of 

data-splitting we distinguish between training and 

validation samples. Due to random sampling, both 

samples from the same population, but are distinct 

and independent from one another. The size of the 

two sub-samples must be chosen in such a way as to 

have enough data in the training sample to fit the 

model and enough data in the validation sample. 

Since the sample size is large enough, the data are 

split into two sets. The first set or training sample 

consists of 1349 (approximately 60 percent of total 

sample) observations which were selected randomly 

from 2212 observations. The validate sample 

consists of the rest 863 (Approximately 40 percent) 

observations. Firstly, we use the training sample to 

fit the model. Then we take the fitted model as it is, 

apply it to the validation sample, and evaluate the 

model’s performance on it. 

 

 

3. Fitting of the model for Training 

Sample 
In order to fit the binary logistic regression model 

for the training sample, consider a collection of p 

explanatory variables be denoted by the vector 

X'=(X1, X2 …Xp). Let the conditional probability 

that the outcome is present be denoted by P(Y=1|X) 

=π. Then the logit of having Y=1 is modeled as a 

linear function of the explanatory variables as  

0 1 1 2 2ln  ; 0 1
1

i
p p i

i

X X X
π

β β β β π
π

 
= + + + + ≤ ≤ 

− 
⋯

                                                                                (1)                                          

Where the function 

( )
( )

0 1 1 2 2

0 1 1 2 2

exp

1 exp

p p

i

p p

X X X

X X X

β β β β
π

β β β β

+ + + +
=

+ + + + +

⋯

⋯

   

is known as logistic function. Under usual 

assumptions, least square estimations have some 

desirable properties. However, the OLS method no 

longer has these properties applied to estimate a 

model with dichotomous outcome. In such a 

situation, the most commonly used method of 

estimating the parameters of a logistic regression 

model is the method of Maximum Likelihood (ML). 

In logistic regression, the likelihood equations are 

non-linear explicit function of unknown parameters. 

Therefore, we use a very effective and well known 

Newton-Raphson iterative method to solve the 

equations which is known as Iteratively Reweighted 

Least Square (IRLS) algorithm. 

 Suppose (y1, y2…yn) be the n independent 

random observations corresponding to the random 

variables (Y1, Y2…Yn). Since the Yi is a Bernoulli 

random variable, the probability function of Yi 

is ( ) ( )11  ; 0 or 1 ; 1,2
ii

YY

i i i i if Y Y i nπ π
−

= − = = ⋯ . As 

the Y’s are assumed to be independent, the joint 

probability function or likelihood function is given 

by ( ) ( )11 2

1

, , 1
ii

n
YY

n i i

i

g Y Y Y π π
−

=

= −∏⋯ , the log-

likelihood function L (β0, β1…βp) =li (say),  

( )0 1 1 2 2

1

n

i p p

i

Y X X Xβ β β β
=

= + + + +∑ ⋯  

( ){ }0 1 1 2 2

1

ln 1 exp
n

p p

i

X X Xβ β β β
=

− + + + + +∑ ⋯    (2)         

The most effective and well known Newton-

Raphson iterative method can be used to solve the 

equations. Table 1 shows the coefficients β’s, their 

standard errors, the Wald chi-square statistic, 

associated p-values, and odds ratio exp (β). In order 

to determine the worth of the individual regressor in 

logistic regression, the Wald statistic defined as    

( )
2

2

ˆ

ˆ.

i

i

W

S E

β

β
=
 
 

 [5], [2], [6]. Under the null 

hypothesis ( )0 i : 0 , 1,2, 5H iβ = = ⋯ , the statistic W 

is approximately distributed as chi-square with 

single degree of freedom. The Wald chi square 

statistics from Table 1 agree reasonably well with 

the assumption that all the individual predictors have 

significant contribution to predict the response 

variable. 

 Once, the particular multiple logistic regression 

model has been fitted, we begin the process of model 

assessment. The likelihood ratio test is performed to 

test the overall significance of all coefficients in the 

model on the basis of test statistic 

( ) ( )0 12ln 2lnG L L = − − −                                     (3)                                                    
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Table 1: Analysis of maximum likelihood estimates 
 

Variable Coefficient β 
Standard 

error 

Wald chi-

square statistics 
df p-value Odds Ratio Exp(β) 

 

X1 

 

-0.053 
 

0.011 
 

21.534 
 

1 
 

0.000 
 

0.949 

X2 0.452 0.146 9.552 1 0.002 1.572 

X3 -0.085 0.018 21.690 1 0.000 0.919 

X4 -0.449 0.167 7.276 1 0.007 0.638 

X5 2.453 0.158 241.058 1 0.000 11.618 

Intercept 0.389 0.343 1.290 1 0.256 1.476 

  

where L0 is the likelihood of the null model and L1is 

the likelihood of the saturated model. Under the 

global null hypothesis, 0 : 5210 ==== βββ ⋯H  

the statistic G follows a chi-square distribution with 

5 degrees of freedom and measure how well the 

independent variables affect the response variable. In  

the study, summary measure provides G=403.733 

with p < 0.001, which indicate that as a whole the 

independent variables have significant contribution 

to predict the response variable. 

 In order to find the overall goodness-of-fit, 

Hosmer and Lemeshow [8] and Lemeshow and 

Hosmer [20] proposed grouping based on the values 

of the estimated probabilities. Hosmer-Lemeshow 

goodness-of-fit test divides subjects into deciles 

based on predicted probabilities and computes a chi-

square from observed and expected frequencies 

(Table is not shown here). Using this grouping 

strategy, the Hosmer-Lemeshow goodness-of-fit 

statistic, Ĉ is obtained by calculating the Pearson 

chi-square statistic from the g×2 table of observed 

and estimated expected frequencies. A formula 

defining the calculation of Ĉ  is as follows 

( )
( )

2

1

ˆ
1

g
k k k

k k k k

o n
C

n

π

π π=

′−
=

′ −∑                                                (4) 

where g denotes the number of groups, kn′  is the 

number of observations in the kth group, ok is the 

sum of the Y values for the kth group and kπ  is the 

average of the ordered π̂  for the kth group.  Hosmer 

and Lemeshow [8] demonstrated that under the null 

hypothesis that the fitted logistic regression model is 

the correct model, the distribution of the statistic Ĉ  

is well approximated by the chi-square distribution 

with g-2 degrees of freedom. This test is more 

reliable and robust than the traditional chi-square test 

[1]. The value of the Hosmer-Lemeshow goodness-

of-fit statistic computed from the frequencies is 

Ĉ =5.209 and the corresponding p-value computed 

from the chi-square distribution with 8 degrees of 

freedom is 0.74. The large p-value signifies that 

there is no significant difference between the 

observed and the predicted values of the outcome. 

This indicates that the model seems to fit quite 

reasonable. A comparison of the observed and 

expected frequencies in each of the 20 cells indicates 

close agreement within each decile. Hosmer et al., 

[10] examined the distributional properties of their 

test via simulations. The other supplementary 

summary measures of goodness-of-fit like Cox and 

Snell R
2
 is 0.26, Nagelkerke adjusted R

2
 is 0.35, 

predicted correct classification rate is 77.4% indicate 

that the model fit the data at an acceptable level. 

Thus the fitted binary logistic response function 

from the training sample is  

1 2
ˆ [1 exp( 0.389 0.053 0.452X Xπ = + − + −  

1

3 4 50.085 0.449 2.453 )]X X X −+ + −                 (5) 

The use of validation data amounts to an assessment 

of goodness-of-fit where the fitted model is 

considered to theoretically known and no estimation 

is performed. The methods for assessment of fit in 

the validation sample parallel to the training sample 

can be done via summary measures of fit as well as 

logistic regression diagnostics. The major difference 

is that the values of the coefficients in the model are 

regarded as fixed constants rather than estimated 

values. 

 Suppose that the validation sample consists of nv 

observations (yi, xi), i=1, 2…nv, which may be 

grouped into Jv covariate patterns. That is our fitted 

model contains p independent variables, x'=(x1, x2… 

xp), and let Jv denote the number of distinct values of 

x observed. If some subjects have the same value of 

x, then Jv < nv. We denote the number of subjects 

with x=xj by mj, j=1, 2…Jv. It follows that ∑mj=nv. 

Let yj denote the number of positive responses 

among the mj subjects with covariate pattern x=xj for 
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j=1, 2…Jv. For the validation sample under study, 

the number of covariate patterns Jv=626. The logistic 

probability for the jth covariate pattern is πj, the 

value of the previously estimated logistic model 

obtained in equation (5) using the covariate pattern 

xj, from the validation sample. These quantities 

become the basis for the computation of the 

summary measures of fit, like Pearson’s χ
2
 

goodness-of-fit, deviance goodness-of-fit D, and 

Hosmer-Lemeshow goodness-of-fit C. Each of these 

summary measures of goodness-of-fit is considered 

in turn in the following.  

 

 

3.1  Pearson Chi-Square Goodness-of-fit Test  
The Pearson chi-square goodness-of-fit test assumes 

only that the yij observations are independent and 

that the replicated data of reasonable sample size are 

available. The test can detect major departure from a 

logistic response function, but is not sensitive to 

small departures from a logistic response function. 

Here our objective is to test the hypothesis 

{ } ( )[ ] 1

0 exp1:
−′−+= βXyEH against

{ } ( )[ ] 1

1 exp1:
−′−+≠ βXyEH . Here the number of 

distinct combinations of the predictor variable be 

denoted by c, the ith binary response at predictor 

combination xj by yij, and the number of cases in the 

jth class will be denoted by nj. The number of cases 

in the jth class with outcome 1 will be denoted Oj1 

and the number of cases in the jth class with 

outcome 0 will be denoted by Oj0. Because the 

response variable yij is a Bernoulli variable whose 

outcomes are 1 and 0, the number of cases Oj1 

andOj0 can be easily obtained. Also suppose jπ is 

the average of the predicted probability for the jth 

class. If the logistic response function is appropriate, 

the expected value of yij is given by 

{ } ( )[ ] 1
exp1

−′−+== βπ jjij XyE and is estimated 

by the fitted value ( )[ ] 1
ˆexp1ˆ

−
′−+= βπ jj X . 

Consequently, if the logistic response function is 

appropriate, the expected number of cases with yij=1 

and yij=0 for the jth class are estimated as 

jjj nE π=1  and ( )
jjj nE π−= 10  respectively, 

where Ej1 denotes the estimated expected number of 

1s in the jth class, and Ej0 denotes the estimated 

expected number of 0s in the jth class. The following 

Pearson chi-square test statistic is used to test the 

null hypothesis H0. 

( )
∑∑
= =

−
=

c

j k jk

jkjk

v
E

EO

1

1

0

2

2χ                                     (6) 

If the logistic response function is appropriate and nj 

is large enough with p<c, χ
2
v follows approximately 

a chi-square distribution with c-p degrees of 

freedom. As with other chi-square goodness-of-fit 

tests, it is advisable that most expected frequencies 

Ejk be moderately large, that is 5 or more. The value 

of the Pearson chi-square statistic from Table 2 is 

7.18 with p-value 0.21. Smaller value of the test 

statistic χ
2
v equivalently the large p-value indicates 

that the fitted logistic response function is 

appropriate for prediction. 

 

Table 2: Pearson chi-square and Deviance chi-square statistic as summary measures 

                                    of goodness-of-fit tests 
 

Number of 

observations 

(nj) 
jπ  Oj0 Ej0 Oj1 Ej1 χ

2
 df 

p-

value 
pj D df 

p-

value 
 

63 
 

.090 
 

56 
 

57.29 
 

7 
 

5.70    
 

.111    

63 .150 52 53.52 11 9.47    .174    

63 .179 47 51.66 16 11.33    .253    

62 .190 51 50.17 11 11.82    .177    

63 .251 45 47.16 18 15.83 7.18 5 0.21 .285 6.73 5 0.24 

62 .405 35 36.83 27 25.16    .435    

63 .453 31 34.40 32 28.59    .507    

63 .726 21 17.23 42 45.76    .666    

62 .764 16 14.57 46 47.42    .741    

62 .873 11 7.826 51 54.17    .822    
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3.2  Deviance Goodness-of-fit Test 
The deviance goodness-of-fit test for logistic 

regression models is completely analogous to the F 

test for lack of fit for multiple linear regression 

models. Suppose there are c unique combinations of 

predictors and the number of observations in the jth 

class is nj, and the ith binary response at jth class be 

denoted as yij. The lack of fit test for standard 

regression was based on the general linear test of the 

reduced model E {yij} =Xj'β against the full model E 

{yij} =µi. In similar fashion, the deviance goodness-

of-fit test is based on a likelihood ratio test of the 

reduced model E {yij} = [1+exp (-Xj'β)]
-1

 against the 

full model E {yij} =πj. This full model in the logistic 

regression case is usually referred to as the saturated 

model. To carry out the likelihood ratio test, we must 

obtain the values of the maximized likelihoods for 

the full and reduced models, namely L (F) and L (R). 

L(R) is obtained by fitting the reduced model, and 

the maximum likelihood estimates of the parameters 

extracted from the training sample and hence the 

sample proportion pj=yj/nj. Let jπ is the average 

predicted probability for the jth class and to test the 

same hypothesis as in the case of Pearson chi-square 

goodness-of-fit the test statistic 

( ) ( )2v e eD Log L R Log L F = − −         

( )
1

1
2

1

c
j j

j e j j e

j j j

y Log n y Log
p p

π π

=

    −
= − + −       −     

∑  (7)   

                            

The likelihood ratio test given in equation (7) is 

called the deviance. If the fitted logistic response 

function is correct one and the class sizes nj are large 

enough, then the deviance will follow a chi-square 

distribution with c-p degrees of freedom, where p is 

the number of predictors. Small value of the 

deviance given in Table 2 as D=6.73 with 5 degrees 

of freedom and p-value 0.24 indicates that the fitted 

logistic response function is correct one. 

 

 

3.3  Hosmer-Lemeshow Goodness-of-fit Test 
Hosmer-Lemeshow goodness-of-fit test may be used 

to obtain an equivalent summary measure of test 

statistic for the validation sample. Assume that we 

wish to use g or10 groups composed of deciles based 

on ordered predicted probabilities. Any other 

grouping strategy could be used with obvious 

modifications in the calculations. Let nj denote 

approximately nv/g or nv/10 subjects in the jth decile. 

Let Oj=∑yj be the number of positive responses 

among the covariate patterns falling in the jth decile.  

The estimate of the expected value of Oj under the 

assumption that the fitted model is correct is 

Ej=∑mjπj, where sum is over the covariate patterns 

in the jth decile. Thus the Hosmer-Lemeshow test 

statistic is obtained as the Pearson chi-square 

statistic computed from the observed and expected 

frequencies as  

Table 3: Hosmer-Lemeshow goodness-of-fit chi-square statistic 
 

Decile (j) 

Mean 

predicted 

Prob. 

Total 

observation 

(nj) 

Observed 

positive 

response (Oj) 

Expected 

positive 

response (Ej) 

χ
2 

p-value 

 

1 
 

.0777134 
 

63 
 

7 
 

4.89594   

2 .1378498 63 11 8.68454   

3 .2033223 63 16 12.80931   

4 .2317175 62 11 14.36649   

5 .3439117 63 20 21.66644 5.57 0.85 

6 .5372998 62 35 33.31259   

7 .8483141 63 49 51.44379   

8 .7502874 63 43 45.26811   

9 .9219760 62 51 52.16251   

10 1.298966 62 76 75.53588   
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( )
( )

2

1 1

g
j j

v

j j j j

O E
C

n π π=

−
=

−
∑                                               (8) 

where ˆ /j j j jm nπ π=∑ . The subscript v has been 

added to C to emphasize that the statistic has been 

calculated from a validation sample. Under the 

hypothesis that the model is correct, and the 

assumption that each Ej is sufficiently large for each 

term in Cv to be distributed as χ
2
 (1), it follows that 

Cv is distributed as χ
2
 (10). In general, if we use g 

groups then the distribution is χ
2
 (g). In addition to 

calculating a p-value to assess overall fit, it is 

recommended that each term in Cv be examined to 

assess the fit within each decile. The value of the 

Hosmer-Lemeshow goodness-of-fit statistic 

computed from the frequencies in Table 3 for 

validation sample is Cv=5.57 and the corresponding 

p-value computed from the chi-square distribution 

with 10 degrees of freedom is 0.85. This indicates 

that the model seems to fit quite well. A comparison 

of the observed and expected frequencies in Table 3 

shows close agreement within each decile. The 

appropriateness of the p-value depends on the 

validity of the assumption that the estimated 

expected frequencies must be greater than 5. 

 It can be observed from table 3 that only one of 

the estimated expected frequencies is less 5. 

However, its value is fairly closed to 5. In the 

present case, there is reason to believe that the 

calculation of the p-value is accurate enough to 

support the hypothesis that the model fits well. If 

one is concerned about the magnitude of the 

expected frequencies, selected adjacent rows of the 

table may be combined to increase the size of the 

expected frequencies while, at the same time, 

reducing the number of degrees-of-freedom. The 

advantage of the Hosmer-Lemeshow chi-square test 

is that it provides analysis with a single, easily 

interpretable value that can be used to measure the 

calibration of a model. 

 

 

3.4   Validation of Prediction Error Rate 

The classification table is the remaining summary 

statistic that we are likely to use with the validation 

sample and then only in instances where 

classification is an important use of the model. The 

classification table is constructed for validation 

sample with the modification that probabilities are 

obtained from the fitted response function in (5). The 

resulting table may then be used to compute statistic 

such as prediction error rate, area under the Receiver 

Operating Characteristic curve, positive and negative 

predictive power. The reliability of the prediction 

error rate observed in the training data set is 

examined by applying the chosen prediction rule to a 

validation data set. If the new prediction error rate is 

about the same as that for the training data set, then 

the latter gives a reliable indication of the predictive 

ability of the fitted binary logistic regression model 

and the chosen prediction rule. If the new data lead 

to a considerably higher prediction error rate, then 

the fitted binary logistic regression and the chosen 

prediction rule do not predict new observations as 

well as originally indicated [16].  

 In the current study, the fitted logistic response 

function based on the training sample given in (5) 

was used to calculate the estimated probabilities for 

the 626 cases of validation data set. The chosen 

prediction rule is applied to the estimated 

probabilities as predict 1 if 5.0ˆ ≥jπ  and predict 0 

if 5.0ˆ <jπ . The percent prediction error rate for the 

validation sample given in Table 4 is 26.9 while the 

rate for the training sample was 22.6. Thus the total 

prediction error rate for the validation sample is not 

considerably higher than the training sample and we 

may conclude that it is a reliable indicator of the 

predictive capability of the fitted logistic regression 

model and the chosen prediction rule.

Table 4: Predicted classification table based on Training sample and Validation sample 

                                   taking 0.5 as cutoff. 
 

 

Training Sample 

 

Validation Sample 

 

Observed (Y) 

Expected (Y)  

Observed (Y) 

Expected (Y) 

0 1 Total 0 1 Total 

No more (0) 785 66 851 No more(0) 307 111 418 

Have another (1) 239 259 498 Have another (1) 58 150 208 
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ROC Curve

Figure 1.1: Area under the ROC curve for the training sample.
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ROC Curve

Figure 1.2: Area under the ROC curve for the validation sample.
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A graphical display through the Receiver Operating 

Characteristic (ROC) curve is an effective way to 

exhibit the classification information. For possible  

pointsπ̂ , the ROC plots 1ˆ( =YP |Y=1) against 

{ 0ˆ(1 =− YP |Y=0)} which are called sensitivity 

and specificity, respectively. The area under the 

ROC curve is another summary measure of the 

model’s predictive power and is identical to the 

concordance index. Suppose any pair of observations 

(i, j) such that Yi=1 and Yj=0. Since Yi>Yj, this pair 

is said to be concordant if ji ππ ˆˆ > . The concordant 
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index estimates the probability that the predictions 

and the outcomes are concordant. The area under 

ROC curve having the value 0.5 means that the 

predictions were no better than random guessing. In 

the present study the area under the ROC curve for 

the training sample is 0.80 (Figure 1.1) while the 

area for the validation sample is 0.72 (Figure 1.2) for 

all possible cut points between 0 and 1. The area 

under ROC curve for the validation sample is 

smaller than the training sample and it may be 

considered that the predictive ability of the fitted 

logistic response function for the new subject is 

acceptable.    

 

 

4.  Discussion and Conclusion 
Logistic regression is a technique for fitting a 

regression curve to the data in which the dependent 

variable is dichotomous. An interesting and useful 

property of the logistic response function is that it 

can be linearized easily. The principal aim of 

predictive modeling is generalization and 

determination of its ability to predict the outcome on 

new subjects. In contrast, the principal aim of 

traditional statistical analysis is inference. 

Confidence intervals, hypothesis test, and p-values 

are the common inferential tools. Similar methods 

used by predictive modelers may be used to infer 

how input variables affect the response variable. The 

validity of the inference relies on understanding the 

statistical properties of methods and applying them 

correctly. Understanding the relationships between 

random variables can be important in predictive 

modeling as well. However, many of the methods, 

used are adhoc with poorly understood statistical 

properties. Consequently, the discovery of structure 

in predictive modeling is informal and exploratory. 

Some predictive modeling methods are inscrutable 

yet successful because they generalize well. The 

validity of predictive modeling methods is assessed 

empirically. If a model generalizes well, then the 

method is useful, regardless of its statistical 

properties.  

 Model validation is done to ascertain whether 

predicted values from the model are likely to 

accurately predict responses on future subjects or 

subjects not used to develop the model. There are 

two major modes of model validation, that is the 

external and the internal validation. Even though the 

external validation is frequently favored by non-

statisticians, it is often problematic and more 

stringent than internal validation. Internal validation 

involves fitting and validating the model by carefully 

splitting one series of subjects into training set and 

validating set. The study evaluated the model 

performance on the validating data set based on the 

model developed in the training set. Comprehensive 

approaches to the validation of the predictive logistic 

regression model have been introduced in the study. 

Different summary measures of goodness-of-fit and 

indices have been used to calibrate the model. The 

summary measures like Pearson’s chi-square, 

Deviance and Hosmer-Lemeshow goodness-of-fit 

test suggest that the fitted logistic regression model 

has significant predictive ability for future subjects. 

Prediction error rate for validation of the model is 

not so high. The area under the ROC curve for the 

training sample was 0.80 and it was decreased by 

0.08 to 0.72 for the validation sample which 

indicates that the predictive ability of the fitted 

model is good. Thus different summary measures of 

goodness-of-fit and others supplementary indices of 

predictive ability of the fitted model indicate that the 

fitted binary logistic regression model can be used to 

predict the future subjects. 
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