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Abstract: - This paper develops Bayesian and non-Bayesian analysis in the context of record statistics values 

from the modified Weibull distribution. We obtained non-Bayes estimators using MLE and Bayes estimators 

using the general entropy loss functions. This was done with respect to the conjugate prior for the shape 

parameter. Finally, Bayesian predictive density function, which is necessary to obtain bounds for predictive 

interval of future record, is derived. The results may be of interest in a situation where only record values are 

stored. 
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1 Introduction 
The Weibull distribution is one of the most popular 

widely used models of failure time in life testing 

and reliability theory. The Weibull distribution has 

been shown to be useful for modeling and analysis 

of life time data in medical, biological and 

engineering sciences. 

Applications of the Weibull distribution in various 

fields are given in Zaharim et al [36], Gotoh et al 

[11], Shamilov et al [27], Vicen-Bueno et al [35], 

Niola et al [20], Green et al.[12]. 

A great deal of research has been done on 

estimating the parameters of the Weibull 

distribution using both classical and Bayesian 

techniques, and a very good summary of this work 

can be found in Johnson et al. [15]. 

Recently, Hossain and Zimmer [14] have discussed 

some comparisons of estimation methods for 

Weibull parameters using complete and censored 
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samples, Carrasco et al. [10] proposes a regression 

model considering the modified Weibull distribution 

and Carrasco et al [9] studies a four parameter 

generalization of the Weibull distribution. 

This new distribution has a number of well-known 

lifetime special sub-models, such as the Weibull, 

extreme value, exponentiated Weibull, generalized 

Rayleigh and modified Weibull distributions, among 

others. 

Record values and the associated statistics are of 

interest and importance in many areas of real life 

applications involving data relating to industry, 

economics, lifetesting, meteorology, hydrology, 

seismology, athletic events and mining. 

Many authors have studied records and associated 

statistics. Among others are Resnick [26], Nagaraja 

[19], Ahsanullah [2], [3], Arnold et al. [4], [5], 

Gulati and Padgett [13], Raqab and Ahsanullah [25], 

Raqab [24], Sultan [32], Preda et al. [23]. 

The objective of this paper is to obtain and compare 

several techniques of estimation based on record 

statistics for the three unknown parameter of the 

modified Weibull distribution and the survival time 

parameters, namely the hazard and reliability 

functions. Section 2 contains some preliminaries. 

In Section 3 we give the maximum likelihood 

estimators and in Section 4, the Bayes estimators of 

the parameters, the reliability and hazard functions 

are derived based on upper record values using the 

conjugate prior on the scale parameter and 

discretizing the shape parameter to a finite number 

of values. The estimates are obtained using general 

entropy loss functions. 

In Section 5, we provide Bayesian prediction 

interval for the future record. A numerical example 

simulated is used for illustration, and comparison is 

also given in Section 6. 

We conclude with a brief summary of the results in 

Section 7. 

 

 

2 Preliminaries 
Let …

321
,, XXX  a sequence of independent and 

identically distributed (iid) random variables with 

cdf )(xF  and pdf )(xf . 

Setting ),,,,max(
321 nn

XXXXY …= , 1≥n , we 

say that 
j

X  is an upper record and denoted by 

)( jU
X  if 

1−>
jj

YY , 1>j .  

Assuming that 
)()3()2()1(

,,,,
nUUUU

XXXX …  are the 

first n upper record values arising from a sequence 

}{
i

X  of iid modified Weibull variables with pdf 

      
xexxexxxf

λβαλβ λβα −− += )()( 1   (1) 

0≥x , 0,, >λβα , 

and cdf 

    
xexexF

λβα−−=1)(   (2) 

0≥x , 0,, >λβα  

where α is the scale parameter and β, λ are the 

shape parameters. 

The reliability function )(tR , and the hazard 

(instantaneous failure rate) function )(tH  at 

mission time t for the modified exponential 

distribution are respectively given by 
tetetR

λβα−=)( , 0>t ,  (3) 

and 

      tetttH λβ λβα ⋅+= − )()( 1 , 0>t .  (4) 

It is remarkable that most of the  Bayesian inference 

procedures have been developed with the usual 

squared-error loss function, which is symmetrical 

and associates equal importance to the losses due to 

overestimation and underestimation of equal 

magnitude. 

However, such a restriction may be impractical in 

most situations of practical importance. For 

example, in the estimation of reliability and failure 

rate functions, an overestimation is usually much 

more serious than an underestimation. 

In this case, the use of symmetrical loss function 

might be inappropriate as also emphasized by Basu 

and Ebrahimi in [6]. 

A useful asymmetric loss known as the LINEX loss 

function (linear-exponential) was introduced by 

Varian in [34] and has been widely used by several 

authors such Basu and Ebrahimi [6], Calabria and 

Pulcini [7], Soliman [31], Singh et al [28], and 

Ahmadi et al. [1]. 

Despite the flexibility and popularity of the Linex 

loss function for the location parameter estimation, 

it appears to be unsuitable for the scale parameter 

and other quantities (c.f. Basu and Ebrahimi [6], 

Parsian and Sanjari Farsipour [21]). 

Keeping these points in mind, Basu and Ebrahimi in 

[6] defined a modified Linex loss. A suitable 

alternative to the modified Linex loss is the General 

Entropy loss proposed in Calabria and Pulcini [8]. 

The General Entropy loss (GEL) is defined as: 

1log),(
**

* −







−








∝

φ
φ

φ
φ

φφ cL

c

BE
 (5) 

where *φ  is an estimate of parameter φ. 

The Bayes estimate *

BE
φ  of under general entropy 

loss (GEL) is given as 

{ }[ ] c
c

BE
E

1
* −−= φφ φ   (6) 
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provided that { }cE −φφ  exists and is finite. It can be 

shown that, when c=1, the Bayes estimate (6) 

coincides with the Bayes estimate under the 

weighted squared-error loss function. Similarly, 

when c=-1 the Bayes estimate (6) coincides with the 

Bayes estimate under squared error loss function. 

 

 

3 Non-Bayesian estimation (MLE) 
The joint density function of the first n upper record 

values ),,,(
)()2()1( nUUU

xxxx …≡  is given by 
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where )(xf , and )(xF  are given, respectively, by 

(1) and (2) after replacing x by 
)(iU

x . The likelihood 

function based on the n upper record values x is 

given by 
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and the log-likelihood function may be written as 
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Assuming that the shape parameters β and λ are 

known, the maximum likelihood estimator (MLE), 

ML
α̂ of the scale parameter α can be shown by using 

(8) to be 
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If only the shape parameter λ is known, the MLEs 

of the scale parameter α and the shape parameter β, 

ML
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ML
β̂ , can be obtained as solutions of 

equations: 
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which maybe solve using for example, Newton-

Raphson iteration scheme. 

If 
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0 λ  then the maximum 

likelihood estimate of β, 
ML

β̂  is the (unique) 

solution of the equation in β obtained by eliminating 

α in (10). Then the maximum likelihood estimate of 

α, 
ML

α̂ , is 
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If only the shape parameter β is known, the MLEs 

of the scale parameter α and the shape parameter λ, 
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which maybe solve using a iteration scheme. Then, 

if 

∑

∑

=

=

−
<<

n

i

nU

iU

n

i iU

nx
x

x

1

)(

)(

1 )(

1

1

0 β , we obtain the MLE of 

λ, 
ML

λ̂ , the (unique) solution of the equation in λ 

obtained by eliminating α in (12). Then the 

maximum likelihood estimate of α, 
ML

α̂ , is 

          )(
ˆ

)(

ˆ nUMLx

nU

ML
e

x

n λ

βα −=              (13) 

If the three parameters α, β and λ are unknown, 

using the first likelihood equation (of α), we obtain 

α, and, after replacing α in (8), we get 

+⋅+−−= ∑
=

n

i

iUnUnU
xxnxnnnL

1

)()()(
)(lnln),(

~
λβλλβ

      ( ) ( )∑∑
==
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The Hessian of L
~

 is negative defined matrix and 

then L
~

 is a concave application on the admissible 

region (β>0, λ>0). 

Then, the Newton-Raphson algorithm converges to 

the global optimum, assuming that it does not go 

outside the admissible region. The Newton-Raphson 

algorithm requires initial parameter estimates. 

Different types of initialization are discussed in 

Ronning (1989) and Wicker (2008). 

WSEAS TRANSACTIONS on MATHEMATICS
Vasile Preda, Eugenia Panaitescu, 
Alina Constantinescu, Supian Sudradjat

ISSN: 1109-2769 429 Issue 6, Volume 9, June 2010



However, in this case we can use the likelihood 

equations for this L
~

. After some transformations, 

we get 
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which, again, maybe solve using a iteration scheme. 

We note that this equation has a solution (unique) 
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So first, we get 
ML

λ̂ , the MLE of λ, and then 
ML

β̂  

and 
ML

α̂ , the MLEs of α and β 

∑

∑

=

=

−









−−

=
n

i

iUnU

n

i

iUnUML

ML

xxn

xnxn

1

)()(

1

)()(

lnln

ˆ

ˆ
λ

β            (16) 

           )(
ˆ

ˆ

)(

ˆ nUML

ML

x

nU

ML
e

x

n λ

β
α −=              (17) 

Finally, the corresponding MLE’s )(ˆ tR
ML

, and 

)(ˆ tH
ML

 of )(tR  and )(tH  are given by (3) and (4) 

after replacing α, β and λ by 
ML

α̂ , 
ML

β̂  and 
ML

λ̂ , 

respectively. 

 

 

4 Bayes estimation 
In this section, considering the general entropy loss 

function, we estimate α, β and λ, and R(t) and H(t). 

 

4.1 Known shape parameters λ and β 

Under the assumption that the shape parameter λ is 

known, we assume a gamma )(a,bγ  conjugate prior 

for α as 
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Applying Bayes theorem, we obtain from (6), the 

likelihood function, and (11), the prior density, the 

posterior density of α in the form 
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where Γ(⋅) is gamma function. 

 

Theorem 1: If shape parameters λ and β are 

known, under the general entropy loss function, the 

Bayes estimators for α, R(t) and H(t) are given by 
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Similarly, the Bayes estimators for R(t) and H(t) are 

given, respectively, by 
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4.2 Known shape parameter λ 
It is well known that, for the Bayes estimators, the 

performance depends on the form of the prior 

distribution and the loss function assumed. Under 

the assumption that both the parameters α and β are 

unknown, no analogous reduction via sufficiency is 
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possible for the likelihood corresponding to a 

sample of records from the modified Weibull 

density (1). Also, specifying a general joint prior for 

α and β leads to computational complexities. In 

trying to solve this problem and simplify the 

Bayesian analysis, we use Soland's method. Soland 

in [30] considered a family of joint prior 

distributions that places continuous distributions on 

the scale parameter and discrete distributions on the 

shape parameter. 

We assume that the shape parameter β is restricted 

to a finite number of values 
k

βββ ,...,,
21

 with 

respective prior probabilities 
k

ηηη ,...,,
21

 such that 

10 ≤≤
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1

=∑
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where 
j

a  and 
j

b  are chosen so as to reflect prior 

beliefs on α given that 
j

ββ = . Then given the set 

of the first n upper record values x, the conditional 

posterior pdf of α is given by 
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The marginal posterior probability distribution of 
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β  obtained by applying the discrete version of 

Bayes' theorem, is given by 
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Under the general entropy loss function (5), the 

Bayes estimator of *

BE
φ  a function ),( baφ  is given 

by (6). 

Theorem 2: If shape parameters λ is known, under 

the general entropy loss function, the Bayes 

estimators for α, β, R(t) and H(t) are given by 
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Proof: The Bayes estimator for the scale parameter 

α is given by 
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Similarly, the Bayes estimator for the reliability 

function R(t) is given by 
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where R(t) is given in (3). The Bayes estimator for 

the hazard function H(t) is obtained as 
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To implement the calculations in this section, it is 

first necessary to elicit the values of )(
jj

,ηβ  and 

the hyperparameters )(
jj

,ba  in the conjugate prior 

(20), for j=1,2,...,k. The former pairs of values are 

fairly straightforward to specify, but for )(
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,ba  it is 

necessary to condition prior beliefs about α on each 
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β  in turn and this can be difficult in practice. 

An alternative method for obtaining the values 

)(
jj
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reliability function R(t) conditional on 
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Now, suppose that prior beliefs about the lifetime 

distribution enable one to specify two values 

( ) ( )( )
2211

),(,),( ttRttR . Thus, for these two prior 

values 
11

)( ttR =  and 
22

)( ttR = , the values of 
j

a  

and 
j

b  for each value 
j

β , can be obtained 

numerically from (24). If there are no prior beliefs, a 

nonparametric procedure can be used to estimate the 

corresponding two different values of R(t), see 

Martz [16]. 

The case of known shape parameter β is similar with 

the case of known shape parameter λ. 

 

4.3 Unknown scale parameter α and shape 

parameters β and λ 

We assume that the shape parameters β and λ are 

restricted to a finite number of values 
k

βββ ,...,,
21

 

and respective 
m

λλλ ,...,,
21

 with prior probabilities 

k
ηηη ,...,,

21
 and 

m
ξξξ ,...,,

21
 such that 

1,0 ≤≤
ij

ξη , 1
1

=∑
=

k

j

j
η  and 1

1

=∑
=

m

i

i
ξ  [i.e. 

jj
P ηββ == )(  and 

ii
P ξλλ == )( ]. Further, 

suppose that conditional upon , 
j

ββ =  and 
i

λλ =  

has a natural conjugate prior with distribution 

having a gamma ),(
ijij

hg with density 

       
)(

),|(

1

i

ij

hgg

ij

j
gΓ

eh ijijij αα
λλββαπ

−−

=== ,         (25) 

0>α , 0, >
ijij

hg  

where 
ij

g  and 
ij

h  are chosen so as to reflect prior 

beliefs on α given that 
j

ββ =  and 
i

λλ = , mi ,1= , 

kj ,1= . Then given the set of the first n upper 

record values x, the conditional posterior pdf of α is 

given by 

    
)(

),,|(

1

i

*

ij

HGG

ij

j
GΓ

eH
x

ijijij αα
λλββαπ

−−

=== ,    (26) 

0>α , 0, >
ijij

HG  

which is a gamma ),(
ijij

HG , where 

         ngG
ijij
+=  and )(

)(

nUij x

nUijij
exhH
λβ+=       (27) 

The marginal posterior probability distribution of 

j
β  and 

i
λ  obtained by applying the discrete version 

of Bayes' theorem, is given by 
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G
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ijij
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AP
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)(
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where 
)(βλA  is a normalized constant given by 
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= =
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=

−
. 

The Bayes estimator 
BE

α~ , 
BE

β
~

 and 
BE

λ
~

 of α, β and 

λ respectively, under the general entropy loss 

function are obtained by using the posterior pdfs 

(26) and (28). 

Using the line from Theorem 2 we get: 

 

Theorem 3: If all parameters are unknown, under 

the general entropy loss function, the Bayes 

estimators for α, β, λ, R(t) and H(t) are given by 
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To implement the calculations in this section, it is 

first necessary to elicit the values of )(
jj

,ηβ , 

)(
ii

,ξλ  and the hyperparameters )(
ijij

,hg  in the 

conjugate prior (25), for mi ,1= , kj ,1= . The 

former pairs of values are fairly straightforward to 

specify, but for )(
ijij

,hg  it is necessary to condition 

prior beliefs about α on each 
j

β  and 
i

β  in turn, and 

this can be difficult in practice. 

An alternative method for obtaining the values 

)(
ijij

,hg  can be based on the expected value of the 

reliability function R(t) conditional on 
j

ββ =  and 

i
λλ =  which is given using (25) by 
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Now, suppose that prior beliefs about the lifetime 

distribution enable one to specify two values 

( ) ( )( )
2211

),(,),( ttRttR . Thus, for these two prior 

values 
11

)( ttR =  and 
22

)( ttR = , the values of 
ij

g  

and 
ij

h  for each value 
j

β  and 
i

λ  can be obtained 

numerically from (29). If there are no prior beliefs, a 

nonparametric procedure can be used to estimate the 

corresponding two different values of R(t), see 

Martz [16]. 

 

5 Bayesian prediction 
In the context of prediction of the future record 

observations, the prediction intervals provide 

bounds to contain the results of a future record, 

based upon the results of the previous record 

observed from the same sample. This section is 

devoted for deriving the Bayes predictive density 

function, which is necessary to obtain bounds for 

predictive interval. 

Suppose that we observe only the first n upper 

record observations ( )
)()2()1(

,...,,
nUUU

xxxx ≡  and the 

goal is to obtain the Bayes predictive interval for the 

s-th future upper record, where sn <≤1 . 

Let 
)(sU

XY =  be L the s-th upper record value. The 

conditional density function of Y for given 

)(nUn
xx =  is given, Ahsanullah [3], by 
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where )](1ln[)( ⋅−−=⋅ Fω . 

Upon using the modified Weibull distribution, with 

pdf given by (1), the conditional density function 

(30) is given by 
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where nx

n

y exeyy
λβλβγ −=)( . 

The Bayes predictive density function of y given the 

observed record x is given by 
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From (31), (25) and (27) into (32), we get 
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where 
ij

H  and 
ij

G  are as given by (26), B(⋅,⋅) is the 

beta function of the second kind, and 
nijij x

n

y

ij
exeyy
λβλβγ −=)(  and y

ijij
ij eyhw

λβ−= (34) 

It follows that the lower and upper 100τ% prediction 

bounds for 
)(sU

XY = , given the past record values 

x, can be derived using the predictive survival 

function defined by 

dyxyfxyYf
y

∫
∞

=≥
0

)|()|(
0

 

i.e. 
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x

n

y

ij
H

exey nijij λβλβ

δ
−

=
0

0  

and ),,zIncB(z ξ
21

 is the incomplete beta function. 

Iterative numerical methods are required to obtain 

the lower and upper 100τ% prediction bounds for 

)(sU
XY =  by finding from (34), using 

τ=]Pr[ (x)LL(x)<Y<UL  where LL(x)  and UL(x)  

are the lower and upper limits, respectively, 

satisfying 
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2

1
=]|Pr[

τ+
> xLL(x)Y  and  

         
2

1
=]|Pr[

τ−
> xUL(x)Y              (36) 

It is often important to predict the first unobserved 

record value 
)1( +nU

X ; the predictive survival 

function for 
)1(1 ++ =

nUn
XY  is given from (34) by 

setting s=n+1 as 

( ) ( )∑∑
=

+−

=
+ +=≥

k

j

ng

ij

m

i

ijn

ijPxyYf
1 1

)(01
1)|( δβλ  

Iterative numerical methods are also required to 

obtain prediction bounds for 
1+n

Y . 

 

 

6 Applications 
To illustrate the estimation techniques developed in 

this paper, we consider the real data set which was 

used in Tong (1990). 

The data are daily precipitation recorded in 

Hveravellir (mm) between 1 Jan 1972 and 31 Dec 

1974. 

We consider the following eight upper record values 

observed in dataset: 

8.1, 9.2, 19.4, 42.2, 54, 60.3, 77.7, 79.3 

The hyperparameters of the gamma prior (29) and 

the values of 
i

λ  and 
j

β  are derived by the 

following steps: 

1. based on the above seven upper records, we 

estimate two values of the reliability 

function using a nonparametric procedure  

( )
25.0

625.0
)( +

+−
==

n

in
XtR

iUi
, 

with ( 7=n ), see Martz and Waller (1982). 

So, we assume that the reliability for times 

2.9
1
=t , and 2.42

2
=t  are, respectively, 

803.0)(
1
=tR , and 561.0)(

2
=tR ; 

2. concerning the value of the MLE of the 

parameters β and λ obtained from (15) and 

(16), ( 872.0ˆ =
ML

β  and 006.0ˆ =
ML

λ ), we 

assume that β takes the values: 

0.6(0.05)1.05 and λ takes the values: 

0.005(0.0005)0.0095; 

3. the two prior values obtained in step 1 are 

substituted into (29), where 
ij

h  and 
ij

g  are 

solved numerically for each given 
j

β  and 

i
λ , mi ,1= , kj ,1=  using the Newton-

Raphson method. 

Tables 1 and 2 gives the values of the 

hyperparameters and the posterior probabilities 

derived for each 
j

β  and 
i

λ . The ML estimates 

ML
)(⋅ , and the Bayes estimates 

BE
)(⋅  of α, β, λ, R(t)  

and H(t) , are computed and the results are 

displayed in Table 3. 

 

Tab 1: Prior information and hyper parameter 

values. 

i 1 2 3 4 5 

β 0.6 0.65 0.7 0.75 0.8 

λ 0.005 0.0055 0.006 0.0065 0.007 

η 0.100 0.100 0.100 0.100 0.100 

ξ 0.100 0.100 0.100 0.100 0.100 

i 6 7 8 9 10 

β 0.85 0.9 0.95 1.0 1.05 

λ 0.0075 0.008 0.0085 0.009 0.0095 

η 0.100 0.100 0.100 0.100 0.100 

ξ 0.100 0.100 0.100 0.100 0.100 

 

g 1 2 3 4 5 

1 1.715 1.498 1.330 1.198 1.090 

2 1.034 0.954 0.886 0.828 0.777 

3 0.749 0.708 0.671 0.638 0.609 

4 0.592 0.567 0.544 0.523 0.504 

5 0.493 0.476 0.460 0.445 0.432 

6 0.424 0.411 0.400 0.389 0.379 

7 0.373 0.364 0.355 0.347 0.339 

8 0.334 0.327 0.320 0.313 0.307 

9 0.303 0.297 0.292 0.286 0.281 

10 0.278 0.273 0.269 0.264 0.260 

g 6 7 8 9 10 

1 1.001 0.927 0.863 0.807 0.759 

2 0.732 0.693 0.658 0.627 0.598 

3 0.582 0.558 0.536 0.515 0.497 

4 0.486 0.469 0.454 0.440 0.427 

5 0.419 0.407 0.396 0.385 0.375 

6 0.369 0.360 0.352 0.344 0.336 

7 0.331 0.324 0.317 0.311 0.305 

8 0.301 0.295 0.290 0.284 0.279 

9 0.276 0.272 0.267 0.263 0.258 

10 0.256 0.252 0.248 0.244 0.241 

 

h 1 2 3 4 5 

1 29.065 25.250 22.323 20.005 18.124 

2 18.741 17.213 15.916 14.801 13.833 

3 14.545 13.685 12.921 12.238 11.623 

4 12.333 11.760 11.239 10.761 10.322 

5 11.015 10.594 10.203 9.841 9.503 

6 10.179 9.848 9.538 9.246 8.971 

7 9.637 9.364 9.105 8.861 8.629 

8 9.289 9.055 8.833 8.621 8.419 

9 9.078 8.873 8.676 8.488 8.308 

10 8.970 8.785 8.608 8.437 8.273 
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h 6 7 8 9 10 

1 16.568 15.258 14.141 13.176 12.335 

2 12.983 12.232 11.564 10.965 10.425 

3 11.068 10.563 10.102 9.680 9.291 

4 9.918 9.544 9.197 8.875 8.574 

5 9.187 8.892 8.615 8.354 8.109 

6 8.712 8.468 8.237 8.018 7.810 

7 8.408 8.199 7.999 7.809 7.628 

8 8.226 8.041 7.865 7.695 7.533 

9 8.135 7.968 7.809 7.655 7.507 

10 8.115 7.963 7.816 7.674 7.537 

 

Tab. 2: Posterior probabilities. 

P 1 2 3 4 5 

1 0.0008 0.0012 0.0017 0.0022 0.0029 

2 0.0027 0.0034 0.0042 0.0050 0.0058 

3 0.0054 0.0062 0.0070 0.0078 0.0085 

4 0.0080 0.0087 0.0094 0.0101 0.0107 

5 0.0102 0.0107 0.0113 0.0117 0.0121 

6 0.0116 0.0120 0.0123 0.0126 0.0127 

7 0.0124 0.0126 0.0127 0.0128 0.0128 

8 0.0126 0.0127 0.0126 0.0125 0.0124 

9 0.0124 0.0123 0.0121 0.0119 0.0117 

10 0.0118 0.0116 0.0113 0.0111 0.0108 

P 6 7 8 9 10 

1 0.0036 0.0044 0.0052 0.0060 0.0068 

2 0.0066 0.0074 0.0081 0.0088 0.0095 

3 0.0092 0.0099 0.0104 0.0109 0.0114 

4 0.0112 0.0116 0.0120 0.0122 0.0124 

5 0.0124 0.0126 0.0127 0.0128 0.0128 

6 0.0128 0.0129 0.0128 0.0127 0.0126 

7 0.0127 0.0126 0.0125 0.0122 0.0120 

8 0.0122 0.0120 0.0117 0.0115 0.0111 

9 0.0114 0.0112 0.0108 0.0105 0.0101 

10 0.0105 0.0102 0.0098 0.0095 0.0091 

 

Tab. 3: Estimates of α, β, λ, R(t)  and H(t)  with 

t=0.5 

  
BE

)(⋅  

 
ML

)(⋅  c=-1 c=-0.5 c=0.5 c=1 

α 0.1078 0.1073 0.0988 0.0829 0.0758 

β 0.8728 0.8562 0.8513 0.8413 0.8362 

λ 0.0062 0.0073 0.0073 0.0071 0.0071 

R(t) 0.9427 0.9406 0.9402 0.9394 0.9389 

H(t) 0.0517 0.0985 0.0918 0.0792 0.0733 

 

Based on the eight record values with the 

corresponding hyperparameter values obtained in 

Tables 1 and 2, and using the results in (35) and 

(36), the lower and the upper 95% prediction 

bounds for the next record values 
)9(U

X  are 79.48 

and 110.78. 

 

7 Conclusion 
Based on the set of the upper record values, the 

present paper proposes classical and Bayesian 

approaches to estimate the three unknown 

parameters as well as the reliability and hazard 

functions for the modified Weibull model. We also 

considered the problem of predicting future record 

in a Bayesian setting. The Bayes estimators are 

obtained using general entropy loss functions. 
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