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Abstract:- An analysis is performed for  mixed convection thermal and solute concentration 
Marangoni boundary layer that can be formed along the surface, which separates two immiscible 
fluids in surface tension flows.  Similarity equations for the case in which an external pressure 
gradient is imposed are derived. The dimensionless governing equations of the flow field are solved 
numerically using the shooting method. The effect of flow parameters on the velocity, temperature and 
concentration  are computed and presented in tables and figures.  
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1  Introduction 
The study of the flow and heat transfer in an 
electrically conducting fluid has many practical 
applications in manufacturing process in 
industry. The thermal fluid flow problem have 
been extensively studied numerically, 
theorrtically as well as experimentally (see [1-
2]).  Marangoni convection induced by variation 
of the surface tension with temperature along a 
surface influences crystal growth melts and 
other processes with liquid-liquid or liquid-gas 
interfaces. Marangoni convection, due to 
thermally induced surface tension gradients, 
plays an important role in the burning and 
extinction of wicks fed by liquid fuels and in the 
ignition and spread of flames across the surfaces 
of liquid fuel layers [3]. The surface tension 
gradients  for Marangoni convection can be 
temperature and/or concentration gradients.  
The numerous investigations of Marangoni 
convection with an imposed surface temperature 
gradient have been reviewed in the literature 
(see Arifin and Rosali [4], Arifin et al. [5], 
Arifin and Pop [6], Arifin and Abidin [7] and 
Chen and Chan [8]).   

The investigations of Marangoni flow in 
various geometries have been reviewed by 
Arafune and Hirata [9] and Croll et al. [10]. 
Later, Arafune and Hirata [11] studied a 
similarity analysis for just the velocity profile 
for Marangoni flow that are linearly related to 

the surface position. Similarity solutions for 
surface tension that varied as a quadratic 
function of the temperature as would occur near 
a minimum has been investigated by Slavtchev 
and Miladinova [12]. Schwabe and Metzger 
[13] experimentally studied Marangoni flow on 
a flat surface combined with natural 
convectionin a unique geometry where the 
Marangoni and buoyancy effects could be 
varied independently. 

 The existence of the steady dissipative 
layers along the liquid-liquid or liquid-gas 
interfaces have been first studied by Napolitano 
[14-15] and were called Marangoni boundary 
layers. Napolitano and Golia [16] have shown 
that the fields are uncoupled when the 
momentum and energy resistivity ratios of the 
two layers and the viscosity ratio of the two 
fluids aremuch less than one. Furthermore, as 
shown by Napolitano and Russo [17], similarity 
solutions for Marangoni boundary layers exist 
when the interface temperature gradient varies 
as a power of the interface arc length ( x ). The 
power laws for all other variables, including 
themean curvature, were determined.  

Numerical solutions for Marangoni 
boundary layers have been analyzed and 
discussed in subsequent papers by Golia and 
Viviani [18,19], Pop et al. [20] and Chamkha et 
al. [21]. Al-Mudhaf and Chamkha [22] have 
studied numerically and analytically the 
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thermosolutal Marangoni convection along a 
permeable surface with heat generation or 
absorption and a first-order chemical reaction 
effects. Recently, Magyari and Chamkha [23] 
reported exact analytical solutions for the 
velocity, temperature and concentration fields of 
steady thermosolutal MHD Marangoni 
convection. 

The present work focuses on numerical 
solution for thermosolutal Marangoni mixed 
convection boundary layer due to imposed 
temperature and concentration gradients. The 
analysis assumes that the surface tension varies 
linearly with temperature and concentration. 
The corresponding similarity equations are then 
solved numerically for some values of these 
parameters using shooting method. The 
velocity, temperature and concentration profiles 
as well as interface velocity, heat and mass 
transfer at the interface are obtained and 
discussed. 
 

 
2 Basic Equations 
Consider the steady two-dimensional flow along 
the interface S of two Newtonian immiscible 
fluids where x  and are the axes of a Cartesian 
coordinate system as shown in Fig. 1. 

y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 

We assume that the temperature and 
concentration at the interface are  and 

, respectively. Under the usual boundary 
layer approximations, the basic governing 
equations are 
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where u and v are the velocity components 
along x and y axes, ue(x) is the external velocity, 
T is the fluid temperature, C is the solutal 
concentration, α is the thermal diffusivity, D is 
the mass diffusivity and  ν is the kinematic 
viscosity. For 1Γ = −  refers to buoyancy forces 
which are favourable to the Marangoni flow and 
the buoyancy forces are opposing to the 
Marangoni flow if 1Γ = + . The surface tension 
gradients that are responsible for the Marangoni 
mixed convection flow can be due to the 
gradients of temperature and/or solutal 
concentration. The boundary conditions of 
equations (1) – (4) are 
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where μ is the dynamic viscosity, σT and σc are 
rates of change of surface tension with 
temperature and solute concentration, 
respectively. The fourth condition of (5) 
represents the Marangoni coupling condition at 
the interface, having considered for the surface 
tension given by 
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The subscript m in equation (7) denotes values 
pertaining to the hydrostatic state, assumed 
uniform and chosen as the reference state, 
which coincides, in this case, with the external 
conditions. The directions of the driving actions 
depend on the orientation of the temperature 
and solutal concentration gradients in liquid 
∇ and C∇ , and on the signs of the 
thermodynamics coefficients σT and σc . We 
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Fig 1 : Physical Model 
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now define the following non-dimensional 
variables: 

 
0 C C

m m e C

x L XL, y LY ,u U U ,v U V ,

T T T ,C C C,u ( x ) U U ( x )

= + = δ = = δ

= + θΔ = + φΔ = e ,
  

                                                                         (8)                                                                                                    
 
where  locates the origin of the curvilinear 
abscissa x, L is the extension of the relevant 
interface S, ΔT and ΔC are positive increments 
of temperature and solute concentration linked 
to the temperature and solute concentration 
gradients imposed on the interface. Further, δ is 
a scale factor in the direction normal to the 
interface and  is the reference velocity which 
are defined as δ = Re-1/3 and 

with 

0L

U /

CU

2 )L(C = ν δ Re /T TLσ νμ= Δ  being the 
Reynolds number. Substituting (8) into 
equations (1)-(4), we obtain the following non-
dimensional equations: 
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nd the boundary conditions (5) and (6) reduce 
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here and Sc are usually Prandtl and 

a
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ter, 

Schmidt numbers, 0λ ≥  is the Marangoni 
mixed convection par r, which is defined 
as cg TL / Uλ = βΔ  and the Marangoni 
par T

amete

cme Ma /ε = Ma .  The equations  (9) - 
(12) can be nto the corresponding 
ordinary differential equations by the following 
transformations (see Pop et al.  [20]) 
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where f '( ), g( )η η  and  represent the 
velocity, temperature and solutal concentration 
profiles in the similarity plane and η  being the 
similarity variable, and  are constant 
scale factors to be further determined and prime 
denotes differentiation with respect to 

h( )η

0t u0 0, ,c l 0

η . On 
using equations (9)-(12), the boundary 
conditions (13) and (14) and the similarity 
transformation above, we obtain, after some 
algebra, 
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Particularly interesting cases are: 1 / 2β = , 
interface and external velocities are constant, 

1β = , the temperature and the solute 
concentration gradients at the interface are 
constant and 2β = , the thickness of the 
dissipative (velocity) boundary layer is constant. 
(see Pop et al. [20]).  The constant scale factors 

and  must satisfy the following 
conditions: 

0 0, ,c l 0t 0u

 

             2 0 0 0
0 0

0 0

3 1, , 1
1

l t c
u tβ β

.u l = =
+

 =

These relations show that the nature of the 
boundary layers influence only the scale factors 

and . If we take  or  then 
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The transformed ordinary differential 

equations are 
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along with the boundary conditions 
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0 0 0 1
0 1 0 1

f ( ) , f ''( ) ,
g( ) , h( )

= = − −
= =

ε
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1 0f ( ) , g( ) , h( )∞ = ∞ = ∞ = .                (19) 

3 Results and Discussion 
The system of ordinary differential equations 
(15)-(17) subject to the boundary conditions 
(18) and (19) has been solved numerically for 
various values of β when (Marangoni 
forced convection) and 

0λ =
1λ =

1Γ = −

0

0Sc .

 using the shooting 
method. We considered both favourable (aiding 
Marangoni effect, ) and contrary 
(opposing Marangoni effect, ) flow 
cases. Numerical solutions of the problem 
described by equations (1) – (4) for Marangoni 
forced convection ( ) have been obtained 
by Pop et al. [20] using a special adapted 
version of the Keller-box method. Thus, for 

  

1Γ = +

22

λ =

,0,λ = 0 7rP .= =  and 0 6.Sc = , 
we have obtained the numerical values for the 
reduced interface velocity, 0f '( ) , heat transfer 
at the interface,  and mass transfer, 

, from the interface as shown in Tables 1 
and 2 for various values of  β  in the case of 

 and , respectively. Results obtained 
by Pop et al. [20]  are also included in these 
tables. It is seen that the present results are in 
good agreement with those of Pop et al. [20].   

(0)g′−
(0)h′−

0ε = 1ε =

In the opposing flow case, , the 
Prandtl number is taken as , while in 
the aiding flow case, Γ = , the Prandtl 
number is . It should also be noticed that 

for 

1Γ = +
0 7.rP =

1−
5rP =

1Γ = +

2 8P .

, numerical computation converges 
for any value of , whereas for , the 
numerical computation does not converge for 

rP 1Γ = −

r <  (see also Chamkha et al. [21]). The 
values for the reduced interface velocity, 

0f '( ) , heat transfer at the interface, (0)g′−  
and mass transfer, (0)h′−  from the interface 
with 1, Sc 0.22λ = = and and 0 6.=Sc

0.75Sc = are tabulated in Tables 3 and 4 for 
various values of  β  in the case of  and 1Γ = +

1Γ = − , respectively. It is seen that the mass 
transfer increases with the increase of the 
Schmidt number for both  and .  1+Γ = 1Γ = −

Figures 1- 12 present the numerical results 
for the reduced velocity,  f '(η ) ,  temperature, 
g( )η and concentration, h(  profiles for 
various values of parameters β  and 

)η
ε  with 

1, Sc 0.22λ = = for both opposing ( ) 
and aiding (

1+Γ =
1Γ = − ) cases. It is observed that 

the effect of increasing the similarity parameter,  
β  at any given Marangoni parameter,  ε , 
results in the reduction of the velocity, 
temperature and solutal concentration levels and 
thinning the corresponding boundary layers for 
both  1Γ = +  and 1  cases. Γ = −

Table 1:  Values of 0 0f '( ), g '( )−  and 0h( )− for  ε = 0, λ = 0 (forced convection),  Pr=0.7 
Sc     0.22 0.60 

f’(0) -g’(0) -h’(0)  
β Present Pop et 

al. [20] 
Present Pop et al. 

[20] 
Present Pop et 

al. [20] 
Present Pop et 

al. [20] 
0.5 1.98428 1.98426 1.35415 1.35416 0.72506 0.72496 1.24584 1.24583 
1.0 1.69688 1.69687 1.44235 1.44233 0.77991 0.77894 1.32869 1.32869 
1.5 1.60908 1.60907 1.50675 1.50675 0.81726 0.81720 1.38867 1.38867 
2.0 1.56595 1.56595 1.55062 1.55062 0.84237 0.84232 1.42944 1.42944 
3.0 1.52301 1.52306 1.60536 1.60536 0.87350 0.87349 1.48028 1.48028 
4.0 1.50151 1.50150 1.63791 1.63791 0.89199 0.89195 1.51049 1.51049 
5.0 1.48857 1.48856 1,65943 1,65944 0.90419 0.90415 1.53047 1.53047 
∞ 1.43623 1.43623 1.76455 1.76456 0.96359 0.96357 1.62796 1.62796 
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Table 2:  Values of 0 0f '( ), g '( )−  and 0h( )− for ε = 1, λ =0 (forced convection),  Pr=0.7 

Sc     0.22 0.60 
f’(0) -g’(0) -h’(0)  

    
β 

Present Pop et 
al. [20] 

Present Pop et al. 
[20] 

Present Pop et 
al. [20] 

Present Pop et 
al. [20] 

0.5 2.73363 2.73362 1.54508 1.54507 0.80624 0.80616 1.41769 1.41769 
1.0 2.27461 2.27460 1.61711 1.61711 0.85442 0.85436 1.48585 1.48585 
1.5 2.12622 2.12621 1.67527 1.67527 0.88905 0.88900 1.54012 1.54012 
2.0 2.06197 2.06196 1.71597 1.71597 0.91275 0.91272 1.57799 1.57799 
3.0 1.97716 1.97715 1.76756 1.76756 0.94250 0.94247 1.62595 1.62595 
4.0 1.93938 1.93937 1.79856 1.79857 0.96026 0.96023 1.65474 1.65474 
5.0 1.91657 1.91654 1.81917 1.81917 0.97203 0.97201 1.67387 1.67387 
∞ 1.82343 1.82343 1.92073 1.92074 1.02979 1.02977 1.76810 1.76810 

 
 

 

Table 3: Values of 0 0f '( ), g '( )−  and 0h( )− for  ε = 0, λ = 1, Γ = +1 (opposing  case), Pr =0.7 
Sc   0.22    0.60               0.75 
β f’(0) -g’(0) -h’(0) 

0.5 2.28754 1.45749 0.77262 1.33992         1.51321 
1.0 1.89754 1.52833 0.82032 1.40709         1.58580 
1.5 1.77492 1.58502 0.85429 1.46005         1.64425 
2.0   1.71451 1.62466 0.87751 1.49698         1.68517 
3.0 1.65443 1.67492 0.90664 1.54373         1.73709 
4.0 1.62441 1.70512 0.92404 1.57181         1.76831 
5.0 1.60639 1.72521 0.93557 1.59047         1.78907 
∞ 1.53390 1.82430 0.99219 1.68247         1.86962 

  
Table 4: Values of 0 0f '( ), g '( )−  and 0h( )− for ε = 0, λ = 1, Γ = -1 (aiding case), Pr =5.0 

Sc   0.22   0.60               0.75 
β f’(0) -g’(0) -h’(0) 

0.5 1.82846 3.66459 0.69756 1.20026         1.35283 
1.0 1.58929 3.90666 0.75766 1.29050         1.45204 
1.5 1.51855 4.08449 0.79740 1.35375         1.52231 
2.0 1.48061 4.20524 0.82380 1.39631         1.56967 
3.0 1.44981 4.35492 0.85634 1.44903         1.62844 
4.0 1.43226 4.44428 0.87550 1.48022         1.66324 
5.0 1.42216 4.50328 0.88813 1.50082         1.68619 
∞ 1.38053 4.79059 0.94925 1.60077         1.79779 

 

4 Conclusion 
A numerical computation was carried out 
for the steady thermosolutal Marangoni 
mixed convection boundary layer flow. The 
conditions for the existence of similarity 
solutions were found and the full boundary 
layer equations were reduced to similarity 
or ordinary differential equations. The 
velocity, temperature and concentration 
profiles as  well  as  the  velocity,  heat  and  

 
 
 
 
mass transfer at the interface were 
determined and discussed in detail. 
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Fig. 1:  Velocity profiles ( )f ' η  
for  in the case 
of  (opposing) 

0,ε = 1,λ = 0 7P . ,= 0 22Sc .=r

1Γ = +
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 2: Temperature profiles ( )g η  
for  in the case 
of  (opposing) 

0,ε =

1Γ = +

1,λ = 0 7rP . ,= 0 22Sc .=

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3: Concentration profiles ( )h η  
for 0,ε = 1,λ =  0 7rP . ,= 0 22Sc .= in the case 
of 1Γ = +  (Opposing) 

 
 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
Fig. 4:  Velocity profiles ( )f ' η  for  1,ε = 1,λ =

0 7rP . ,= 0 22Sc .= in the case of  
(opposing) 

1Γ = +
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Fig. 5: Temperature profiles ( )g η  
for  in the case 
of  (opposing) 

1,ε = 1,λ = 0 7P . ,= 0 22Sc .=r

1Γ = +
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6: Concentration profiles ( )h η  
for  in the case 
of (opposing) 

1,ε =

1Γ = +

1,λ = 0 7rP .= , 0 22Sc .=

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Fig. 7:  Velocity profiles ( )f ' η  
for 0,ε = 1,λ =  in the case 
of 

5 0rP . ,= 0 22Sc .=

1Γ = −  (aiding) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 8: Temperature profiles ( )g η  
for 0,= 1,= 5 0P . , rε λ = 0 22Sc .= in the case 
of 1Γ = −  (aiding) 
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Figure 9: Concentration profiles ( )h η  
for  in the case 
of  (aiding) 

0,ε =

1Γ = −

1,λ = 5 0rP . ,= 0 22Sc .=

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10:  Velocity profiles ( )f ' η  
for  in the case 
of  (aiding) 

1,ε =

1Γ = −

1,λ = 5 0rP .= , 0 22Sc .=

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11: Temperature profiles ( )g η  
for 1,ε = 1,λ =  5 0rP . ,= 0 22Sc .= in the case 
of 1Γ = −  (aiding) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12: Concentration profiles ( )h η  
for 1,ε = 1,λ =  in the case 
of 

5 0rP . ,= 0 22Sc .=

1Γ = −  (aiding) 
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