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Abstract: - This paper presents clustering of fatigue features resulted from the segmentation of SAESUS time series 

data. The segmentation process was based on the Morlet wavelet coefficient amplitude level which produced 49 

segments that each has overall fatigue damage. Observation of the fatigue damage and the wavelet coefficients was 

made on each segment. At the end of the process, the segments were clustered into three in order to identify any 

improvements in the data scattering for fatigue data clustering prospects. This algorithm produced a more reliable and 

suitable method of segment by segment analysis for fatigue strain signal segmentation. According to the findings, the 

higher Morlet wavelet coefficient presented damaging segment, otherwise, it was non-damaging segment. This 

indicated that the relationship between the Morlet wavelet coefficient and the fatigue damage was strong and parallel. 
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1   Introduction 
Occasionally, fatigue signals measured from critical 

automotive parts have variable amplitude patterns with 

mean value of the data that change with time (each 

pattern has different statistical value). They contain a 

large percentage of small amplitude cycles and the 

fatigue damage for these cycles can be small. For this 

reason, in many cases, the signal was edited by 

removing these cycles in order to produce representative 

and meaningful yet economical testing [1-2].  

     Several fatigue data editing approaches have been 

introduced in various domains: time, peak and valley, 

frequency, cycles, damage, and histogram. The most 

commonly applied procedures in the research literature 

have been based on time and frequency domains [3]. 

One of the new approaches that was developed for the 

fatigue signal extraction is the one in time-frequency 

domain. Previously, the time-frequency approach had 

been applied to the problem of fatigue signal extraction, 

but only for the purpose of spike removal and de-noising 

[4]. Among the time-frequency domain analyses that 

have been used widely in engineering problems are 

Short-time Fourier Transform (STFT), S-transform and 

wavelet transform (WT).  

     The STFT or windowed Fourier transform is one of 

the methods for transforming the time domain signal 

into the time-frequency domain [5]. In addition, the 

STFT adapted the Fourier transform to analyse only a 

small section of the signal at one specific time [6]. The 

STFT is performed by dividing the signal into small 

sequential or overlapping data frames. Then, Fast 

Fourier Transform (FFT) has been applied to each data 

frame. The output of successive STFT can provide a 

time–frequency representation of the signal. In order to 

accomplish this, the signal is truncated into short data 

frames by multiplying it by a window so that the 

modified signal is zero outside the data frame. In order 

to analyse the whole signal, the window is then 

translated into time and reapplied to the signal. 

     For the resolution, the length of the window used in 

this method is fixed on every time and frequency axis. 

Window size used will determine the obtained 

resolution, where small windows present good time 

resolution, and longer windows represent good 

frequency representations [7]. Finally, the STFT 

provides information on when and at what frequency a 

signal occurs. However, this information is only 

obtained with limited precision determined by the size 

of the window. Many signals require a more flexible 

approach, to determine more accurately either time or 

frequency [6]. 

     The S-transform is an invertible time-frequency 

spectral localization technique which combines elements 

of the wavelet transforms and the STFT [8]. It is an 

extension of the STFT which uses frequency-dependent 

scaling windows in analogy to the wavelet transform. 

This permits a frequency-dependent resolution with 

narrower windows at higher frequencies and wider 

windows at lower frequencies [9].  

     The S-transform has an advantage in that it provides 

multi-resolution analysis while retaining the absolute 

phase of each frequency. This has led to its application 

for detection and interpretation of events in time series 

in a variety of disciplines. Some examples are analysis 

of the time variation in the amplitudes and phases of 

sea-level data in oceanography [10], representation of 
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the spectral content of seismic traces using a spectral 

color technique [11], and decomposition of gear 

vibration signals [12]. 

     With the advances in digital signal processing 

research, there has been an increasingly strong interest 

in the related application for fatigue life assessment of 

automotive components. During the last decade, an 

improved signal processing technique, called the WT, 

has been frequently used in the field of vibrational 

diagnostics and also in fault detection. In addition, the 

wavelet coefficient analysis has also have been applied 

to detect fatigue transverse cracks in rotors. Its peak 

absolute value is highly sensitive to the depth of crack 

and even a very shallow crack can be detected. The rotor 

is not required to stop and the detection process is 

applied for a rotating shaft makes the methodology more 

versatile, convenient and unambiguous [13].  

     This paper discusses the clustering of fatigue data 

(represented as time series) by evaluating the fatigue 

damage and the Morlet wavelet coefficient of each 

segment, resulting data scattering, and clustering the 

data. It is hypothesized that the fatigue damage and the 

Morlet wavelet coefficient have a strong correlation. 

The fatigue features were identified and extracted by 

segmenting SAE-owned fatigue strain data set.  

     Segmentation was always used to classify data in 

order to analyse discrete data in time domain in 

vibrational and fatigue data analyses. Segmentation 

aimes to remove lower or minimal damaging features of 

an original signal. It is performed by segment 

identification and extraction of those that contribute to 

the more fatigue damaging events of a metallic material. 

On the other hand, segments containing lower amplitude 

cycles are omitted, since these data type theoretically 

gave minimal or no fatigue damage. The goal of the 

removal of those parts from the original signal is to 

generate a new shortened edited signal and this signal 

can be used to reduce the testing time and cost [14].  

     This method is also known as the fatigue feature 

extraction. Two key factors are suggested for achieving 

an efficient design and modification processes to ensure 

adequate fatigue life assessment, i.e.: the signal 

statistical parameters and the fatigue damage should be 

as accurate as possible and the component durability 

tests should be as short as possible. 

 

 

2   Literature Background 
 

 

2.1 Fatigue Life Assessment 
These are three major approaches to predicting fatigue 

life namely stress-life, strain-life, and fracture 

mechanics. At below the transition point (approximately 

1000 cycles), the ε-N-based approach is appropriate 

method and is commonly used to predict fatigue life for 

ductile materials at relatively short fatigue life. The 

crack initiation method relates the plastic deformation 

that occurs at a localized region where fatigue cracks 

begin to the durability of the structure under influence 

of mean stress [15]. 

     The total strain amplitude εa is produced by the 

combination of elastic and plastic amplitudes, i.e.: 

 

paeaa               (1) 

 

where εea is the elastic strain amplitude and εpa is the 

plastic strain amplitude. The elastic strain amplitude is 

defined by: 
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while the plastic strain amplitude is given as: 
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where Nf is the numbers of cycle to failure for a 

particular stress range and mean, σ’f is the fatigue 

strength coefficient, b is the fatigue strength exponent, 

ε’f is the fatigue ductility coefficient, c is the fatigue 

ductility exponent and E is the material modulus of 

elasticity. 

     Combining Equations (2) and (3) gives the Coffin-

Manson relationship, which is mathematically defined 

as: 
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which is essentially Equation (1) above and is the 

foundation of the strain-life approach. 

     Current industrial practice uses the Palmgren-Miner 

[16-17] linear cumulative damaging rule normally 

associated with the established strain-life fatigue 

damaging models, i.e. the Coffin-Manson [18-19], the 

Morrow [20], and the Smith-Watson-Topper (SWT) 

[21]. The cumulative fatigue damaging approach 

presented in this research was based on the Morrow 

strain-life relationship. In a case of the loading being 

predominantly compressive, particularly for wholly 

compressive cycles, this model provides more realistic 

life estimates. The mean stress correction effect seems 

to work reasonably well for steels. The model is 

mathematically defined as the following expression 

[20]: 
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where σm is the mean stress.  

 

     The fatigue damage caused by each cycle of repeated 

loading is calculated by reference to material life curves, 

such as S-N or ε-N curves. The fatigue damage D for one 

cycle and the total fatigue damage ΣD caused by cycles 

are expressed respectively as [16-17]:  
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where Ni is the numbers of cycle within a particular 

stress range and mean.  

 

     Fatigue damage has value in the range (0-1) where 

zero denotes no damage (extremely high or infinite 

number of cycles to failure) and 1 means total failure 

(one cycle to failure). 

 

 

2.2 Signal Statistical Parameters 

In the case of the fatigue research, a signal consists of a 

measurement of cyclic loads, i.e. force, strain, and stress 

against time. A time series typically consists of a set of 

observations of a variable being taken at equally spaced 

intervals of time. Global signal statistical parameters are 

frequently used to classify random signals and monitor 

the pattern of analysed signals. For a signal with a 

numbers of data points n in a sampled sequence, the 

mean x is given by: 
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     For a fatigue signal, the calculation of the root-mean-

square (r.m.s.) and the kurtosis are important in order to 

retain a certain amount of the signal amplitude range 

characteristics. The r.m.s. value is the signal 2
nd

 

statistical moment used to quantify the overall energy 

content of the oscillatory signal. The r.m.s relationship is 

defined as: 
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     The kurtosis is the signal 4
th
 statistical moment. In 

engineering field, it is used as a measure of 

nongaussianity for detection of fault symptoms since it 

is highly sensitive to spikiness or outlier signal among 

the instantaneous values. Mathematically, the kurtosis 

expression is defined as [22]: 
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where xj is the amplitude of signal.  

     In some definitions of the kurtosis, a deduction of 3.0 

is added to the definition in order to maintain the 

kurtosis of a Gaussian distribution to be equal to zero. 

For clarity and convenience, in this study the original 

definition of the kurtosis, where the Gaussian 

distribution has a kurtosis value is approximately 3.0, 

was used for the analysis. Therefore, a kurtosis value of 

higher than 3.0 indicates the presence of more extreme 

values than the one that should be found in a Gaussian 

distribution [14]. This situation indicated that the fatigue 

damage is higher than Gaussian stresses due to higher 

amplitude fatigue cycles [23]. 

 

 

2.3 The Morlet Wavelet Coefficient 
The WT approach is probably the most recent solution to 

overcome the nonstationary signals. This time-frequency 

technique is applied by cutting time domain signal into 

various frequency components through the compromise 

between time and frequency-based views of the signal. It 

presents information in both time and frequency domain 

in a more useful form [24-26].  
The WT analysis is started with a basic function 

(called the mother wavelet) scaled and translated to 
represent the signal being analysed [27]. The transform 
shifts a window along the signal and calculates the 
spectrum for every position. The process is repeated 
many times with a slightly shorter (or longer) window 
for every new cycle. The result will be a collection of 
time-frequency representations of the signal with 
different resolutions. The WT provides information on 
when and at what frequency the change in signal 
behaviour occurs [24].  
     Obviously, the WT represents a windowing 
technique with variable-sized regions. This technique 
allows the use of long time intervals (more precise low 
frequency information) and shorter regions (high 
frequency information). It means the wavelet method 
solves the resolution problem because the window 
length is long for low frequency and short for high 
frequency. Therefore, the frequency resolution is good 
for low frequency (at high scales) and the time 
resolution is good at high frequency (at low scales). The 
major advantage is the ability to analyse a localized area 
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of larger signal, also known as local analysis [6]. 
     The wavelet decomposition calculates a resemblance 
index between the signal being analysed and the 
wavelet, called the coefficient. It is the result of 
regression of an original signal produced at different 
scales and different sections on the wavelet. It represents 
the correlation between the wavelet and a section of the 
signal. If the index is large, the resemblance is strong, 
otherwise it is slight. Generally, the wavelet coefficient 
C is expressed with the following integral [6]: 
 

     dttpositionscaletfC positionscale ,,, 




                    (11) 

 
     The Morlet wavelet is one of functions that are 
generally used in the Continuous Wavelet Transform 
(CWT) analyses [28]. The WT of any time-varying 
signal f(t) is defined as the sum of all of the signal time 
multiplied by a scaled and shifted version of the wavelet 
function ψ(t) [7]. The CWT is expressed by the 
following integral: 
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The parameter a represents the scale factor which is a 
reciprocal of frequency, the parameter b indicates the 
time shifting or translation factor, and t is time.  

Ψa,b (t) denotes the mother wavelet, i.e. [29]:  
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In addition, the wavelet coefficient indicates how the 

energy in the signal is distributed in the time-frequency 

plane [13]. The energy spectrum (the energy density 

over frequency) is plotted in order to observe the signal 

behaviour and its content gives significant information 

about the random signal pattern.  

 

 

2.4 Data Clustering 
Running fatigue damaging window, running global 

signal statistical window, analysis of the wavelet 

transform, the integrated kurtosis-based algorithm for Z-

filter (I-kaz), and data correlation are required 

parameters for fatigue data classification. Fatigue data 

analysis technique based on signal classifying has to 

develop more detail to ensure higher amplitude signals 

can be determined and be extracted from the original 

signal, and also at the same time retain ability of fatigue 

damage. Outcomes from this analysis will be used to 

develop an algorithm which can cluster and classify 

fatigue signal that gives the fatigue damage to 

automotive components. For this purpose, artificial 

intelligence concept can be used from the Morlet 

wavelet coefficient analysis for optimizing fatigue data 

analyses. With that, a mapping classification of fatigue 

history in the signal can be generated.  

Clustering is the classification of objects into 

different groups, or more precisely, the partitioning of a 

data set into subsets (clusters), so that the data in each 

subset (ideally) share some common trait - often 

proximity according to some defined distance measure. 

The purpose of clustering is to identify natural / intrinsic 

groupings of data from a large unlabeled data set to 

produce a concise representation of a system behaviour. 

Fuzzy C-Means (FCM) is a data clustering technique 

wherein each data point belongs to a cluster to some 

degree that is specified by a membership grade. This 

technique was originally introduced by Jim Bezdek in 

1981 as an improvement on earlier clustering methods. 

It provides a method that shows how to group data 

points that populate some multidimensional space into a 

specific number of different clusters. This technique 

starts with an initial guess for the centers, which are 

intended to mark the mean location of each cluster. The 

initial guess for these cluster centers is most likely 

incorrect. Additionally, it assigns every data point a 

membership grade for each cluster. By iteratively 

updating the cluster centers and the membership grades 

for each data point, FCM iteratively moves the cluster 

centers to the right location within a data set. This 

iteration is based on minimizing an objective function 

that represents the distance from any given data point to 

a cluster center weighted by that data point membership 

grade [30]. 

 

 

3   Materials and Methods 

The strain signal selected for the simulation purpose was 

from the database of Society of Automotive Engineers 

(SAE) profiles, i.e. the SAESUS. The signal (in the unit 

of microstrain) was collected from a suspension 

component of a car and it was assumed to be sampled at 

204.8 Hz for 25,061 data points. It gave the total record 

length of the signal of 122.4 seconds, as illustrated in 

Fig. 1. 

     For the calculation of the fatigue damage, the 

selected material for the simulation purpose was the 

SAE1045 carbon steel shaft. It was chosen as a common 

material used in automotive industries for fabricating a 

vehicle lower suspension arm structure [31]. The 

material properties and their definitions are given in 

Table 1 [32]. 
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Fig. 1 Time history of the SAESUS strain signal 

 

 

Table 1 The mechanical properties of the SAE1045 

carbon steel shaft 

Properties Values 

Ultimate tensile strength, Su (MPa) 621 

Modulus of elasticity, E (GPa) 204 

Fatigue strength coefficient, σ’f (MPa) 948 

Fatigue strength exponent, b -0.092 

Fatigue ductility exponent, c -0.445 

Fatigue ductility coefficient, ε’f 0.26 

 

     For the purpose of this study, segmentation on the 

signal was done by implementing a fatigue feature 

extraction algorithm defined as an algorithm that inputs 

the signal and produces retained segments. As the 

algorithm was run, a lower wavelet coefficient would 

gradually be removed until a stopping criterion was met. 

The criteria were set to 10 % difference of the fatigue 

damage. The segments were scattered and then clustered 

in order to develop a correlation between the fatigue 

damage and the Morlet wavelet coefficient. The 

flowchart is schematically illustrated in Fig. 2. 

  
 

 
 

 

Fig. 2 Simplified flowchart of the study 
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4   Results and Discussions 
 

 

4.1 Segmentation process 
It was found that solely using the usual method to 

segment the fatigue time series data, in the end, 

produced scatter plots that contain certain data that was 

anomalous to what was projected. This uncharacteristic 

data was mostly outliers that made it difficult for any 

observable pattern of data scattering to be identified. 

Therefore this scatter plot was deemed unsuitable and 

unreliable for further use in data classification and 

clustering [33-34]. 

     By introducing the wavelet coefficient segmentation, 

the segmental wavelet coefficient analysis can be made 

more accurately since every segment contained only an 

overall peak. Therefore, it is more reasonable and 

practical to perform the wavelet coefficient analysis on 

data segments so that the wavelet coefficient 

measurement is a better representative of the segmental 

peakedness of the time series.  

     This fatigue signal summarising algorithm uses peak 

to peak amplitude range as a parameter to determine 

gate value for the eliminating process. The value 

obtained from the wavelet coefficient amplitude at a cut 

off point or fatigue limit of the particular material is 

used to slice the original signal. The extracted segment 

identification is performed by searching the events start 

and finish points which define the temporal extent of the 

extracted segment. The identification is based on energy 

loss concept, i.e. selected segments are at the start and 

finish points. The example of the segment identification 

is described in Fig. 3. In the figure, the selected segment 

is at gate value of 400 με
2
/Hz. Start point is a valley 

point if the peak before is higher than the peak after the 

point. While the finish point is selected if peak after is 

higher than peak before the point. This concept is 

performed by [14] based on transient vibration where 

start and finish points are selected based on transient 

form. The points are determined based on the signal 

where the shortening in signal background occurs.  

     After all the segments are identified, the fatigue time 

history is then sliced in order to remove lower wavelet 

coefficient amplitudes (less than the gate value) 

contained in the original time history range. For this 

reason, the majority of the original fatigue damage is 

retained in the edited signal. All extracted segments (the 

complete section between the start and the end of the 

segments) selected based on time location of the wavelet 

coefficient amplitude are then combined together to 

produce a new mission time history. The mission signal 

replicates the signal statistical parameter and total 

fatigue damaging characteristics of the original time 

history. The optimum gate value is accordingly 

determined and it is based on the effectiveness of 

retaining the characteristics of the original signal in the 

mission signal. Ideally, the signal has shorter time length 

but is equivalent in the characteristic values. 

  

  

 

Fig. 3 The extracted segment identification 

 
 

     The Morlet wavelet coefficient and segmental data 

can be seen in Fig. 4. In the presented scalogram, the x-
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function of the dilation and translation parameters. It 

provided the energy distribution display with respect to 

the particular time and frequency information. 

Accordingly, a lower scale indicated higher frequency 

and had small amplitude which means these cycles had 

lower energy, indicating minimal or no fatigue 

damaging potential. A large scale was indicative of 

lower frequency and higher amplitude which indicates 

these cycles had higher energy causing the fatigue 

damage. Obviously, the lower frequency indicated 

higher magnitude distribution, and the lower magnitude 

distribution was presented at higher frequency event. 

     For the purpose of simplicity and criteria 

acceptability, the algorithm was used for segmenting the 

signal into 49 segments. These segments were not 

uniform in size; their lengths varied from one segment to 

another. This was because the algorithm segmented the 

wavelet coefficient time series so that each segment and 

its corresponding linear representation would have the 

least amount of error. The segmentation was used to 

ensure that like features in the time series data would be 

isolated and be grouped into the same segments. Further 

analyses of each segment would help to determine which 

parts of the data gave significant contributions to the 

overall fatigue damage. 

     The segmentation process resulted in a 101 second 

edited signal. With respect to the fatigue damage, the 

shortened signal contained at least 90.8 % of the original 

fatigue damage (removing less than 10 %). Furthermore, 

the signal contained 98.9 % of original mean value, 97.6 

of original r.m.s. value and 95.3 % of original kurtosis 

value. It means that the algorithm preserved the 

originality of the fatigue damage and the signal 

behaviour.        

 

 

 
Fig. 4 The segmentation process: (a) the Morlet wavelet coefficient in time-frequency representation, (b) the Morlet 

wavelet coefficient in time representation, (c) 49 damaging segments 
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evident that no significant outliers were present to affect 

the overall look of the scatter. Thus, it can be seen 

certain patterns of scattering concentrated at the same 

areas of the scatter plot, although the points are widely 

distributed. The variations are mainly due to the 

randomness of the data and the variety in size of each 

segment.  

In this case, it can be seen clearly that as a result of 

scatter pattern, where small fatigue damaging 

corresponds to small wavelet coefficient values and vice 

versa. The higher wavelet coefficient points were only 

presented in the higher fatigue damaging range. Shorter 

segments with higher amplitude usually result in higher 

wavelet coefficient values, whereas longer segments 

with lower amplitude would result in lower wavelet 

coefficient values. Therefore, for the higher fatigue 

damage, the wavelet coefficient values are theoretically 

higher.

 

 
Fig. 5 Scatter plot of the fatigue damage and the Morlet wavelet coefficient 

 

For further research work, scatter plot of the 

segmental fatigue damage versus the segmental wavelet 

coefficient as shown in Fig. 5 could be utilized for 

fatigue data classification and clustering. The utilization 

of the wavelet coefficient segmentation has resulted in 

the production of reliable data scatter for the purpose 

described. The clustering plot is shown in Fig. 6.  

 

 

      

 

 

 
Fig. 6 Clustering of the fatigue damage and the Morlet wavelet coefficient 
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The clustering process divided the data in three 

clusters, they were lower damaging, damaging, and 

higher damaging segments. In the first cluster (lower 

damaging segments), it can be seen that all the data 

points concentrated at 0.0003 - 0.008 cycles to failure. 

At the points, the wavelet coefficients were between 550 

- 900. For the second cluster, most of the data points 

seemed to be concentrated at 0.005 - 0.06. The wavelet 

coefficient values for this cluster were at the range 1000 

- 1400. The last cluster was higher damaging segments. 

This cluster only had two data points at the wavelet 

coefficient of 1800. The fatigue damaging values for 

these data points were 0.01 and 0.04 cycles to failures. 

     Furthermore, each cluster has a centroid point. If 

these points in the plot were linked, it showed clearly 

correlation between the fatigue damage and the wavelet 

coefficient. At lower Morlet wavelet coefficient values, 

the fatigue damage was decreased (not damaging). 

Whereas at higher Morlet wavelet coefficient values, the 

fatigue damage was increased (more fatigue damaging). 

It indicated that the higher Morlet wavelet coefficient 

presented damaging segment, otherwise, it was non-

damaging segment. It means that the relationship 

between the Morlet wavelet coefficient and the fatigue 

damage was strong and parallel. Therefore it was 

expected that clustering plot of the fatigue damage 

versus the wavelet coefficient should reflect this trend in 

some manner. 

     As for the figure, since the segmentation algorithm 

had been incorporated with the wavelet coefficient, it 

can observe a certain trend of proportional relation 

between the fatigue damage and the Morlet wavelet 

coefficient. The pattern shows that the higher fatigue 

damage generally translates to the higher wavelet 

coefficient, as expected prior to the analysis. This means 

that this scatter plot truthfully reflects the hypothesized 

relationship between the fatigue damage and the wavelet 

coefficient. 
 

 

5   Conclusion 
The study has demonstrated the use of the Morlet 

wavelet coefficient segmentation for fatigue data 

clustering. As our main focus in this study, we suggested 

that the implementation of the Morlet wavelet 

coefficient segmentation algorithm would produce 

significantly reliable and accurate scatter plot for fatigue 

data clustering prospects. Finally, as possible future 

work, after identifying and clustering the data in the 

signal, fatigue data editing through the elimination of 

certain noncontributory or insignificant segments of the 

signal may help in reducing the length and complexity 

of the data and may thus speed up the process of fatigue 

testing of metal components of mechanical systems or 

any similar applications. 
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