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Abstract: - This paper presents the time complexity estimation and optimisation of the genetic algorithm clustering 

method. The tested feature in the clustering algorithm is the population limit function. For the purpose of the study, 

segmental kurtosis analysis was done on several segmented fatigue time series data, which are then represented in two-

dimensional heteroscaled datasets. These datasets are then clustered using the genetic algorithm clustering method and 

the runtime of the algorithm is measured against the number of iterations. Polynomial fitting is used on the runtime 

data to determine the time complexity of the algorithm. Analysis is repeated with the inclusion of the population limit 

in the clustering algorithm. The results of the analysis will be used to determine the significance of including the 

population limit function in the algorithm for optimal performance. 
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1   Introduction 
 

In the field of evolutionary computing, the evolutionary 

principles of survival of the fittest, natural selection and 

genetic inheritance are abstracted and modeled into 

algorithms that search for optimal solutions to a 

problem. The most popular technique in evolutionary 

computing research has been the genetic algorithm [1-3]. 

Genetic algorithms (GA) perform meta-heuristic search 

in complex, large, and multimodal landscapes, and 

provide near-optimal solutions for objective or fitness 

functions of optimization problems[4-5]. GAs and GA-

based techniques have been used in fields such as 

industrial engineering [1], clustering [6-9]  and in 

optimizing the performance of neural networks, fuzzy 

systems, production systems, wireless systems and other 

program structures [2]. 

 A GA-based clustering method was developed for 

applications in cluster analysis of heteroscaled datasets. 

Since this method is to be applied numerous times 

across multiple datasets in numerous iterations, it is 

necessary that the method performs efficiently in real 

time in order to consistently produce efficient results 

without using up too much computing and time 

resources. This study aims to analyze the time 

complexity of the GA clustering algorithm by 

comparing the real time performance of the method with 

and without a population limit function. The results will 

be used to determine whether or not the population limit 

function must be included in the algorithm for optimal 

performance. 

 

2   Literature Review 
 

2.1 Genetic Algorithms 
Most GA methods have at least the following in 

common: populations of chromosomes, selection 

according to fitness, crossover to produce new offspring, 

and random mutation of new offspring [2]. Solutions in 

GA are encoded as chromosomes which are strings of 

numbers or characters that represent the values or 

parameters of the solution to the problem.  The 

chromosomes are commonly encoded as strings of 

binary, real-valued, integer, octal, or hexadecimal 

numbers [1,10-11]. Each of these types of number have 

their own advantages and disadvantages when used for 

certain data types or for searching for solutions to 

certain problems. In this study, real-valued number 

strings were selected as the chromosome encoding for 

the population of potential solutions. 

The set of potential solutions to the problem is 

represented as a population of chromosomes. Initially, a 

random population is created, which represents different 

points in the search space of potential solutions [4,12-

13]. A fitness function assigns a score (fitness) to each 

chromosome in the current population, which will 

determine its survival into the next generation. The 

fitness of a chromosome depends on how well that 

chromosome can solve the problem at hand [12].  

The selection of chromosomes is done on the current 

population based on the fitness values – chromosomes 

with higher fitness are more likely to be selected than 
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those with low fitness values. This is mostly done using 

probabilistic methods; in evolutionary computing 

research, the common methods of selection are the 

roulette wheel, tournament, and rank selection [1-2, 4]. 

Selected chromosomes are then included in the next 

generation of population. 

Next the population undergoes the crossover (also 

called recombination) genetic operator, which selects 

chromosomes from the population to produce offsprings. 

Using random selection or any of the previously 

mentioned selection methods, two parent chromosomes 

are chosen for crossover operation. Using single-point 

[7], two-point, or N-point crossover, parts of the gene 

string in each parent chromosome are swapped to 

produce two new offspring, which are included in the 

next generation of population. The process is repeated a 

number of times, usually according to some user-

specified proportional value of the current population 

[14]. 

Random chromosomes from the surviving population 

are selected for mutation, where some random part of 

the chromosome’s gene is arbitrarily changed. This 

genetic operation may or may not yield superior 

offspring, but it ensures that solutions are not trapped in 

local extrema. Mutation is performed according to some 

degree of probability [14], usually very small, so that the 

GA does not approximate a random search [1]. 

The process of selection, crossover, and mutation are 

then repeated on the surviving population, until some 

terminating criteria is reached, i.e. a maximum number 

of generations, a minimum change in population fitness, 

etc. The resulting final population is then considered to 

be the set of solutions that best solves the problem at 

hand. The best individual chromosome (the chromosome 

with the highest fitness value) in the final population is 

usually determined to be the optimal solution to the 

problem. 

 

2.2 GA-based Clustering 
Several MATLAB functions were written and developed 

for the purpose of having a dynamic and robust 

algorithm that can be used for a large variety of two-

dimensional datasets. The methods employed in this 

algorithm were partly derived from a GA-based 

clustering technique developed in 2000 by Maulik and 

Bandyopadhyay [5]. 

Each chromosome of the population was encoded as 

the horizontal concatenation, i.e. [ [1 2] [3 4] … ], of 

location vectors of the centroids. For uniformity we set 

the number of clusters k to be equal to 3 for all datasets. 

Each of the 3 centroids’ location is determined by a pair 

of vectors, therefore the length of each chromosome in 

the population is 6, where each of the gene location 

pairs [1 2], [3 4], and [5 6] denote the location vectors of 

the cluster centroids in two-dimensional space. 

The initial population of chromosomes was randomly 

generated within the ranges of both dimensions of the 

dataset. The initial population size n was set to be 20 

and subsequent generations may or may not have the 

same population size. The fitness of each individual 

chromosome in the population was then calculated as 

follows: 

 

Step 1: Normalize both dimensions of the data by 

dividing the values of the data by the maximum value of 

the data on each dimension. 

Step 2: Calculate the distance dj of each datapoint 

from each centroid using the square Euclidean distance 

formula 

 

{dj}i,r  = ( xi – pj,r)
2
 + (yi – qj,r)

2
 (1) 

 

where i = 1, 2, …, m,  j = 1, 2, 3 and r = 1, 2, …, n; (xi, 

yi) is the location of the ith datapoint in a dataset of m 

points and (pj,r, qj,r) is the location of the jth centroid in 

the rth chromosome of the current population.  

Step 3: Determine the smallest distance value in the 

set of distances { d1, d2, d3 }i,r for each of the m 

datapoints and each of the  n chromosomes.  

Step 4: Sum up all the smallest distance values across 

all the m datapoints, resulting in n values of summation. 

The reciprocal of each summation value is the fitness 

value fi for its corresponding chromosome. 

 

The normalization of all dimensions of the data in 

Step 1 was incorporated into the fitness evaluation 

procedure to minimize or nullify the effect of the 

differently scaled dimensions of the dataset on the 

clustering of data. 

The population selection method used was a 

modified fitness proportionate (roulette wheel) selection 

technique. The probability of the ith chromosome to be 

selected is defined as 

 

∑
=

=
n

j

j

i
i

f

f
p

1

 
(2) 

 

In Equation 2 the integer n is the size of the current 

population of chromosomes. Next, a random number in 

the range (0, 1) was chosen and multiplied with the 

maximum value of probability computed, and if this 

number is smaller than pi then that chromosome is 

selected into the next population, otherwise the 

chromosome doesn’t survive into the next generation. 

Using this method, chromosomes with higher fitness 

values have a better chance of being selected into the 

next population, and chromosomes with smaller fitness 
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values have a better chance of dying out and not 

included in the next population of solutions. 

Next, the crossover operation was performed where a 

pair of chromosomes was randomly selected from the 

current population. Then two integer values in the range 

[1, 6] were randomly chosen to represent the crossover 

points, where the gene values between the two points 

inclusive were swapped between the parent 

chromosomes, producing two offsprings. If the two 

integers were distinct, the operation was a two-point 

crossover and if the two integers were equal, the 

operation was a single-point crossover. The crossover 

operation was then repeated on the population until 

some user-determined proportion of the population 

(crossover rate) had been selected for breeding. 

Finally the resulting population was then run under 

the mutation operator, where a chromosome was 

randomly chosen for mutation. Then a random gene 

location of the chromosome was chosen and its value v 

changed into a mutated gene value v’ according to the 

following operation: 

 

v’ = v ± (a + b) * v (3) 

 

In Equation 3, a and b are random values in the range 

(0, 1). These values are important in order to minimize 

the chances that the population be trapped in a local 

minimum, which is the main objective of the mutation 

operator. The mutation operation was also repeated on 

the population until some user-determined proportion of 

the population (mutation rate) had been selected for 

mutation. 

 
 

function vargout = gacluster(2Ddata, vargin) 
 

initPop = gen_pop(2Ddata, num_clustr); 
 

while count <= max_repetition 
   

  PopFit = fitness_eval(initPop); 
  nextPop = select(initPop, PopFit); 

  nextPop = crossover(nextPop, rc); 
  nextPop = mutate(nextPop, mc); 

 
  initPop = nextPop; 

  nextPop = []; 
 

end 
 

FinalPop = initPop; 

 
best_value = bestfit_ind(FinalPop); 

 
vargout = cluster(2Ddata, best_value) 

   

 

Fig. 1: The pseudocode for the GA clustering method 

 

The resulting population is labeled as the next 

generation of solutions, and the whole algorithm is 

repeated on this generation and each successive 

generation until it meets the termination criterion, which 

is the maximum number of generations, in this case set 

at 1000. The best individual chromosome from this final 

population is then chosen to be the location vector of the 

cluster centroids for the particular dataset. 

 

2.3 Time complexity analysis 
Time complexity analysis is a part of computational 

complexity theory that is used to describe an algorithm’s 

use of computational resources; in this case, the worst 

case running time expressed as a function of its input 

using big Omicron (big-O) notation [15-16,18]. The big-

O notation is used to express the upper bound of the 

growth rate of a function and is mostly used to describe 

asymptotic behavior [15,17] or optimal rate of 

convergence [20]. 

The big-O notation is described using set notation as 

follows: 

 

O(g(n)) = {f | ∃c>0, ∃n0 > 0, ∀n ≥ n0 : 0 ≤ f ≤ cg(n)} (4) 
 

In other words, f ∈ (g(n)) if and only if there exist 

positive constants c and n0 such that for all n ≥ n0, the 

inequality 0 ≤ f ≤ cg(n) is satisfied. We say that f is big 

O of g(n) , or that g(n) is an asymptotic upper bound for 

f [9]. 

In terms of time complexity analysis, we use the 

term T(n) ∈ O(g(n)) and say that the algorithm has order 

of g(n) complexity. This means that the time taken to 

compute a problem of size n is in the set of functions 

described by O(g(n)). 

Time complexity analysis can be used to predict the 

growth behavior of an algorithm and is useful for 

analyzing and optimizing the real time efficiency of the 

algorithm [16] or performing a worst case analysis of a 

computation process [19]. 
 

 

3   Methodology 
In this study, several segmented fatigue time series data 

(see Table 1 and Figure 2) that were segmented using 

the previously developed Peak-Valley segmentation 

method [21-23] were used to test the GA clustering 

algorithm for real time efficiency. Segmental kurtosis 

analysis was done on each segmented fatigue data, and 

the results are represented in two-dimensional 

heteroscaled datasets.  

The GA clustering algorithm is then used on these 

datasets to cluster fatigue damage segments based on 

their kurtosis and fatigue damage values. 

Simultaneously, the number solutions in the population 

and the running time are recorded while the algorithm is 

running. For the purpose of this study, the algorithm is 
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set to run until 1000 generations have been produced, 

which means that the algorithm has iterated 1000 times. 

The recorded runtime and population growth are then 

plotted and polynomial fitting is used to estimate the 

growth function of the running time. 

 

Table 1: Description of datasets used in the study 

 

Dataset Description 

SAETRN SAE transmission test fatigue data 

 

DK1 Pavé road loading on lower arm 

suspension 

DDK2 Highway road loading on lower arm 

suspension 
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Fig. 2: Fatigue time series data for (a) SAETRN, (b) D1, 

and (c) D2 

 

     The processes above are then repeated on the 

heteroscaled datasets after a population limit function is 

included in the selection process of the GA clustering 

algorithm. The theoretical value of the population limit 

of the GA clustering algorithm is evaluated as 

 

Pmax = CPP0 (1 + rc) (1 + rm) (5) 

 

Equation 5 is derived from how the population size 

grows with every iteration of the GA clustering 

algorithm. Initially, the population size is a positive 

integer P0. For a worst case scenario, we assume that the 

whole population was selected in the selection process. 

This means that P0 number of solutions is considered for 

the crossover operation. 

A portion of the population is selected for the 

crossover process, which produces additional solutions 

to be added to the population. Let rc be the crossover 

rate where 0 ≤ rc ≤ 1; the number of additional solutions 

would be P0rc , making the total number of solutions in 

the population so far to be P0 + P0rc . 

Next, a portion of this population is selected for the 

mutation process. Let rm be the value of the mutation 

rate, where 0 ≤ rm ≤ 1; the number of solutions added to 

the population is (P0 + P0rc) rm; therefore the total 

number of solutions in the population after the mutation 

process is P0 + P0rc + (P0 + P0rc) rm . 

The expression above is then simplified using 

factorization as follows: 

 

P0 + P0rc + (P0 + P0rc) rm 

= P0 (1 + rc + (1 + rc) rm) 

= P0 (1 + rc) (1 + rm) 

(6) 

 

In order to enable the user to have some amount of 

control over the maximum population, the expression 

above is multiplied with a user-defined coefficient of 

population CP, which is a positive real number. This 

results in Equation 6 as expressed above. For the 

purpose of this study, the values P0, CP, rc and rm are set 

to be 20, 2, 0.4 and 0.1 respectively. 

As with the previous set of data, the population size 

and running time of the algorithm is recorded 

simultaneously as the population limited GA clustering 

algorithm is run on the datasets. The recorded runtime 

and population growth are then plotted and polynomial 

fitting is used to estimate the growth function of the 

running time. 

The time complexity of the algorithm is then 

determined from the fitted growth function. The results 

are then compared for the GA clustered and the 

population limited GA clustered datasets to determine 

the significance of including the population limit 

function in the GA clustering algorithm. 

 

4   Results and Discussion 
For the purpose of understanding the population growth 

and the time complexity of the GA clustering algorithm, 

plots of population growth and polynomial fitted 

runtime are observed and compared. 

Figure 3 shows how the population size grows with 

the number of generations or iterations of the GA 

clustering algorithm. We can see that it is apparent that 

for all datasets, although the population sizes increase 

and decrease erratically with the number of iterations, 

overall they generally exhibit a positive growth 

behavior. This means that eventually, after some large 
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enough number of generations, the population size 

continually increases as the number of generation 

increases. The increase of the size of the population will 

in turn increase the problem size for the GA clustering 

algorithm, which will affect the time complexity of the 

algorithm. Generally, a larger problem size means larger 

computing time or resource is needed for the algorithm 

to complete its task.  
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Fig. 3: Population size versus number of generations for (a) SAETRN, (b) DK1, and (c) DDK2 
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Fig. 4: Polynomial fitting of runtime versus number of iterations  for (a) SAETRN, (b) DK1, and (c) DDK2 
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Fig. 5: Population size versus number of generations for (a) SAETRN, (b) DK1, and (c) DDK2 when population limit 

function is applied 
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Fig. 6: Polynomial fitting of runtime versus number of iterations  for (a) SAETRN, (b) DK1, and (c) DDK2 when 

population limit function is applied 
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Table 2: Fitted models and complexity 

 

Dataset Fitted model Goodness of fit (R
2
) Complexity 

SAETRN f(x) = p1x
3
 + p2x

2
 + p3x + p4 0.9895 O(n

3
)   

DK1 f(x) = p1x
3
 + p2x

2
 + p3x + p4 0.9897 O(n

3
)    

DDK2 f(x) = p1x
5
 + p2x

4
 + p3x

3
 + p4x

2
 + p5x 

+ p6 

0.9967 O(n
5
)

 

 

 

 

Table 3: Comparison between non-limited (N) and limited (L) population and runtime 

 

Data Population Runtime (seconds) 

 N L %Diff N L %Diff 

SAETRN 5086 62 98.8 3236 43 98.7 

DK1 3432 62 98.2 932 33 96.5 

DDK2 8352 62 99.3 7624 61 99.2 

 

 

Figure 4 shows the actual running time (in seconds) 

versus the number of iterations and the fitted model used 

to predict the asymptotic behavior of the runtime for 

each dataset. We can see that the algorithm runs in 

polynomial time of some degree, and the fitted models 

estimate the order of polynomial time the algorithm runs 

in for each dataset. Table 2 shows the fitted models for 

the runtime for each dataset and the estimated orders of 

polynomial time. For datasets SAETRN and DK1, the 

time complexity is O(n
3
) and for DDK2 the time 

complexity is O(n
5
). This means that for two datasets, 

the algorithm runs in cubic time and for the other 

dataset, the algorithm runs in polynomial time of degree 

5. This tells us that since the population size grows 

unboundedly, the problem size also grows unboundedly 

and therefore a much larger computing resource is 

needed for each next iteration of the GA clustering 

algorithm. Consequently, the algorithm’s running time 

also increases in the order of polynomial degree 3 or 5 

depending on the data. These polynomial growth rates 

are undesirable for optimum algorithm efficiency, since 

larger problem sizes would require significantly longer 

runtime periods and much larger computing resources. 

Figure 5 shows the population growth when the GA 

clustering algorithm is modified to include the 

population limit function in its selection process. We can 

see that although the population sizes generally increase 

with the number of generations, the numbers are capped 

at a particular value Pmax which can be obtained using 

Equation 5.  

Figure 6 shows the actual running time in seconds 

versus the number of iterations and the fitted model used 

to predict the asymptotic behavior of the runtime for 

each dataset when the GA clustering algorithm is run 

with the population limit function included in its 

selection process. Based on the fitted models, it is clear 

that for all datasets, the time complexity of the algorithm 

is O(n), which means that the algorithm runs in linear 

time. This tells us that the running time increases 

linearly with the number of iterations, and that each 

iteration requires some constant time to perform. This 

case is much more desirable over the case where the 

algorithm runs in polynomial time of degrees larger than 

1. Since the population size is capped at some finite 

value Pmax, the problem size ceases to grow unboundedly 

and consequently the computing resource needed for 

each iteration of the GA clustering algorithm is 

eventually capped, making the computing time for each 

iteration constant.  

Improvements in both the population size and 

runtime is shown in Table 3. We can see that for all 

datasets, limiting the population results in 98.2% to 

99.3% reduction in population, which in turn reduces the 

problem size drastically. This is also clearly reflected in 

the improvements in algorithm running times. For all 

datasets, limiting the population reduces the running 

time by 96.5% up to 99.2%. What usually took up to two 

hours to execute now takes only one minute to produce 

results if the population limit function is incorporated in 

the selection process. This clearly shows the advantages 

of capping the problem size and consequently reducing 
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running time of the algorithm, which saves both 

computing time and resources. 

The results of the time complexity analysis shows 

that the population limit function in the selection process 

of the GA clustering algorithm has managed to reduce 

the time complexity of the algorithm from higher degree 

polynomial time to linear time. This means that by 

including the population limit function in the GA 

clustering algorithm, the running time of the algorithm 

can be significantly reduced and the user will have some 

degree of control over the complexity of the algorithm in 

both computing time and resource. 

 

5   Conclusion 
Performing time complexity analysis on the GA 

clustering algorithm has helped us to determine how the 

algorithm performs in real time as the problem size 

increases. It has been found that including the 

population limit function in the selection process of the 

GA clustering algorithm will reduce the time complexity 

of the algorithm to linear time. This significant reduction 

in time complexity will be very useful in future 

developments of the GA clustering algorithm, 

particularly for clustering larger datasets in higher 

dimensions. 
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