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Abstract: We consider aK(m,n) equation with generalized evolution term which is of considerable interest in
mathematical physics. We classify the nonlocal symmetries, which are known as potential symmetries, for this
equation. It turns out that potential symmetries exist only if the parametersn,m andl satisfy certain relationship.
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1 Introduction
We consider theK(m,n) equation with generalized
evolution term

(ul)t + aumux + b(un)xxx = 0, (1)

where the first term is the generalized evolution term,
while the second term represents the nonlinear term
and the third term is the dispersion term. This equa-
tion is the generalized form of the Korteweg-de Vries
(KdV) equation. The casel = m = n = b = 1
and a = −6 leads to the KdV equation that was
derived by Korteweg and de Vries (1895) which de-
scribed weakly nonlinear shallow water waves. This
equation was found to have solitary wave solutions,
vindicating the observations made 51 years earlier of
a solitary channel wave by Russell in Aug. 1834.
The classical KdV equation has been studied exten-
sively [1, 12, 14, 22], in particular, by means of
the inverse scattering method, by applying the direct
method that involves no group theoretical techniques
and the B̈acklund transformation has been determined
[23].

Rosenau and Hyman [24] studied the role of non-
linear dispersive in the formation of patterns in liq-
uid drops of the nonlinear dispersive equations (1) for
l = a = b = 1, m > 0, 1 < n ≤ 3. They also intro-
duced a class of solitary wave solutions with compact
support, i.e. the absence of infinite wings or the ab-
sence of infinite tails, calledcompactons. In addition
to compactons, Rosenau [25] proved that the nonlin-
ear dispersive equationsK(m,n)

ut ± a(um)x + (un)xxx = 0, a const.,

which exhibits a number of remarkable dispersive ef-
fects, can support both; kinks and solitons with an in-
finite slope(s), periodic waves and dark solitons with
cusp(s) all being manifestations of nonlinear disper-
sion in action. Forn < 0 the enhanced dispersion
at the tail may generate algebraically decaying pat-
terns. Other solitary-wave solutions of K(m,n) equa-
tions were also found by Rosenau in [26, 27].

In [9] we carried out a classification of the sym-
metries of equation (1) witha, b ∈ R∗ andl,m, n ∈
Z+ by using classical symmetries. In [10] Bruzon
and Gandarias obtained traveling wave solutions of
the equation (1) witha, b ∈ R∗ and l,m, n ∈ Z+.
They gave a catalogue of new exact solutions and a
set of solitons, kinks, antikinks and compactons.

There is no existing general theory for solving
nonlinear partial differential equations (PDE’s). Due
to the great advance in computation in the last years
a great progress is being made in the development of
methods and their applications to nonlinear PDE’s for
finding exact solutions. For instance, classical Lie
method [5, 6, 17, 18], nonclassical potential symme-
tries method [15, 16], simplest equation method [20],
(G’/G)-expansion method [7, 8, 11], extended sim-
plest equation method [21], among others.

Local symmetries admitted by a PDE are useful
for finding invariant solutions. These solutions are ob-
tained by using group invariants to reduce the num-
ber of independent variables. The fundamental ba-
sis of the technique is that, when a differential equa-
tion is invariant under a Lie group of transformations,
a reduction transformation exists. The machinery of
the Lie group theory provides a systematic method to
search for these special group invariant solutions. For
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PDEs with two independent variables, as it is equa-
tion (1), a single group reduction transforms the PDE
into ODEs, which are generally easier to solve than
the original PDE.

An obvious limitation of group-theoretic methods
based on local symmetries, in their utility for partic-
ular PDEs, is that many of these equations does not
have local symmetries. It turns out that PDEs can ad-
mit nonlocal symmetries whose infinitesimal genera-
tors depend on the integrals of the dependent variables
in some specific manner. It also happens that if a non-
linear scalar PDE does not admit an infinite-parameter
Lie group of contact transformations, it is not lineariz-
able by an invertible contact transformation.

In [3, 4] Bluman introduced a method to find
a new class of symmetries for a PDE. By writ-
ing a given PDE, denoted by R{x, t, u} in a con-
served form a related system denoted by S{x, t, u, v}
as additional dependent variables is obtained. If
u(x, t), v(x, t) satisfiesS{x, t, u, v}, then u(x, t)
solvesR{x, t, u} andv(x, t) solves an integrated re-
lated equationT{x, t, v}. Any Lie group of point
transformations admitted by S{x, t, u, v} induces a
symmetry for R{x, t, u}; when at least one of the
generators of the group depends explicitly of the po-
tential, then the corresponding symmetry is neither a
point nor a Lie-Bäcklund symmetry. These symme-
tries of R{x, t, u} are calledpotentialsymmetries.

The nature of potential symmetries allows one to
extend the use of point symmetries to such nonlocal
symmetries. In particular:

1. Invariant solutions ofS{x, t, u, v}, respectively
T{x, t, v}, yield solutions ofR{x, t, u} which
are not invariant solutions for any local symme-
try admitted byR{x, t, u}.

2. If R{x, t, u} admits a potential symmetry lead-
ing to the linearization ofS{x, t, u, v}, respec-
tively T{x, t, v}, thenR{x, t, u} is linearized by
a noninvertible mapping.

SupposeS{x, t, u, v} admits a local Lie group of
transformations with the infinitesimal generator

XS = ξ(x, t, u, v)∂x + τ(x, t, u, v)∂t

+ψ(x, t, u, v)∂u + ϕ(x, t, u, v)∂v .
(2)

this group maps any solution of Sx,t,u,v to another so-
lution of Sx,t,u,v and hence induces a mapping of any
solution of Rx,t,u to another solution ofR{x, t, u}.
Thus, (2) defines a symmetry group ofR{x, t, u}. If

ξ2v + τ2v + ψ2
v 6= 0

then (2) yields a nonlocal symmetry ofR{x, t, u},
such a nonlocal symmetry is called a potential sym-
metry of R{x, t, u}, otherwiseXS projects onto a
point symmetry ofR{x, t, u}.

The purpose of the present paper is to obtain po-
tential symmetries of equation (1). That is, to de-
termine the values of the parametersl,m, n, a andb,
with l,m, n, a, b 6= 0 andm 6= −1, for which the
equation admits nonlocal symmetries.

2 Classical Lie Method

We consider the PDE:

∆ ≡ ∆(x, u,u(1)(x), . . . ,u(n)(x)) = 0,

wherex = (x1, . . . , xp) are the independent vari-
ables,u = u(x) is the dependent variable andu(l)(x)
denotes the set of all the partial derivatives of order
l of u. We require that the PDE would be invariant
under the group

x∗ = x+ ǫξ(x, u) +O(ǫ2),
t∗ = t+ ǫτ(x, u) +O(ǫ2),
u∗ = u+ ǫη(x, u) +O(ǫ2),

with infinitesimal generator:

V =
p
∑

i=1

ξi(x, u)
∂

∂xi
+ η(x, u)

∂

∂u
.

By Criterion of Invariance we require that

pr(n)V (∆) = 0 when ∆ = 0,

where

pr(n)V = V +
∑

J

ηJ(x, u(n))
∂

∂uJ
,

J = (j1, · · · , jk), with 1 ≤ jk ≤ p, 1 ≤ k ≤ n,

ηJ (x, u(n)) = DJ

(

η −
p
∑

i=1

ξiui

)

+
p
∑

i=1

ξiuJ,i,

ui =
∂u

∂xi
and uJ,i =

∂uJ
∂xi

.

We obtain an overdetermined, linear system of equa-
tions for the infinitesimalsξi(x, u) andη(x, t, u).

WSEAS TRANSACTIONS on MATHEMATICS Maria S. Bruzon, Maria L. Gandarias

ISSN: 1109-2769 276 Issue 4, Volume 9, April 2010



The similarity variables are found by solving the in-
variant surface condition:

∂u

∂xp
= η(x, u)−

p−1
∑

i=1

ξi(x, u)
∂u

∂xi

The Similarity variables











z = z(x),

u = U(x, h(z)).

reduce the PDE

∆(x, u,u(1)(x), . . . ,u(n)(x)) = 0

into an ODE

∆(z, h,h(1)(z), . . . ,h(n)(z)) = 0.

3 Classical Symmetries of Eq. (1)

To apply the classical method to Eq. (1) witha, b 6=
0 and l,m, n ∈ IR+ we consider the one-parameter
Lie group of infinitesimal transformations in(x, t, u)
given by

x∗ = x+ ǫξ(x, t, u) +O(ǫ2),

t∗ = t+ ǫτ(x, t, u) +O(ǫ2),

u∗ = u+ ǫη(x, t, u) +O(ǫ2),

whereǫ is the group parameter. We require that this
transformation leaves invariant the set of solutions of
(1). This yields to an overdetermined, linear system
of equations for the infinitesimalsξ(x, t, u), τ(x, t, u)
andη(x, t, u). The associated Lie algebra of infinites-
imal symmetries is the set of vector fields of the form

v = ξ(x, t, u)∂x + τ(x, t, u)∂t + η(x, t, u)∂u. (3)

Invariance of Eq. (1) under a Lie group of point trans-
formations with infinitesimal generator (3) leads to a
set of nineteen determining equations. Solving this
system we obtain that ifl 6= n ξ = ξ(x, t), τ = τ(t)

andη =
τt − 3ξx
l − n

u whereξ andτ are related by the

following conditions:

ξxx (n− 1) n (l + 2n) = 0,

ξxx (l + 2n) = 0,

τtt l u
l − 3 ξtx l u

l − 3 b ξxxxx nu
n − 3 a ξxx = 0,

τt l
2 ul − ξt n l u

l + b ξxxx n l u
n + 8 b ξxxx n

2 un

−2 a ξx l u
m+1 + a τt nu

m+1 − a ξx nu
m+1

−a τtmum+1 + 3 a ξxmum+1 − a τt u
m+1

+3 a ξx u
m+1 = 0.

The solutions of this system depend on the parameters
of equation (1).
If a, b, n and m are arbitrary constants with
a, b,m, n ∈ R∗ the symmetries admitted by (1) are
the group of space and time translations, which are
defined by the infinitesimal generators

v1 = ∂x, v2 = ∂t,

and the generator

v3 =
1

2
(n−m− 1)x∂x +

1

2
(n− 3m− 1)t∂t + u∂u.

In the following we given the infinitesimal generator
for which Eq.(1) have extra symmetries:

1. If l = n = 2,m = 1,

ξ = k1
3 (x+ at) + k3,

τ = k1t+ k2,

η =
f(x, t)

u
+ k4u.

wheref satisfy2bfxxx + afx + 2ft = 0

2. If l = n,m = 2n− 1,

ξ = k1
3 x+ k3t+ k4,

τ = k1t+ k2,

η = k3
aun−1 − 2k1u

3n .

4 Classical Potential Symmetries

In [4] Bluman introduced a method to find a new class
of symmetries for a PDE. Suppose a given scalar PDE
of second order

F (x, t, u, ux, ut, uxx, uxt, utt) = 0, (4)
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where the subscripts denote the partial derivatives of
u, can be written as a conservation law

D

Dt
f(x, t, u, ux, ut)−

D

Dx
g(x, t, u, ux, ut) = 0, (5)

for some functionsf andg of the indicated arguments.
Here D

Dx
and D

Dt
are total derivative operators defined

by

D

Dx
=

∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ uxt

∂

∂ut
+ . . . ,

D

Dt
=

∂

∂t
+ ut

∂

∂u
+ uxt

∂

∂ux
+ utt

∂

∂ut
+ . . . .

Through the conservation law (5) one can introduce
an auxiliary potential variablev and form an auxiliary
potential system (system approach)

vx = f(x, t, u, ux, ut),

vt = g(x, t, u, ux, ut). (6)

For many physical equations one can eliminateu from
the potential system (6) and form an auxiliary inte-
grated or potential equation (integrated equation ap-
proach)

G(x, t, v, vx, vt, vxx, vxt, vtt) = 0, (7)

for some functionG of the indicated arguments. Any
Lie group of point transformations (2)

XS = ξ(x, t, u, v)∂x + τ(x, t, u, v)∂t

+ψ(x, t, u, v)∂u + ϕ(x, t, u, v)∂v .

admitted by (6) yields a nonlocal symmetrypotential
symmetryof the given PDE (5) if and only if the fol-
lowing condition is satisfied

ξ2v + τ2v + φ2v 6= 0. (8)

5 Classical Potential Symmetries of
Eq. (1)

In order to find potential symmetries of (1) with
a, b, l, n 6= 0 andm 6= −1 we write the equation in a
conserved form and the associated auxiliary system is
given by











vx = ul,

vt = − a
m+1u

m+1 − b (un)xx .
(9)

A Lie point symmetry admitted byS(x, t, u, v) is a
symmetry characterized by an infinitesimal transfor-
mation of the form

x∗ = xi + ǫξ(x, t, u, v) +O(ǫ2),

t∗ = t+ ǫτ(x, t, u, v) +O(ǫ2),

u∗ = u+ ǫη(x, t, u, v) +O(ǫ2)

v∗ = v + ǫϕ(x, t, u, v) +O(ǫ2)

(10)

admitted by system (9). In the present work, we will
present the point symmetries of (9) and we will study
that symmetries induce potential symmetries of equa-
tion (1). These symmetries are such that the condition
(8)

ξ2v + τ2v + ψ2
v 6= 0

is satisfied. If the above relation does not hold, then
the point symmetries of (9) project into point symme-
tries of (1). System (9) admit Lie symmetries if and
only if

pr(2)X(vx − ul) = 0,

pr(2)X(vt +
a

m+1u
m+1 + b (un)xx) = 0,

where pr(2)V is the second extended generator of

XS = ξ(x, t, u, v)∂x + τ(x, t, u, v)∂t

+ψ(x, t, u, v)∂u + ϕ(x, t, u, v)∂v .

In other words, we require that the infinitesimal gen-
erator leaves invariant the set of solutions of (9). This
yields to an overdetermined system of fourteen equa-
tions for the infinitesimalsξ(x, t, u, v), τ(x, t, u, v),
ψ(x, t, u, v) and ϕ(x, t, u, v). From this system we
obtain thatξ = ξ(x, t, v), τ = τ(t), ϕ = ϕ(x, t, v)
and

ψ = −
ξv u

2l+1 + (ξx − ϕv) u
l+1 − ϕx u

lul

whereξ, τ andϕmust satisfy the following four equa-
tions
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ξv(2l + n)u2l + ϕx(n− l) = 0,

(2l + n)ξv u
2l + (l − n)ϕv u

l − lτt u
l + 2lξx u

l

+ξxnu
l + (l − n)ϕx = 0,

4 lξvv u
3l + 2 ξvv nu

3l − lϕvv u
2l + 5lξvx u

2 l

−2nϕvvu
2l + 4 ξvx nu

2l + lϕvx u
l + lξxx u

l

−4nϕvx u
l + 2 ξxx nu

l + 2 lϕxx − 2nϕxx = 0,

b ξvvvmnu4l+n + b ξvvv nu
4l+n

−bmnϕvvv u
3l+n − b nϕvvv u

3l+n

+3 b ξvvxmnu3l+n + 3 b ξvvx nu
3l+n

−3 bmnϕvvx u
2l+n − 3 b nϕvvx u

2l+n

+3 b ξvxxmnu2l+n + 3 b ξvxx nu
2l+n

−3 a ξvl u
2l+k+1 − a ξv nu

2l+k+1

+a ξvmu2l+k+1 + a ξv u
2l+k+1

−3 bmnϕvxx u
l+n − 3 b nϕvxx u

l+n

+b ξxxxmnul+n + b ξxxx nu
l+n

−2 a ξxl u
l+k+1 + anϕv u

l+k+1

−amϕv u
l+k+1 − aϕv u

l+k+1 − a ξx nu
l+k+1

+a ξxmul+k+1 + a ξx u
l+k+1 + ξtml u

2l

+ξtl u
2l −mϕtl u

l − ϕtl u
l − bmnϕxxx u

n

−b nϕxxx u
n − aϕxl u

k+1 + anϕx u
k+1

−amϕx u
m+1 − aϕx u

m+1 = 0.
(11)

From system (11) we should consider three cases:

Case 1: The parametersm,n, l are arbitrary con-
stants. From system (11) we obtain the infinitesimals:

ξ = k1 τ = k2

ψ = 0 ϕ = k3

It is no potential symmetry of the equation (1) because
the condition (8) is not satisfied.

Case 2: If n 6= −2l + 3(m+ 1) from system (11) we
obtain the infinitesimals:

ξ = k2(n−m−1)
2l+n−3(m+1)x+ k5

τ = k2t+ k3

ψ = 2k2
2l+n−3(m+1)u

ϕ = k2(2l+n−(m+1))
2l+n−3(m+1) v + k4

It is no potential symmetry of the equation (1) because
the condition (8) is not satisfied.

Case 3: If l = n from system (11) we obtain

ξ = 1
3τtx+ α(t),

τ = τ(t),

ψ = βx(x,t)
nun−1 + δ(t)u

n
− τtu

3n ,

ϕ = k1v + β(x, t),

where τ(t), α(t), β(x, t) and δ(t) must satisfy the
equation

τttmnu2n x+ τtt nu
2n x+ 3 a k1 nu

n+m+1

−3 aτt nu
n+m+1 − 3 a k k1 u

n+m+1

−3 a k1 u
n+m+1 + a τt k u

n+m+1 + a τt u
n+m+1

+3mnαt u
2n + 3nαt u

2n − 3 bmnβxxx u
n

−3 b n βxxx u
n − 3mnβt u

n − 3nβt u
n

−3 amβx u
m+1 − 3 a βx u

m+1 = 0.
(12)

From system (12) we obtain the following solutions

•
ξ = k1

3 x+ k3,

τ = k1t+ k2,

ψ = k1
3nu,

ϕ = 2
3k1v + k4

(13)

•
ξ = (k+1) k1 x+2 a k1 t+3(k+1) k4

3 k+3 ,

τ = k1t+ k2,

ψ = k1
3nu,

ϕ = 2
3k1v + k4

(14)

The infinitesimal generators (13) and (14) are not po-
tential symmetries of the equation (1) because the
condition (8) is not satisfied.

Case 4: If l = 1, n = −2 andm = 1

ξ = k1x+ f(v),

τ = k3t+ k4,

ψ = −αvu
2 + (k33 − k1)u,

ϕ = k3
3 v + k2

(15)
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where the functionf(v) satisfy the linear equation
fvvv + f + k1 − k3 = 0.

The infinitesimal generators (15) are potential
symmetries of the equation (1) because the condition
(8) is satisfied.

Case 5: If n = −2l andl = m+ 1 from system (11)
we obtain the following symmetries:

X1 = ∂t, X2 = ∂v,

X3 = x∂x + t∂t −
2

3(m+ 1)
u∂u +

1

3
v∂v,

X∞ = f(t, v)∂x −
1

m+ 1
um+2fv(t, v)∂u,

where the functionf(t, v) satisfy the linear equation

2bfvvv − ft = 0.

Consequently, we can state that:the equation(1) ad-
mits potential symmetries ifn = −2l and l = m + 1
or l = 1, n = −2 andm = 1 .

5.1 Symbolic manipulations programs

The procedure to obtain the classical potential sym-
metries is entirely algorithmic, it involves a large
amount of algebra and of auxiliary calculations. Some
symbolic manipulation programs have been devel-
oped to simplify the calculations. We use the MAC-
SYMA program symmgrp.max [13] and the MATH-
EMATICA software.

To use symmgrp.max, we have to convert (9) into
the appropiate MACSYMA syntax: x[1] and x[2] rep-
resent the independent variablesx andt, respectively,
u[1] and u[2] represent the dependent variablesu and
v, respectively. The system (9) is rewritten as

u[2, [0, 1]] + (a/(k + 1)) ∗ u[1](k+1)+

b ∗ (n ∗ u[1](n− 1) ∗ u[1, [2, 0]]

+(n− 1) ∗ n ∗ u[1](n− 2) ∗ (u[1, [1, 0]])2) = 0;

u[2, [1, 0]] − (u[1])s = 0;

whereu[1, [0, 1]] representsvt, u[2, [1, 0]] represents
uxx, etc.
The infinitesimalsξ, τ , η andϕ asre represented by
eta1, eta2, phi1 and phi2, respectively. The program
symmgrp.max automatically computes the determin-
ing equations for the infinitesimals

kill(all);

derivabbrev:true;

batchload(”symmgrp.max”);

/* KLMN- CLASSICAL POTENTIAL*/

batch(”Klmnpc.dat.txt”);

symmetry(1,0,0);

printeqn(lode);

save(”lodegnlh.lsp”,lode);

for j thru q do (x[j]:=concat(x,j));

for j thru q do (u[j]:=concat(u,j));

ev(lode)$

gnlhode:ev(%,x1=x,x2=t,u1=u,u2=v);

grind:true$

stringout(”gnlhode”,gnlhode);

closefile();

The fiel klmnpc.cas in turn batches the file klmnpc.dat
which contains data about (9)

p:2$

q:2$

m:2$

parameters:[a,b,n,m]$

warnings:true$

sublisteqs:[all]$

substderiv of vi:true$

info given:true$

highestderivatives:all$

depends([eta1,eta2,phi1,phi2],[x[1],x[2],u[1],u[2]]);

eta2:1;

vt:phi2-eta1*u[2,[1,0]];

e1:vt+(a/(k+1)) ∗u[1](k+1) + b ∗ (n ∗u[1](n−1) ∗

u[1, [2, 0]]+(n−1)∗n∗u[1](n−2)∗(u[1, [1, 0]])2);

e2:u[2, [1, 0]] − (u[1])s;

v1:u[1,[2,0]];

v2:u[2,[1,0]];

We note thatu[2, [0, 1]] (i.e. vt) has been eliminated
using the invariant surface conditions.
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6 Similarity solutions

As in the case of Lie point symmetries, potential
symmetries may be used to derive similarity trans-
formations (solutions). Such transformations reduce
the number of independent variables of a system of
PDEs. In particular, we use the potential symmetries
obtained in Section 5, which are Lie symmetries of
system (9), to derive similarity solutions for system
(9). In order to find similarity solutions for system (9)
we need to solve the invariant surface conditions

ξux + τut = ψ, ξvx + τvt = ϕ,

whereξ, τ , ψ andϕ are the infinitesimal of the trans-
formation (10). The similarity solutions can be found
by solving the corresponding characteristic equations

dx

ξ
=
dt

τ
=
du

ψ
=
dv

ϕ
. (16)

We present some examples of similarity solutions
which are produced by symmetries that were obtained
in Section 5.
Example 1. We use the symmetryX1 +X∞ = λ∂t +
f(t, v)∂x −

1
m+1u

m+2fv(t, v)∂u. We setf(t, v) = µ.
Substituting into equations (16) we get

z = µx− λt, u(x, t) = h(z), v = w(z).
(17)

Similarity transformation (17) reduces system (9) to
nonlinear system

µw′ − hl = 0,(18)

−λw′ + b µ2 n2 hn−2 (h′
)2

+b µ2 nhn−1 h′′ − b µ2 nhn−2 (h′
)2

+
ahm+1

m+ 1
= 0.(19)

System (18)-(19) is reduced forn = −2l and l =
m+ 1 into nonlinear ODE

h′′ − (2m+3)
h

(h′)2 + h3m+4 (mλ+λ−aµ)

2 b (m+1)2 µ3
= 0.

(20)
Let g = h′. Sinceh′′ = gg′ we get

(λ− a)

2 b (m+ 1) µ3
h3m+4−

2 g2 (m+ 1)

h
−
g2

h
+g g′ = 0.

(21)
Equation (21) is a Bernoulli equation and this equa-
tion has the general solution

g2 = (mλ+λ−aµ)

b (m+1)3 µ3
h3m+5 + 2 c h4m+6, (22)

wherec is a constant of integration. Back to the func-
tion h we have

(h′)2 = (mλ+λ−aµ)

b (m+1)3 µ3
h3m+5 + 2 c h4m+6. (23)

The general solution of equation (23) is

h(z) = InverseFunction[−2[2Hypergeometric2
F1(a1, a2, a3, a4)]#1H1/(4m+ 4)H2&][−z, C1][[2]]

where Hypergeometric2F1[a,b,c,z] is the hypergeo-
metric function2F1(a, b; c; z),

a1 =
1
2 ,a2 =

4m+4
2(m+1) ,

a3 =
4m+4
2(m+1) + 1,

a4 = −#1−m−1
(λ(m+1)−aµ)

2bc(m+1)3µ3 ,

H1 =

√

#1−m−1
(λ(m+1)−aµ)

2bc(m+1)3µ3 + 1,

H2 =

√

#13m+5
(λ(m+1)−aµ)

b(m+1)3µ3 + 2c#14m+6.

This case was not studied in [9, 10].

Example 2. Substituting (18) into (19) we obtain the
equation

h′′−
hl−n+1 λ

bµ3 n
+
(hz)

2 (n− 1)

h
+

ah−n+m+2

b (m+ 1) µ2 n
= 0.

(24)
For l = n = m, we obtain thath(z) = sech2(z) is a
solution of equation (24).
From (17) we obtain that

u(x, t) = sech2(µx− λt) (25)

is a solution of equation (1). In Figure 1 we plot so-
lution (25) withµ = λ = 1 which describes a soliton
solution. The solitons are defined as localized waves
that propagate without change of its shape and ve-
locity properties, and are stable against mutual col-
lisions. The existence of solitary wave solutions im-
plies perfect balance between nonlinearity and disper-
sion which usually requires rather specific conditions
and cannot be established in general [19].
Example 3. From (24) if l = n, for α = 1, β = 6:
m = n− 4

3 , a = (3n−1)(6n−1)λ
18µn , b = − λ

36µ3n2 , by (17)
weobtain that

u(x, t) =

{

sin6(µx− λt) |x− t| ≤ 4π,
0 |x− t| > 4π

(26)
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Figure 1: Solution (25) forµ = 1 andλ = 1

is a solution of equation (1). In Figure 2 we plot so-
lution (26) withµ = 1

4 and λ = 1
4 which describes a

compacton solution.
Example 4. From (24) we obtain that

u(x, t) =
1

4
tanh(µx− λt) (27)

is a solution of equation (1) withl = n = 2, m = 3,
a = 48λ

µ
and b = − λ

8µ3 . In Figure 3 we plot solution

(27) with µ = 1 andλ = −1
2 which describes a kink

solution.

7 Conclusions

In this paper we have seen a classification of potential
symmetries of aK(m,n) equation with generalized
evolution term, depending on the values of the con-
stantsa, b, n, l andm. We have proven that the equa-
tion (1) admits potential symmetries ifn = −2l and
l = m + 1. Consequently the equation (1) studied in
[9] does not admit potential symmetries.
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