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Abstract: In this work we study a new completely integrable equation from the point of view of the theory of
symmetry reductions in partial differential equations. This equation has been proposed by Qiao and Liu in [24]
and it possesses peak solitons. We obtain the classical symmetries and the classical symmetries of the associated
potential system admitted, then, we use the transformations groups to reduce the equations to ordinary differential
equations. Physical interpretation of these reductions and some exact solutions are also provided. Among them we
obtain a travelling wave with decaying velocity and an smooth soliton solution.
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1 Introduction

The study of integrable equations has arisen lot of at-
tention in the last years. Among the integrable equa-
tions the study of peaked and cusped soliton equations
has been considered in many papers. In [28, 29, 30],
Wadati et al. proposed the cusp soliton, which is a
kind of peaked soliton. Recently in [24] Qiao and Liu
proposed a new completely integrable equation

ut =
1

2

(

1

u2

)

xxx
− 1

2

(

1

u2

)

x
(1)

which has no smooth solitons. In [24] the authors
proved that the new equation proposed Eq. (1) is
completely integrable. It was shown that (1) has bi-
Hamiltonian structure, and Lax pair that implies its
integrability by the Inverse Scattering Transformation.
By considering traveling-wave solutions the authors
found one peak soliton solutions and three-peaks soli-
tons solutions. The authors state that no smooth soli-
tons were found for equation (1), although equation
(1) is completely integrable. They claim to provide an
integrable system with no smooth solitons.

In this work, we study equation (1) from the point
of view of the theory of symmetry reductions in partial
differential equations. We obtain the classical symme-
tries admitted by (1) for arbitrary n, then, we use the
transformations groups to reduce the equations to or-
dinary differential equations. Physical interpretation
of these reductions and some elementary solutions are
also provided.

In this paper, we apply the Lie group method of
infinitesimals transformations to the generalized equa-
tion

ut =
1

k
(un)xxx − 1

k
(un)x . (2)

By using this method we bring out the unexplored
invariance properties and similarity reduced ordinary
differential equations (ODE’s) of the above equa-
tion (2). First we obtain a point transformation
group which leaves the equation (2) invariant. In or-
der to find all invariant solutions with respect to s-
dimensional subalgebras, it is sufficient to construct
invariant solutions for the optimal system of order s.
The set of invariant solutions obtained in this way is
called an optimal system of invariant solutions. We
only consider one-parameter subgroups. For further
details [27]. By using the classical Lie method, we de-
rive exact solutions for the integrable equation. Some
of these solutions are smooth soliton solutions.

2 Classical symmetries

In this section we perform Lie symmetry analysis
for equation (2). Let us consider a one-parameter
Lie group of infinitesimal transformations in (x, t, u)
given by

x∗ = x+ εξ(x, t, u) + O(ε2),

t∗ = t+ ετ(x, t, u) + O(ε2),

u∗ = u+ εφ(x, t, u) + O(ε2),

(3)
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where ε is the group parameter. Then one requires that
this transformation leaves invariant the set of solutions
of the equation (1). This yields to the overdetermined,
linear system of eleven equations for the infinitesimals
ξ(x, t, u), τ(x, t, u) and φ(x, t, u). The associated Lie
algebra of infinitesimal symmetries is the set of vector
fields of the form

v = ξ
∂

∂x
+ τ

∂

∂t
+ φ

∂

∂u
. (4)

Having determined the infinitesimals, the symmetry
variables are found by solving the invariant surface
condition

Φ ≡ ξ
∂u

∂x
+ τ

∂u

∂t
− φ = 0. (5)

By solving this system we get that for n 6= 1, ξ =
ξ(x), τ = τ(t),

φ =
u

n− 1

(

3
dξ

dx
− dτ

dt

)

where ξ, τ and n must satisfy the following equations

n (2n+ 1)
d2ξ

dx2
= 0,

d4ξ

dx4
− d2ξ

dx2
= 0,

3
d2ξ

dtdx
− d2τ

dt2
= 0,

8n
d3ξ

dx3
+
d3ξ

dx3
− 2n

dξ

dx
+ 2

dξ

dx
= 0. (6)

Solving this system we find that:
If n is arbitrary, the symmetries that are admitted by
(1) are

v1 =
∂

∂x
, v2 =

∂

∂t
, v3 = t

∂

∂t
− u

n− 1

∂

∂u
.

If n = −1
2 the symmetries that are admitted by (1) are

v1, v2, v3 = t
∂

∂t
+

2u

3

∂

∂u
,

v4 = ex
∂

∂x
−2uex

∂

∂u
, v5 = e−x ∂

∂x
+2ue−x ∂

∂u
.

Our aim in this paper is to use the theory of symmetry
reductions to find traveling-wave solutions for (1).

In order to obtain these solutions, we consider the
following reductions arising from the optimal system
vector fields.

3 Optimal systems and reductions

In order to construct the one-dimensional optimal sys-
tem, following Olver, we construct and are shown in
the appendix the commutator table (Table 1) and the
adjoint table (Table 2 ) which shows the separate ad-
joint actions of each element in vi, i = 1 . . . 5, as it
acts on all other elements. This construction is done
easily by summing the Lie series.

The corresponding generators of the optimal system
of subalgebras are

av1 + v2,

v3,

v1 + bv3.

where a ∈ R and b ∈ R are arbitrary.

In the following, reductions of the equation (1) to
ODE’s are obtained using the generators of the op-
timal system.

Reduction 1 By using the generator v1 + λv2 we ob-
tain the similarity variables and similarity solution

z = x− λt, u = h(z), (7)

and the ODE E1

dh

dz
k λ+ hn−3

(

dh

dz

)3

(n− 2) (n− 1) n

+3hn−2 dh

dz

d2h

dz2
(n− 1) n

+hn−1 d
3h

dz3
n− hn−1 dh

dz
n = 0

(8)

for n = −2 becomes

−h2 d
3h

dz3
+ 9h

dh

dz

d2h

dz2
− 12

(

dh

dz

)3

+c h5 dh

dz
+ h2 dh

dz
= 0.

(9)

Reduction 2 By using the generator v3 we obtain the
similarity variables and similarity solution

z = x, u = t1−nf(x), (10)

and the ODE E1

fn
(

df

dx

)3

n3 + 3 fn+1 df

dx

d2f

dx2
n2 − 3 fn

(

df

dx

)3

n2

+f4 k n+ fn+2 d
3f

dx3
n− 3 fn+1 df

dx

d2f

dx2
n+

2 fn
(

df

dx

)3

n− fn+2 df

dx
n− f4 k = 0

(11)
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For n = −2 becomes

f4 k+6
d3f

dx3
− 54 df

dx
d2f
dx2

f
+

72
(

df
dx

)3

f2
= 6

df

dx
. (12)

Reduction 3 By using the generator v1+v3 we obtain
the similarity variables and similarity solution

z = x− ln (|t|), u = t
1

1−nh(x), (13)

and the ODE E3

hn
(

dh

dz

)3

n4 + 3hn+1 dh

dz

d2h

dz2
n3

−4hn
(

dh

dz

)3

n3 + hn+2 d
3h

dz3
n2 − 6hn+1 dh

dz

d2h

dz2
n2

+5hn
(

dh

dz

)3

n2 − hn+2 dh

dz
n2 + h3 dh

dz
k n

−hn+2 d
3h

dz3
n+ 3hn+1 dh

dz

d2h

dz2
n− 2hn

(

dh

dz

)3

n

+hn+2 dh

dz
n− h3 dh

dz
k + h4 k = 0

(14)
For n = −2 Eq (14) becomes

−3h3 dh

dz
k + h4 k + 6

d3h

dz3

−54 dh
dz

d2h
dz2

h
+

72
(

dh
dz

)3

h2
− 6

dh

dz
= 0.

(15)

4 Potential symmetries

In [?] Bluman introduced a method to find a new class
of symmetries for a PDE. Suppose a given scalar PDE
of second order

F (x, t, u, ux, ut, uxx, uxt, utt) = 0, (16)

where the subscripts denote the partial derivatives of
u, can be written as a conservation law

D

Dt
f(x, t, u, ux, ut) −

D

Dx
g(x, t, u, ux, ut) = 0,

(17)
for some functions f and g of the indicated argu-
ments. Here D

Dx and D
Dt are total derivative operators

Through the conservation law (17) one can introduce
an auxiliary potential variable v and form an auxiliary
potential system

vx = f(x, t, u, ux, ut),

vt = g(x, t, u, ux, ut). (18)

Any Lie group of point transformations

w = ξ(x, t, u, v)∂x + τ(x, t, u, v)∂t

+φ(x, t, u, v)∂u + ψ(x, t, u, v)∂v ,
(19)

admitted by (18) yields a nonlocal symmetry poten-
tial symmetry of the given PDE (17) if and only if the
following condition is satisfied

ξ2v + τ2
v + φ2

v 6= 0. (20)

Let (2) be the generalized equation, in order to
find the potential symmetries we write the equation
in the conserved form. From this conserved form the
associated auxiliary system (21)

vx = u

vt =
1

k
(un)xx − 1

k
(un)

(21)

with potentials as additionals dependent variables is
given. If (u(x), v(x)) satisfies (21) then u(x) solves
(2). The classical method applied to (21) gives rise to
the following determining equations

nun+2 dξ

dv
− n2 u2 dξ

dt
− n2 d

2φ

dv2
un+2

+n
dτ

dt
un+1 − n

dψ

dv
un+1 − 2n2 d2φ

dvdx
un+1

−n2 d
2φ

dx2
un + n2 φun + n2 dψ

dt
u = 0

−nu dξ
dx

− nu2 dξ

dv
+ n

dψ

dv
u+ n

dψ

dx
− nφ = 0

2nu
dξ

dx
+ nu2 dξ

dv
− n

dτ

dt
u

+n
dψ

dv
u− n

dφ

du
u− n2 φ+ nφ = 0

2n2 u
dξ

dx
− 2nu

dξ

dx
+ nun dξ

dv

+n2 u2 dξ

dv
− nu2 dξ

dv
− n

d2φ

du2
un

−n2 dτ

dt
u+ n

dτ

dt
u+ n2 dψ

dv
u

−n dψ
dv

u− 2n2 dφ

du
u+ 2n

dφ

du
u = 0

−un d
2ξ

dx2
− un+2 d

2ξ

dv2
− 2un+1 d2ξ

dvdx

+2
d2φ

dudv
un+1 +

dφ

dv
un + 2

d2φ

dudx
un

+2n
dφ

dv
u2 − 2

dφ

dv
u2

+2n
dφ

dx
u− 2

dφ

dx
u = 0

(22)

By solving this system we get only recover the classi-
cal symmetry of (2)

ξ = k1, τ = k2, ψ = k4, φ = 0

.
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5 Some travelling wave solutions

In the following we present some explicit solutions of
the second order ODE’s as well as the corresponding
travelling wave solutions of the new integrable equa-
tion n = −2. We also discuss some interpretation of
the similarity variables in the above reductions.

The most interesting particular case corresponds
to reduction (7). In this reduction the similarity vari-
able and similarity solution are respectively given by
z = x − λt, u = h so that u(x, t) = h(x − λt).
Consequently the corresponding solutions are travel-
ling wave solutions for any arbitrary constant n. Due
to the interest of this type of solutions, we study fur-
ther reductions for the associated ODE. First of all, we
see that this equation can be trivially integrated once.
Dividing (54) by h5 and integrating once with respect
to z we have

2h4 k1 − 2h
d2h

dz2
+ 6

(

dh

dz

)2

+ 2 c h5 − h2 = 0.

Now we can see that making the change of variables
h = y−

1
2 we get

d2y

dz2
− y +

2 c√
y

+ 2k1 = 0

Multiplying by dy
dz and integrating once with respect

to z we get
(

dy

dz

)2

− y2 + 4k1 y + 8 c
√
y + k2 = 0.

Making the change of variables y = α
4
3 we get

9 c

2
+

(

dα

dz

)2

− 9α2

16
= 0.

Derivating once with respect to z we get the linear
equation

16
d2α

dz2
− 9α = 0,

from its general solution and unmaking the changes of
variables we get the following solutions

h = − 1

2 3
√
λ

(

sinh
(

3 z
4 + 3 k3

4

))2/3

h =
1

3
√

2 k2/3 3
√

k2

(

sin
(

3 z
4 + 3 k3

4

))2/3
.

(23)

Making the change of variables y = α
2
3 we get

h =
3
√

k2 e
z

2

3
√

k2
2 e3 z + 4λ k2 e

3 z

2 + 4λ2

. (24)

The corresponding travelling-wave solutions of (1) are

u = − 1

2 3
√
λ

(

sinh
(

3 (x−λt)
4 + 3 k3

4

))2/3

u =
1

3
√

2 k2/3 3
√

k2

(

sin
(

3 (x−λt)
4 + 3 k3

4

))2/3

(25)

u =
3
√

k2 e 2

3
√

k2
2 e3 (x−λt) + 4λ k2 e

3 (x−λt)
2 + 4λ2

(26)
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Figure 1: Solution (57) with k2 = 1, λ = 1.
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Figure 2: Solution (58) with k2 = 1, λ = 1.

For reduction (13) we have

u = t
1
3h(x− log (t)). (27)

This solution describes a travelling wave with decay-
ing velocity.

In the following we present some explicit solu-
tions of the second order ODE (54). We search the
values of parameter n for which (54) admits solu-
tions in terms of the Jacobi elliptic functions. We also
present the corresponding travelling wave solutions of
the corresponding PDE.

By making the change of variables y = α
1
n equa-

tion (54) becomes

α
1
n
−1 dα

dz
k λ+

d3α

dz3
n− dα

dz
n = 0. (28)

Integrating once with respect to z we get

α
1
n k λ+ k1 +

d2α

dz2
− α = 0. (29)
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We are now considering the equation

hzz + bh3 + ch2 + dh+ e = 0. (30)

Equation (30) with b 6= 0 admits solutions in terms
of the Jacobi elliptic functions sn(kz, p), cn(kz, p)
when k p b c d and e satisfy some conditions.

Equation (30) with b = 0 admits solutions
in terms of the Jacobi elliptic functions sn2(kz, p),
cn2(kz, p) when k, p, c, d and e satisfy some con-
ditions.

We now search for solutions of (30) of the form

h = a2 y
2 + a1 y +

b1

y
+

b2

y2
+ a0 (31)

where y = y(z) is any of the Jacobi elliptic functions.
Substituting (53) into (30), and collecting the coeffi-
cients of y we obtain a system of algebraic equations
for a0; a1; a2; b1; b2; b; c; d; e; k; and p. Solving this
system gives, for y = sn(kz, p) the following sets of
solutions

We now search for solutions of (30) of the form

h = a2 y
2 + a1 y +

b1

y
+

b2

y2
+ a0 (32)

where y = y(kz, p) is any of the Jacobi elliptic func-
tions. Substituting (53) into (30), and collecting the
coefficients of y we obtain a system of algebraic equa-
tions for a0; a1; a2; b1; b2; b; c; d; e; k; and p. Solving
this system gives the following sets of solutions

Solution 1

h = b1
√
p sn (k z, p) +

b1

sn (k z, p)
+ a0 (33)

Where a2 = b2 = 0 and the remaining coeffi-
cients are related by

b = −2 k2

b1
2

c =
6a0 k

2

b1
2

d = −4 a0
3 k2 + b1

2 e

a0 b1
2

a2
1 = b1

2 p

k2 = − b1
2 e

√
p

a0 b1
2 p3/2 + 6a0 b1

2 p+
(

a0 b12 − 2 a0
3
) √

p

b1 6= 0

Solution (33) becomes

h = b1 tanh (k z) +
b1

tanh (k z)
+ a0 if p = 1

h = b1 sin (k z) +
b1

sin (k z)
+ a0 if p = 0

Solution 2

h = a1 sn (k z, p) + a0 (34)

Where a2 = b2 = b1 = 0 and the remaining coeffi-
cients are related by

b = −2 k2 p

a1
2
c =

6a0 k
2 p

a1
2

d =

(

a1
2 − 6 a0

2
)

k2 p+ a1
2 k2

a1
2

k2 = − a1
2 e

(a0 a1
2 − 2 a0

3) p+ a0 a1
2

Solution (34) becomes

h = a1 tanh (k z) + a0 p = 1
h = a1 sin (k z) + a0 p = 0

(35)

Solution 3
h =

b1

sn (k z, p)
+ a0 (36)

Where a2 = b2 = a1 = 0 and the remaining
coefficients are related by

b = −2 k2

b1
2

c =
6a0 k

2

b1
2

d = −4 a0
3 k2 + b1

2 e

a0 b1
2

k2 = − b1
2 e

a0 b1
2 p+ a0 b1

2 − 2 a0
3

b1 6= 0

Solution (36) for becomes

h =
b1

tanh (k z)
+ a0 p = 1

h =
b1

sin (k z)
+ a0 p = 0

(37)

Solution 4

h = a1cn (kz, p) +
b1

cn(kz, p)
+ a0 (38)
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where a2 = b2 = 0 and the remaining coefficients
are related by

b =
2 k2 p

a1
2

c = −6 a0 k
2 p

a1
2

d = −
(

6 a1 b1 + 2a1
2 − 6 a0

2
)

k2 p− a1
2 k2

a1
2

k2 =
a1

2 e

(6 a0 a1 b1 + 2a0 a1
2 − 2 a0

3) p− a0 a1
2

b21 =
a1

2 (p− 1)

p
p 6= 0

Solution (39) for p = 1 becomes

h = a1 sech (k z) + a0

Solution 5

h = a1 cn (k z, p) + a0 (39)

where a2 = b2 = b1 = 0 and the remaining coeffi-
cients are related by

b =
2 k2 p

a1
2

c = −6 a0 k
2 p

a12

d = −
(

2 a1
2 − 6 a0

2
)

k2 p− a1
2 k2

a1
2

e =

(

2 a0 a1
2 − 2 a0

3
)

k2 p− a0 a1
2 k2

a1
2

f =

(

a1
4 − 2 a0

2 a1
2 + a0

4
)

k2 p+
(

a0
2 a1

2 − a1
4
)

k2

a1
2

Solution (39) for p = 1 becomes

h = a1 sech (k z) + a0

and for p = 0 becomes

h = a1 cos (k z) + a0

Solution 6

h =
b1

cn(kz, p)
+ a0 (40)

where a2 = b2 = a1 = 0 and the remaining coef-
ficients are related by

b =
2 k2 (p− 1)

b1
2

c = −6 a0 k
2 (p− 1)

b1
2

d = −
k2

(

2 b1
2 p− 6 a0

2 p− b1
2 + 6a0

2
)

b1
2

e =
a0 k

2
(

2 b1
2 p− 2 a0

2 p− b1
2 + 2a0

2
)

b1
2

f =
(b1 − a0) (b1 + a0) k

2
(

b1
2 p− a0

2 p+ a0
2
)

b1
2

Solution (40) for p = 1 and p = 0 becomes

h =
b1

sech (k z)
+ a0 p = 1

h =
b1

cos (k z)
+ a0 p = 0

(41)

Solution 7 Solution

h = a2 sn 2 (k z, p) +
b2

sn 2 (k z, p)
+ a0 (42)

Where b = a1 = b1 = 0 and the remaining coeffi-
cients are related by

a2 = b2 p

c = −6 k2

b2

d =
4 k2 (b2 p+ b2 + 3a0)

b2

e =
2 k2

(

4 b2
2 p− 2 a0 b2 p− 2 a0 b2 − 3 a0

2
)

b2

f = −
4 k2 (b2 p+ b2 + a0)

(

4 b2
2 p− a0

2
)

b2

Solution (42) for p = 1 and p = 0 becomes

h = a2 tanh2 (k z) +
b2

tanh2 (k z)
+ a0 if p = 1

h = a2 sin2 (k z) +
b2

sin2 (k z)
+ a0 if p = 0

Solution 8

h = a2 cn 2 (k z, p) +
b2

cn 2 (k z, p)
+ a0 (43)
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Where b = a1 = b1 = 0 and the remaining coeffi-
cients are related by

b2 =
a2 (p− 1)

p

c =
6 k2 p

a2

d = −4 k2 (2 a2 p+ 3a0 p− a2)

a2

e = −2 k2
(

4 a2
2 p− 4 a0 a2 p− 3 a0

2 p− 4 a2
2 + 2a0 a2

)

a2

f =
4 k2 (2 a2 p+ a0 p− a2)

(

4 a2
2 p− a0

2 p− 4 a2
2
)

a2 p

Solution (43) for p = 1 becomes

h = a2 sech2 (k z) + a0

Solution 9

h = a2 sn 2 (k z, p) + a0 (44)

Where b = a1 = b1 = 0 and the remaining coeffi-
cients are related by

c = −6 k2 p

a2

d =
(4 a2 + 12 a0) k

2 p+ 4a2 k
2

a2

e = −
(

4 a0 a2 + 6a0
2
)

k2 p+
(

2 a2
2 + 4a0 a2

)

k2

a2

f =

(

4 a0
2 a2 + 4a0

3
)

k2 p+
(

4 a0 a2
2 + 4a0

2 a2
)

k2

a2
a2 6= 0

Solution (44) for p = 1 and p = 0 becomes

h = a2 tanh2 (k z) + a0 p = 1
h = a2 sin2 (k z) + a0 p = 0

(45)

Solution 10

h =
b2

sn 2 (k z, p)
+ a0 (46)

Where b = a1 = b1 = 0 and the remaining coeffi-
cients are related by

c = −6 k2

b2

d =
4 k2 (b2 p+ b2 + 3a0)

b2

e = −
2 k2

(

b2
2 p+ 2a0 b2 p+ 2a0 b2 + 3a0

2
)

b2

f =
4a0 (b2 + a0) k

2 (b2 p+ a0)

b2

Solution (46) for p = 1 and p = 0 becomes

h =
b2

tanh2 (k z)
+ a0 p = 1

h =
b2

sin2 (k z)
+ a0 p = 0

(47)

Solution 11

h = a2 cn 2 (k z, p) + a0 (48)

Where b = a1 = b1 = 0 and the remaining coeffi-
cients are related by

c =
6 k2 p

a2

d = −4 k2 (2 a2 p+ 3a0 p− a2)

a2

e =
2 k2

(

a2
2 p+ 4a0 a2 p+ 3a0

2 p− a22 − 2 a0 a2
)

a2

f = −4 a0 (a2 + a0) k
2 (a2 p+ a0 p− a2)

a2
a2 6= 0

Solution (48) for p = 1 becomes

h = a2 sech2 (k z) + a0

and for p = 0 becomes

h = a2 cos2 (k z) + a0

Solution 12

h =
b2

cn 2 (k z, p)
+ a0 (49)

Where b = a1 = b1 = 0 and the remaining coeffi-
cients are related by

c =
6 k2 (p− 1)

b2

d = −4 k2 (2 b2 p+ 3a0 p− b2 − 3 a0)

b2

e =
2 k2

(

b2
2 p+ 4a0 b2 p+ 3a0

2 p− 2 a0 b2 − 3 a0
2
)

b2

f = −4 a0 (b2 + a0) k
2 (b2 p+ a0 p− a0)

b2

Solution (49) for p = 1 and p = 0 becomes

h =
b2

sech2 (k z)
+ a0 p = 1

h =
b2

cos2 (k z)
+ a0 p = 0

(50)
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Theorem Suppose that y is a solution of the following
ODE

d2h

dz2
+ n1 h

3 + n2 h
2 + n3 h+ n4 = 0 (51)

or

(

dh

dz

)2

+
n1 h

4

2
+

2n2 h
3

3
+n3 h

2 +2n4 h+n5 = 0

(52)
Then

h = a2 y
2 + a1 y +

b1

y
+

b2

y2
+ a0 (53)

is a solution of the ODE

d2h

dz2
+ b h3 + c h2 + d h+ e = 0 (54)

(

dh

dz

)2

+
b h4

2
+

2 c h3

3
+d h2 +2 e h+f = 0 (55)

with a2 = b2 = 0 and where the remaining coeffi-
cients are related by

n1 = a1
2 b

n2 = a1 c+ 3a0 a1 b

n3 =
a1

2 c

6 a2

n4 =
b1 c+ 3a0 bb1

3

n5 =
bb1

2

2

e = −3 a0 d+
(

4 a1 b1 + 3a0
2
)

c+ 12 a0 a1 bb1 + 3a0
3 b

3
.

(56)
We observe that equation (54) is a particular case

of equation (30) for n = 1
3 where b = kλ, c = 0, d =

−1, e = k1 and for n = 1
2 where b = 0, c = kλ, d =

−1, e = k1. We obtain the following: Equation (54)

admits any solution h = α3 where α is any solution
of equation (30) with n = 1

3 , b = kλ, c = 0, d = −1
and e = k1.

Equation (54) admits any solution h = α2 where α
is any solution of equation (30) with n = 1

3 , b = 0,
c = kλ, d = −1 and e = k1.

In the following we present two examples:

Example 1 equation (54) with n = 1
3 admits the

solution

h =
2
√

6 sech 3z
(

1
k λ

)3/2

√
3

(57)

The corresponding travelling-wave solutions of (1)

-4 -2 2 4

0.5

1.0

1.5

2.0

2.5

Figure 3: Solution (57) with k2 = 1, λ = 1.

are

u =
2
√

6 sech 3(x− λt)
(

1
k λ

)3/2

√
3

(58)

-5

0

5

-2

0

2

0

1

2

Figure 4: Solution (58) with k2 = 1, λ = 1.

Example 2 equation (54) with n = 1
2 admits the

solution

h =
225 sn 4

(

z,− 5
4

)

4 k2 λ2
(59)

The corresponding travelling-wave solutions of (1)

-4 -2 2 4

10

20

30

40

50

Figure 5: Solution (59) with k2 = 1, λ = 1.

are

u =
225 sn 4

(

(x− λt),− 5
4

)

4 k2 λ2
(60)
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-2

0

2

-2

0

2

0

20

40

Figure 6: Solution (60) with k2 = 1, λ = 1.

6 Conclusions

In this work we have discussed symmetry reductions
for the generalized equation (2). For n = −2 Eq. (2)
becomes Eq.(1) which is a new integrable equation in-
troduced in [24]. By using the classical Lie method,
we obtained reductions to ODE’s and some exact solu-
tions. We apply Lie classical method to the associated
potential system (21), but we do not get any potential
symmetry, moreover we loose some classical symme-
tries of (2). We obtain travelling waves with decaying
velocity and we exhibit an smooth soliton solution.
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8 Appendix A
Table 1: Commutator table for the Lie algebra

(a) v1 v2 v3 v4 v5

v1 0 0 0 v4 −v5

v2 0 0 v2 0 0

v3 0 −v2 0 0 0

v4 −v4 0 0 0 −2v1

v5 v5 0 0 2v1 0

Table 2: Adjoint table .
Ad v1 v2 v3 v4 v5

v1 v1 v2 v3 eε
v4 e−ε

v5

v2 v1 v2 v3 − εv2 v4 v5

v3 v1 e−ε
v2 v3 v4 v5

v4 v1 + εv4 v2 v3 v4 v5 + 2εv1

v5 v1 − εv5 v2 v3 v4 − 2εv1 v5
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