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Abstract: - We have a new model for understanding the behavior of prime numbers that considers the 

increments as sums of second derivatives. We use the perfectly alternating double-threaded helix prime 

number growth structure that dominated the first 500 prime numbers after a modulo 6 operation. The multiples 

of 6 influence the two threads in a 3-D manner. Electromagnetic reversal patterns between the threads and the 

thread bonds indicate a coordinated 3-D multi-physics growth rate of the prime numbers. The harmonic 

patterns of a newly mapped 10-step model are also introduced. This new concept is presented as a framework 

to help apply approaches to understanding and solving our hardest multi-physics and Millennium problems. 

The last sections of this paper suggest how to apply, adapt, or correlate this framework to with WSEAS 

research. An exciting electromagnetic multidirectional vector model is the result of applying this framework 

by forcing a 90-degree molecular bond concept. 
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1   Introduction 
What if we have been looking at the Prime Numbers 

incorrectly? We are convinced that the prime 

numbers are sums of squares because common sense 

dictates that the prime numbers must describe some 

geometric or physical property, especially of an 

elliptical incompressible nature. But…what if the 

Prime Number increments are sums of second 

derivatives from a 3D flow over a distinct physical 

model over time? The proposed concept is a flow 

through the center of a cylindrical model that senses 

the acceleration and electromagnetic fields.  If that 

were the case, we would have a flexible model that 

could take us on to understanding the strengths and 

the shortfalls of the Riemann Hypothesis, if not also 

on to understanding three other Millennium 

problems: Yang-Mills, Navier-Stokes, and Birch and 

Swinnerton-Dyer. 

     This paper presents that flexible model and key 

structure. The structure is based on the continually 

and perfectly alternating non-zero sequence of “2-4-

2-4-2-4…” resulting from a modulo 6 operation on 

the consecutive prime number increments. The 

sequence stands true for all the increments of prime 

numbers 5 and greater from the sample set of the 

first 500 prime numbers.  

     The almost viral influence of the multiples of 6 

on the double-threaded structure (2-thread and 4-

thread) was previously shown to have a general 

cause and effect rate of five elliptical coil-like steps 

per 360-degrees [1]. Recent analysis of hundreds of 

thousands of possible palindrome sequences 

revealed that the prime number growth structure is 

not driven by single cause and effect actions but by 

sequences reversing, overlapping, connecting, and 

rotating at 90-degress [2]. 

     We will start with some of those previously 

presented sequences just to briefly introduce the 

reader to the overwhelming amount of synchronized 

patterns. We will then present the only two models 

with significant harmonic cylinder features. The 

patterns in the 10-step single cylinder and the 5-step 

two cylinder models lead us to consider the 

flexibility of the key double threaded structure. 

     Lastly, we briefly associate the double-threaded 

model to recent research done in the areas of number 

theory, electron mass, and cryptanalysis. A 

significant concept of electromagnetic perpendicular 

base relationships is applied using a 90-degree 

advance with a 12-step model. The result from this 

forced sine and cosine relationship is converging 

vectors that give convincing evidence of an Euler 

equation driving the behavior of the prime numbers. 

     But before we start reviewing patterns, we need 

to introduce our concept for understanding the 

patterns – the second derivatives of x
2
, 2y

2
, and z

3
. 

We need to consider the elements as sums of the 

resulting values from their second derivative values 

(2, 4, and 6z). The function “z” controls the 

amplitude of the multiples of 6, with the term 6z 

being applied over the 2-4 structure in a 3-D 

manner. Now we are ready to see the second 

derivative influence of the function z
3
 on the 

perfectly repeating 2-4 double threaded structure 
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starting with the prime number gap between 5 and 7, 

and continuing in coil continuous coil-like manner. 

 

 

2   The Double Threaded Patterns 
Table 1 shows the first 22 of the 164 coils that 

represent the double-thread pattern in the sample set. 

The patterns are alphanumerically labeled so the 

reader can quickly see the overwhelming amount of 

tail-to-tail string reversals. The linear sequence is 

from left to right with the “4 to 2” bond looping 

back to the next row. The linear patterns clearly 

rotate and reverse in a general 5-coil cyclic 

frequency. 

 

Table 1 Influence patterns of 6z on first 22 coils. 
#  2 2 to 4 Bond 4 4 to 2 Bond 

1 A1 2      4      

2 A2 2      4      

3 A3 2      4 G1 6    

4 A4 2   6   4     D1 

5 A5 2      4  6 6 C4 D2 

6  2   6  A5 4     D3 

7  2   6  A4 4   6 C2 D4 

8  8 G1  C4  A3 4     D5 

9  2     A2 4      

10  2     A1 4     D5 

11 B1 14      4 C1  6  D4 

12 B2 2      10 C2 T1   D3 

13 B3 2  6 6   4 C3 6 6  D2 

14 B4 2  F1 F2   10 C4    D1 

15 B5 2      4 C5     

16  2  12 12   4      

17 B5 2  B1 B2   4 C5   6 D2 

18 B4 2      10 C4 6 6 6 G1 

19 B3 2   6   4 C3 F1 F2   

20 B2 2 E1  C4   10 C2     

21 B1 14 E2     4 C1     

22  2 E3     4      

 

 

3   Two Models with Harmonic Results 
Only the cross-torque 10-step single cylinder model 

and the 5-step double cylinder model provide 

convincing harmonic patterns at the cylinder level. 

Fig. 1 contains the structural concept for these two 

cylinder models. The corresponding 2-4 thread items 

on the 10-step model have opposite torque at the 

same level of the single cylinder (Fig. 1a). The 

corresponding thread items on the 5-step model act 

as if they go between the internal and external ends 

of a stator winding (Fig. 1b).  

     After examining several thousand patterns from 

multiple cycle-step models, we can confidently state 

that the 3, 4, 6, 7, 8, and 9 cycle step models yield 

trivial patterns in comparison to these two models. 

This research has led us to consider a general flow 

model of behavior for the prime numbers (Fig. 1c). 

We will also see later (in the table containing the 

total data set) that over 95% of the bonds have their 

own 90-degree mapping to adjacent thread sequence 

values. Later, a whole different vector behavior is 

seen when we force the double-threaded framework 

into an electromagnetic sine-cosine model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Flow through the 5-step and 10-step models. 

 

 

3.1 Ten-Step Single Cylinder Model 
Our first glance at the resulting patterns for the ten-

step single cylinder cross-torque model in Table 2 

may make us walk away in frustration from the blob 

of data. A more detailed and methodical inspection 

yields clear results in the column format for each 

vertical rod of the front and back 180 degree 

sections. 

     The black-shaded cells mark the center of a 

harmonic, or palindrome, sequence. The light-grey 

shaded cells reveal the rest of the pattern centered on 

the black cells. The dark-grey shaded cells are the 

overlapping light-grey sections of harmonic 

sequences. 

     These harmonic patterns are occurring at the 

same time the sequential reversal patterns just 

presented in our previous section; coil numbers 1 to 

21 are blackened as a visual reminder.  

     The model alternates between 2-thread elements 

and 4-thread elements while going across the row of 

coils. Coils 1 to 5 in the first row show the 

alternating 2-4 sequence between front and back 

180-degree sections. The second 180-degrees of the 

2-thread are the second 5 elements in the second 

row, on the back 180-degree side of the model. 

     An overlapping sums concept helps us 

understand the significance of strings such as the 
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first rod in the front 180-degree section. Proceeding 

down in the column we have 0-2-0-0-0-0-0-2-0 

(from 16 to 56) overlapping and summing with 0-1-

1-0-0-0-0-0-1-1-0 (from 36 to 86). And, we also 

have 0-1-2-2-1-0 (from 86 to 111) summing with 0-

1-0-0-0-0-0-0-1-0 (from 91 to 136). This is one 

possible explanation for large gaps in the increments 

of the prime numbers as single sum points of 

overlapping sequences of harmonic motion [3]. 

     This concept is also seen in the 3
rd
 front 180-

degree column from 23 down to 66. We could have 

a series of 2-1-1-0-1-1-2 overlapping at the 1 before 

the final 2 with a 0-1-1-1-0 pattern that creates the 

sum multiple of 3 in coil 51. We could go on at 

length, especially with only single multiples of 6 

involved. 

 

Table 2 Harmonic 6z function rods in 10-step model. 

Coil Front 180 Back 180 

1 2 0 0 0 0 0 4 0 0 0 0 0 

6 4 0 0 0 0 0 2 0 0 1 0 0 

11 2 2 0 0 0 0 4 0 1 0 1 0 

16 4 0 0 1 0 1 2 0 0 0 0 0 

21 2 2 0 2 0 1 4 0 0 1 0 0 

26 4 0 1 1 0 0 2 1 1 0 0 1 

31 2 0 1 1 0 0 4 0 0 0 1 1 

36 4 0 1 0 0 1 2 0 0 0 0 1 

41 2 1 1 1 1 2 4 1 0 0 0 1 

46 4 1 0 1 0 0 2 0 0 0 2 0 

51 2 2 0 3 1 1 4 0 0 0 1 0 

56 4 0 0 1 1 1 2 2 1 0 0 0 

61 2 0 0 1 0 1 4 0 0 3 1 1 

66 4 0 1 0 0 0 2 1 0 0 0 0 

71 2 0 1 2 0 1 4 5 1 0 0 0 

76 4 1 0 0 0 0 2 0 0 0 1 1 

81 2 1 2 0 0 3 4 0 0 0 1 0 

86 4 0 1 1 0 1 2 0 0 0 1 0 

91 2 1 2 0 0 0 4 2 0 0 1 2 

96 4 3 0 0 1 1 2 0 1 0 1 0 

101 2 2 0 0 0 0 4 1 0 1 2 0 

106 4 1 0 2 0 2 2 0 1 1 0 1 

111 2 0 1 0 0 2 4 0 0 3 0 0 

116 4 0 0 0 1 0 2 0 2 1 4 1 

121 2 0 0 1 2 0 4 3 2 0 1 0 

126 4 0 0 0 1 1 2 1 0 1 0 0 

131 2 1 2 0 0 2 4 0 1 0 2 0 

136 4 0 1 1 0 4 2 1 1 1 2 0 

141 2 0 1 2 1 3 4 1 0 0 0 1 

146 4 2 0 0 0 3 2 0 4 0 1 1 

151 2 0 0 0 0 0 4 0 4 0 0 1 

156 4 2 2 2 0 0 2 0 0 3 1 0 

161 2 0 1 0 0 0 4 3 1 0 1 -- 

 

     Certainly determining the exact sequences is far 

beyond the single processing power of this author, 

but it does suggest a solid approach for further 

decoding the exact differential equations that drive 

the prime number growth. 

 

 

3.2 Five-Step Double Cylinder Model 
We express the impact of the 6z function in terms of 

z for the next two tables because it will help us see 

more clearly the significant high points in the 

sequences. Table 3 “displays dark shaded vertical 

sections with white text, which are clearly reversal 

patterns. The medium grey shaded cells with black 

text are also reversal patterns, that when they are 

adjacent to a dark grey vertical pattern are also 

partially overlapping with some darker shaded cells” 

[4]. 

 

Table 3 Patterns for z in the 5-step cylinder rods. 
Cylinder Shells 

Coil 2 – Thread Rods 

 

4 – Thread Rods 

1 0 0 0 0 0 0 0 0 0 0 

6 0 0 6 0 0 0 0 0 0 0 

11 12 0 0 0 0 0 6 0 6 0 

16 0 0 0 0 0 0 0 6 0 6 

21 12 0 12 0 6 0 0 6 0 0 

26 6 6 0 0 6 0 6 6 0 0 

31 0 6 6 0 0 0 0 0 6 6 

36 0 0 0 0 6 0 6 0 0 6 

41 6 6 6 6 12 6 0 0 0 6 

46 0 0 0 12 0 6 0 6 0 0 

51 12 0 18 6 6 0 0 0 6 0 

56 12 6 0 0 0 0 0 6 6 6 

61 0 0 6 0 6 0 0 18 6 6 

66 6 0 0 0 0 0 6 0 0 0 

71 0 6 12 0 6 30 6 0 0 0 

76 0 0 0 6 6 6 0 0 0 0 

81 6 12 0 0 18 0 0 0 6 0 

86 0 0 0 6 0 0 6 6 0 6 

91 6 12 0 0 0 12 0 0 6 12 

96 0 6 0 6 0 18 0 0 6 6 

101 12 0 0 0 0 6 0 6 12 0 

106 0 6 6 0 6 6 0 12 0 12 

111 0 6 0 0 12 0 0 18 0 0 

116 0 12 6 24 6 0 0 0 6 0 

121 0 0 6 12 0 18 12 0 6 0 

126 6 0 6 0 0 0 0 0 6 6 

131 6 12 0 0 12 0 6 0 12 0 

136 6 6 6 12 0 0 6 6 0 24 

141 0 6 12 6 18 6 0 0 0 6 

146 0 24 0 6 6 12 0 0 0 18 

151 0 0 0 0 0 0 24 0 0 6 

156 0 0 18 6 0 12 12 12 0 0 

161 0 6 0 0 0 18 6 0 6 -- 

 

     In this model we allow the perfectly alternating 2 

and 4 thread elements to form two separate 

cylinders. The concept here is that there may be two 

radii, r1 and r2, one for each of the ends of the 

elliptical coils. This is a significant concept to 
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consider if we want to use a polar coordinate form 

of prime numbers to solve problems of acceleration 

in fluid or electrical flows. This model gives us the 

overwhelming vertical reversals, inter-thread 

common patterns, and overlapping palindromes. 

     Insertions (or overlapping sums) placed in 

otherwise perfectly harmonic sequences help explain 

the tight bonding strength and incompressibility of 

the prime numbers. One very solid example is the 

long string at coils 56 to 73, with the string of “12-6-

0-0-0-0-0-6-0-6-6-0-0-0-0-0-6-12.” The extra 6 in 

the middle is almost an off-harmonic insertion. It 

gives us the impression of an off-beat stroke that 

prevents a clean harmonic breakdown of the key 

sequence. 

 

 

3.3 90-Degree Bond-Thread Behavior 
Table 4, which spans the next two pages, contains 

all the “z” increments for the first 500 prime 

numbers, with items before 5 removed. 

     For over 95% of the nonzero bond elements, 

there just happens to be corresponding thread 

elements transposed at 90-degrees. Our clearest 

example is at the 4-to-2 bond on coil 94, where the 

unique sequence of “12-6-6-18” is also on the 

immediately adjacent 2-thread (coils 85 to 94) with 

zeros inserted. Fortunately, we can map this pattern 

to the threads if we take the liberty to insert zeros 

into the bonds at no charge, since the insertion of a 

zero on a bond merely represents a zero increment in 

the prime numbers. We cannot do this with the six 

values on the threads because a zero value on a 

thread really is an increment of either 2 or 4. 

 

Table 4 Influence of 6z on first 500 prime gaps. 
Coil 2 2 to 4 Bond Mapping 4 4 to 2 Bond Mapping 

1 0 0 0 0 0 0  0 0 0 0 0 0  

2 0 0 0 0 0 0  0 0 0 0 0 0  

3 0 0 0 0 0 0  0 0 0 0 0 6 2:4-8 

4 0 0 0 0 0 6 2:4-8 0 0 0 0 0 0  

5 0 0 0 0 0 0  0 0 0 6 0 6 4:10-14 

6 0 0 0 6 0 0 2:6-10 0 0 0 0 0 0  

7 0 6 0 0 0 0 4:8-12 0 0 0 0 0 6 4:8-12 

8 6 0 0 0 0 0  0 0 0 0 0 0  

9 0 0 0 0 0 0  0 0 0 0 0 0  

10 0 0 0 0 0 0  0 0 0 0 0 0  

11 12 0 0 0 0 0  0 0 0 6 0 0 2:6-10 

12 0 0 0 0 0 0  6 0 0 0 0 0  

13 0 6 0 0 0 6 4:14-18 0 6 0 0 0 6 4:14-18 

14 0 0 0 0 0 0  6 0 0 0 0 0  

15 0 0 0 0 0 0  0 0 0 0 0 0  

16 0 0 12 0 12 0 2:10-22 0 0 0 0 0 0  

17 0 0 0 0 0 0  0 0 0 0 6 0 4:13-17 

18 0 0 0 0 0 0 2:14-18 6 6 0 6 0 6 4:18-23 

19 0 0 0 0 6 0 4:15-19 0 0 0 0 0 0  

20 0 0 0 0 0 0  6 0 0 0 0 0  

21 12 0 0 0 0 0  0 0 0 0 0 0  

22 0 0 0 0 0 0  0 0 0 0 0 0  

23 12 6 0 0 0 0 4:23-26 6 0 0 0 0 0  

Coil 2 2 to 4 Bond Mapping 4 4 to 2 Bond Mapping 

24 0 0 0 0 0 0  0 0 0 6 0 0 4:21-24 

25 6 0 0 6 6 0 4:25-29 0 0 0 6 0 0 4:21-25 

26 6 0 0 0 0 0  0 0 0 0 0 0  

27 6 0 0 0 0 0  6 0 0 0 0 0  

28 0 0 0 0 0 0  6 0 0 0 0 0  

29 0 0 0 0 0 6 4:30-34 0 0 0 0 0 6 4:30-34 

30 6 0 0 0 0 0  0 0 0 0 0 0  

31 0 0 0 0 0 0  0 0 12 0 0 0 
bond 

reversal 

32 6 0 0 0 0 0  0 0 0 0 0 0  

33 6 0 0 0 0 0  0 6 12 0 0 0 2:33-37 

34 0 0 0 18 6 0 T-sums 6 0 6 6 0 0 2:31-34 

35 0 0 0 0 0 6 2:36-40 6 6 6 0 0 0 2:36-40 

36 0 0 0 0 6 6 2:37-41 0 0 0 0 0 0  

37 0 0 0 0 0 12  6 0 0 0 0 0  

38 0 0 0 0 0 0  0 0 6 0 6 0 4:35-38 

39 0 0 0 0 0 12  0 0 0 6 0 0 4:36-39 

40 6 0 0 0 0 0  6 0 0 0 0 0  

41 6 0 0 0 0 0  6 0 0 0 0 0  

42 6 0 0 6 6 0 
4:38-42, 43-
47; 2:41-42, 

43-44 

0 0 0 0 0 0  

43 6 0 0 6 0 0 4:43-45 0 0 0 0 0 0  

44 6 0 0 0 0 0  0 0 0 0 0 0  

45 12 0 0 0 0 0  6 12 0 0 0 0 2:45-48 

46 0 0 0 0 0 0  6 0 0 0 0 0  

47 0 0 0 0 0 0  0 0 0 0 0 0  

48 0 0 0 0 0 0  6 0 0 0 0 0  

49 12 0 0 0 0 0 
bond flip 
2:37-39 

0 0 0 0 0 0  

50 0 0 0 0 0 0  0 0 0 0 0 0  

51 12 0 0 0 0 0  0 0 0 0 0 0  

52 0 0 0 0 0 0  0 0 0 0 0 0  

53 18 0 0 0 0 0  0 0 0 0 0 0  

54 6 0 0 0 0 0  6 0 0 0 0 0  

55 6 0 0 0 0 0  0 0 6 6 0 0 
4:48-54, 55-

59 

56 12 0 0 0 0 0  0 0 0 6 6 0 4:56-59 

57 6 0 6 12 0 0 2:56-57 0 0 0 0 0 6 4:58-63 

58 0 0 0 0 0 0  6 0 0 0 0 0  

59 0 0 0 0 0 6 2:59-64 6 0 0 0 0 0  

60 0 0 0 0 0 0  6 0 0 0 0 0  

61 0 6 18 0 0 0 4:61-64 0 0 0 0 0 0  

62 0 0 0 0 0 0  0 6 6 0 0 0 4:59-62 

63 6 0 6 6 0 0 
2:64-68, 
4:59-62 

18 0 0 0 0 0 
10 step 
repeat 

64 0 0 0 0 0 0  6 0 0 0 0 0  

65 6 0 0 0 0 0  6 6 0 6 0 0 4:65-69 

66 6 0 0 12 0 0 T-sums 0 0 6 6 0 0 2:64-67 

67 0 0 6 12 0 0 2:67-73 6 0 0 18 0 0 5-step rev 

68 0 0 0 0 0 0  0 0 0 0 0 6 2:68-73 

69 0 0 0 0 6 0 2:66-69 0 0 0 0 0 0  

70 0 0 0 0 0 0  0 0 0 0 0 12 
flip on 
2:72-76 

71 0 6 0 0 0 0 2:66-71 30 6 0 0 0 6 4:72-76 

72 6 0 0 18 0 0 5-step rev 6 0 0 0 0 0  

73 12 0 0 0 0 0  0 0 0 0 0 0  

74 0 0 0 0 0 0  0 0 0 6 0 0 4:74-78 

75 6 0 0 0 0 0  0 0 0 0 0 0  

76 0 6 0 12 0 0 2:73-76 6 0 0 0 0 0  

77 0 0 0 0 0 0  0 0 0 0 0 0  

78 0 0 0 0 0 0  0 0 6 12 12 0 T-sums 

79 6 12 0 6 0 0 2:73-78 0 0 0 0 6 0 4:79-75 

80 6 0 0 0 0 0  0 0 0 0 0 0  

81 6 0 0 0 0 0  0 0 0 0 0 0  

82 12 0 0 0 0 0  0 0 0 6 0 0 4:82-86 

83 0 0 0 0 0 0  0 0 6 0 0 0 4:83-86 

84 0 0 0 0 0 6 4:80-84 6 0 0 0 0 0  

85 18 0 0 0 6 0 2:86-90 0 0 0 0 0 0  

86 0 0 0 24 0 0 
"T" sum, 
2:83-89 

0 0 0 0 0 0  
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Coil 2 2 to 4 Bond Mapping 4 4 to 2 Bond Mapping 

87 0 0 0 0 0 0  6 0 12 0 0 0 step 5, 2:92 

88 0 0 0 0 0 0  6 0 0 0 0 0  

89 6 6 6 6 18 6 
"U"4:84-89 
and 2:84-89 

0 0 0 0 0 0  

90 0 12 0 0 0 0 4:91-93 6 12 0 0 0 0 4:91-93 

91 6 0 0 0 0 0  12 0 0 0 0 0  

92 12 0 0 0 0 6 2:93-97 0 0 0 0 0 0  

93 0 0 0 0 0 0  0 0 0 0 0 0  

94 0 0 0 0 0 0  6 12 6 6 18 0 2:85-94 

95 0 0 0 0 0 0  12 0 0 0 0 0  

96 0 0 0 0 0 0  18 0 0 0 0 6 2:93-97 

97 6 0 0 0 0 6 2:93-97 0 0 0 0 0 0  

98 0 0 0 0 0 0  0 0 0 0 0 0  

99 6 0 0 0 6 0 2:94-98 6 0 0 0 0 0  

100 0 0 0 0 0 0  6 0 0 0 0 0  

101 12 0 0 0 0 0  6 0 6 12 0 0 
4:102-105, 
2:98-103 

102 0 0 0 0 0 0  0 0 0 0 0 0  

103 0 0 0 0 0 0  6 0 0 12 0 0 2:100-103 

104 0 0 0 0 0 0  12 0 0 0 0 0  

105 0 0 0 6 0 0 2:105-107 0 0 0 0 0 0  

106 0 0 0 0 0 0  6 0 0 0 0 0  

107 6 0 18 24 0 0 
sum, 4:107-

117 
0 0 0 0 0 6 2:103-107 

108 6 0 0 0 0 0  12 0 0 0 0 0  

109 0 0 0 0 0 0  0 0 0 0 0 0  

110 6 0 0 0 0 0  12 0 0 0 0 0  

111 0 0 0 0 0 0  0 0 0 0 0 0  

112 6 0 6 0 6 0 2:109-112 0 0 0 12 0 0 4:112-109 

113 0 0 0 0 0 0  18 0 0 0 0 6 4:114-119 

114 0 0 0 6 0 0 2:114-111 0 0 0 0 0 6 4:115-119 

115 12 0 0 0 0 6 4:115-119 0 0 0 0 0 0  

116 0 0 0 0 6 0 4:116-120 0 0 6 12 6 6 
4:116-120, 
2:110-116 

117 12 0 0 0 0 0  0 6 12 0 0 0 2:118-117 

118 6 0 0 6 0 0 4:118-120 0 0 0 0 0 0  

119 24 18 0 0 0 0 4:113-118 6 0 0 0 0 0  

120 6 0 0 0 0 0  0 0 6 0 0 0 4:120-116 

121 0 0 0 0 6 0 4:116-120 18 12 0 0 0 0 4:122-123 

122 0 0 0 0 0 0  12 0 0 0 0 0  

123 6 0 0 0 0 0  0 0 0 0 0 12 2:124-125 

124 12 0 0 0 0 0  6 0 0 0 0 0  

125 0 0 0 0 0 0  0 0 0 0 0 0  

126 6 6 0 6 0 0 2:126-130 0 0 0 0 0 0  

127 0 0 0 0 0 0  0 0 6 0 0 0 4:123-127 

128 6 0 0 0 0 0  0 0 0 0 0 0  

129 0 0 0 6 0 0 2:129-131 6 0 0 0 0 0  

130 0 0 0 0 0 0  6 0 0 0 0 0  

131 6 0 0 0 0 0  0 0 0 0 0 0  

132 12 0 0 0 0 0  6 0 12 0 0 0 
4:133-136, 
2:133-132 
or 134-135 

133 0 0 6 0 0 0 4:131-133 0 0 0 0 0 0  

134 0 0 0 0 0 0  12 0 0 0 0 0  

135 12 0 0 0 0 0  0 0 0 6 0 0 4:135-137 

136 6 0 6 0 0 0 
4:136-137 
or 2:136 

0 0 0 18 0 0 
"T" sum, 

4:133-137 

137 6 0 0 0 0 0  6 6 6 0 0 0 
4:137-139, 
or 2:137-

138 

138 6 0 0 0 0 0  6 12 0 0 0 0 2:139-141 

139 12 0 0 0 0 0  0 0 0 6 6 0 4:135-139 

140 0 0 0 0 0 0  24 0 0 0 0 0 
Flip on 

2:147-151 

141 0 0 0 0 0 0  6 0 0 0 0 0  

142 6 0 0 0 0 0  0 0 0 0 0 0  

143 12 0 0 0 0 0  0 0 0 0 0 0  

144 6 12 0 0 6 12 2:139-143 0 6 0 0 0 0 4:141-144 

145 18 0 0 0 0 0 
5-step 
Repeat 

6 0 0 0 0 0  

146 0 0 0 0 0 0  12 0 0 0 0 0  

Coil 2 2 to 4 Bond Mapping 4 4 to 2 Bond Mapping 

147 24 0 0 0 0 0 
Flip from 
4:136-140 

0 0 0 0 0 0  

148 0 0 0 12 6 0 4:148-144 0 0 0 12 6 0 4:148-144 

149 6 0 0 0 0 0  0 0 0 0 0 0  

150 6 0 0 0 0 0  18 0 0 0 0 0 
5-step 
Repeat 

151 0 0 0 0 0 0  0 0 0 0 0 0  

152 0 0 0 12 0 0 
2-24 from 
146-147 

24 0 0 0 0 0  

153 0 6 6 0 6 0 
2:149-153 
and 4:153-

155 
0 6 0 0 0 0 2:150-154 

154 0 0 0 12 0 0 
Rotation 
from 10 

steps 2:144 
0 0 0 12 0 0 

Rotation 
from 10 

steps 2:144 

155 0 0 0 0 0 0  6 0 0 0 0 0  

156 0 0 0 0 0 0 
3-step 
repeat 

12 0 0 0 0 0  

157 0 0 0 0 0 0  12 6 0 0 0 0 2:150-157 

158 18 0 0 0 0 0  12 0 0 0 0 0  

159 6 0 0 0 0 0  0 0 0 0 0 0 
3-step 
repeat 

160 0 0 0 0 0 0  0 0 0 0 0 0  

161 0 0 0 0 0 0  18 0 0 0 0 0  

162 6 12 0 0 0 6 
Future set? 

2:162-? 
6 0 0 0 0 0  

163 0 0 0 0 0 0  0 0 0 6 0 0 2:160-164 

164 0 0 0 6 0 0 2:160-164 6 0 0 0 0 0  

165 0 0 0 12 0 0 
Future 
Set?? 

-- 0 0 0 0 0  

 

 

4   Relation to Millennium Problems 
What if we are dealing with the polar coordinate 

sums from second derivatives of the polynomials 

that have been considered throughout the years of 

research done by the most brilliant minds? It is that 

thought that makes us contemplate the connection of 

this approach to the Millennium Problems. 

     How much common ground can we gain in the 

Millennium Problems if we focus on flow dynamics, 

acceleration, radiation, or wave forms driven by a 

second derivative model of the prime number 

increments? The general second partial derivate 

equations of spring harmonics and gravity may give 

us a clue on ways to apply the model [5]. The 5-step 

model gives us a physical model of wrapping a 

flattened spring or coil around a core. The 10-step 

model gives us a physical model that places a core 

pole into a flattened spring and uses the pole to twist 

the spring at a rate of 10 coil steps per 360 degrees. 

     We may be hindering our progress with the 

Riemann Hypothesis by insisting on a single 

threaded approach. However, if we use our 2 and 4 

thread model, we could tie our concept to the 

Riemann Hypothesis with our core 2-4 ratio of ½ 

placed on the complex plane. Allowing only a 

distinct line fulfillment of the zeta may be similar to 

the averaging the behavior across the coils. This 

would make our 2-4 structure the similar to the ½ 

portion of the key equation “s = ½ + it” [6]. From 
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our perspective “½ = s – it”, where our 6z function 

equtes to the “it” and without the 6z influence we 

only have the “½” resulting from the constant 

double thread. Allowing the prime number solution 

to be driven from the double threaded model could 

be the supplemental definition that we need. 

     As we consider the possible influence of this 

prime number model in its 3-D over time properties, 

we ponder another question: What if the “z” 

function in this model opens a whole new 

dimension? That dimension might correlate to the 

“four-dimensional space-time” properties of the 

Yang-Mills problem [7]. It might just be worth 

investigating this concept as we think of prime 

numbers as incompressible acceleration fields 

associated with Bohr’s atomic theories. 

     How could we apply this model to the fluid 

expansion dynamics in the Navier-Stokes problem? 

The answer may be allowing the coil threads to be 

rotated or twisted at a rate determined by an exterior 

force or fluid viscosity. The main concept that might 

influence further research is that the velocity vector 

in the key equation “makes sense only if u(x, t) is 

twice differentiable in x” [8]. 

     Finally, what is the potential impact of this model 

on the Birch and Swinnerton-Dyer conjecture? The 

key components in this conjecture are that “C is an 

elliptic curve over Q” and that the search is for “an 

affine model for the curve in Weierstrass form C: y
2
 

= x
3
 + ax + b” [9]. We can immediately see that in 

another form, y
2
 – (x

3
 + ax + b) = 0, this can directly 

correlate to what we have seen with our model. This 

involves substituting y
2
 with an elliptical object (our 

x
2 
and 2y

2
 combination) and substituting “x” with 

our “z”. The “az + b” form would be the flexible 

part of our model that disappears in the second 

derivative but may also have some overall influence 

in the prime number structure. 

     How confident can we be in this thread structure? 

We can be as certain as if we had flipped a coin 327 

times and it landed on the opposite side every time 

(2, 4, 2, 4…). The probability of that happening is 

(½)
327
. This gives us over 95 “nines” of reliability. Is 

there a specific system we are on the edge of 

decoding? Yes. We must use these threads as a core 

structure. 

     In an interview with the renowned expert on 

prime numbers, Dr. Terence Tao, he revealed that a 

“larger unknown question is whether hidden patterns 

exist in the sequence of prime numbers or whether 

they appear randomly” [10]. We can confidently 

assert that key patterns do exist and that these key 

patterns will lead us to the next level of 

understanding the harmonic behavior of the prime 

numbers. 

5 How to Apply the Framework 
Now that we have reviewed the general 

characteristics and framework of the prime number 

growth behavior and suggested some ways it can be 

used for Millennium Problems, we really must 

consider how it can contribute to other complex and 

everyday problems. We need to answer the 

questions: “Why do I care?” and “How am I 

supposed to use this framework?”  

     Our hope is that we can apply the known 

incompressible structure for general problem solving 

and for creating strong material and biological 

structures. We will briefly consider two general 

approaches and also some implications for regular 

languages to facilitate that process. 

 

 

5.1 Two General Approaches 
One approach is to twist, or manipulate, the double 

threaded structure at a rate that corresponds to the 

desired system’s natural behavior. We will 

demonstrate this with an electromagnetic molecular 

model later.   

     Another approach is substitution. We all enjoy 

solving and applying solutions, so our natural 

inclination is to dig into this “z” function and see 

what is at the core. But, that traditional approach 

may lead us back to the frustration of dealing with 

intense integrals and roots that have baffled the most 

brilliant minds. 

     In our substitution approach we would select a 

function or group of functions, and substitute it (or 

them) in our structure at every location of the 

multiples of z.  We could use the known 

incompressible structure as the standard. Now, that 

could be powerful in any discipline! A variation of 

this would be to cube a function, take the second 

derivative, and substitute it into the multiples of 6z. 

     The tricky part with either manipulation or 

substitution is still determining the exact distribution 

of zeroes in the thread-bonds. We have locked-in a 

structure with the cylinder shells but we probably 

need future work with a comparison algorithm for 

matching 90-degree bonds. This is where the 

advances made in modeling tools might best be used 

to proposed curl vectors or gradients to the known 

6z patterns bound to the threads. 

 

 

5.1 Regular Language Implications 
The general method proposed above may be great 

for dynamic and differential systems, but what about 

the general logic structure of the prime numbers? 

The prime numbers have been used in many proofs 
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for mapping a language’s sequence to the existence 

of a recursively enumerable model. 

     One of the open questions regarding prime 

numbers is “Does a syntax for the prime numbers 

exist?” We can confidently say yes. Our “2-4-2-4-2-

4…” sequence points us to the core syntax of a 

regular language. In the threads, the zero multiples 

of 6 (where z = 0 in our 6z function) act as bound 

items on the 2 and 4 threads, as if contained in a 

primitive recursive function [11]. That is, we know 

for certain that there are a definite number of zero 

elements on those threads. 

     The case is not the same for the zero elements on 

the bonds between the threads, where the 2-4 and 4-

2 bond sequences tell a different story. These zero 

elements may be considered free or 

nondeterministic…we don’t know how many really 

should exist between bonds, or if the number varies 

with growth. Their free zero elements indicate an 

openness of a pumping lemma, making those bond 

portions not regular languages [12]. When we think 

of these zero elements in the bonds it might be best 

to consider them as compressible, as in a sparse 

matrix.  

 

 

6 Parallels in WSEAS Research 
Now that we introduced some general approaches to 

conceptually applying the structure to physical-

differential functions and the logical syntax-

language problems, we now review some practical 

research that aligns well with these approaches. In 

this section of the paper we will consider how to 

apply this mindset and concept to previous research 

done by other mathematicians, scientist and 

engineers in World Scientific and Engineering 

Academy and Society (WSEAS). We will attempt to 

consider how this new concept for prime numbers 

might supplement, some of the detailed research 

done in the areas of number theory, electron mass, 

vectors from electromagnetic molecular bonds, and 

the potential impact on data integrity in 

cryptanalysis. 

 

 

6.1 Concept Change in Number Theory 
We have two new concepts to consider from the 

double thread elliptical behavior combined with the 

harmonic influence of 6z. One concept is that we 

have an independent function (z
3
) being applied to 

specifically controlled positions on a constantly 

accelerating structure. Why should we consider the 

z
3
, or 6z, function(s) as independent? The answer is 

that we have a problem with going straight to the 

typical harmonic partial derivatives and dealing with 

the product rule. The problem is that the core x
2
 and 

2y
2
 function after a partial form is applied yields the 

even scalars of 2 and 4. But, the sums of the 6z 

function also have odd scalar patterns. The pattern 

of 0-1-1-3-1-1-0 is a good example (in the third 

vertical rod of the 10-step model). Even determinant 

approaches would suffer likewise. This is our 

strongest indication that the 6z function, hence the z
3
 

function, is independent of the x
2
 and 2y

2
 function, 

except with regard to positional location.   

     Recent research done with logical approaches to 

biological computational and combinatorial 

complexity also support initially and temporarily 

viewing system components independently. The 

authors proposed a paradigm shift to first find a 

deterministic solution and then search for a 

stochastic solution. By using this approach, we can 

“reduce the search space of the problem by dividing 

initial data into two groups: a group of initial data 

which are relevant for the optimal decision and a 

group of data which are irrelevant for the optimal 

decision” [13].  

     That is exactly the type of approach we take by 

isolating the amazingly consistent 2-4 thread into an 

initial group. As a result, this step helps determine 

the possible solutions for the more detailed and 

complicated behavior of 6z. In our case, the 2-4 

threads provide “knowledge about the distribution 

density for elements of the optimal decision could 

support us in creating algorithms for finding an 

optimal (suboptimal) combinatorial problem 

solution” [14]. Maintaining a level of independent 

structure in further analysis of the prime numbers 

may prove to be essential. 

     The other concept is really a philosophical 

question: What if we really have an integer physical 

model that defines the generic behavior of the 

complex plane? 

 

 

6.2 Electron Mass  
Could the obvious location-based dependency 

between our two groups of functions (“x
2
, y

2
”, and 

“z
3
”) possibly be comparable to mass and changes in 

its orbital rate as it accelerates over the speed of 

light squared? What would Einstein think about 

this? Maybe one of our closest connections can be 

considered when we reflect on the work done 

regarding the harmonic frequency in the noise of 

electron mass. 

     Planat, a WSEAS author, expanded on the 

“recently discovered a possible relationship between 

1/f frequency noise in oscillator measurements and 

prime number theory”. The result of his work was in 
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“relating exact statistical mechanics of electrons of 

mass m in a box of size L” [15]. If we consider the 

statistical and frequency-based oscillations of a 

physical system in connection with their behavior on 

the complex plane, we might have a significant 

connection to our prime number integer structure. If 

we can envision these frequencies on the complex 

plane, can we relate them to our integer prime 

number structure? Equally, what if we defined 

locations on the complex plane by their relationship 

to our physical prime number structure? 

     This would be an integer approach to harmonics 

with the same concept that “the degeneracy of 

energy levels needs the extended frame of algebraic 

number theory (and the field of quadratic forms)” 

[15]. This may not get as much endorsement since 

an integer model based on second derivatives is 

against the traditional approach of using an “integral 

representation of gamma function” which 

“generalizes the factorial function into the complex 

plane s” [16]. The hope is that further research in 

this area will simplify an approach to modeling 

problems in the complex plane without some of the 

awkward integrals that would normally result. The 

concept of these patterns being energy based will 

also become significant in out next section regarding 

molecular bonds. 

 
 

6.3 Vectors from E-M Molecular Bonds  
We continue with the concept of an energy-driven 

physical model for the growth of prime numbers 

when we think of intrinsic quality of DNA. “Various 

base sequences in DNA have different energy of 

interaction between base pairs; this difference 

modulates the fine structure of the helix” [17]. As a 

result, we can expect to see a form of modulation, 

whether as a result of mass and acceleration or 

another form of harmonic movement when we 

manipulate the double-threaded prime number 

structure to corresponding molecular 

electromagnetic properties of the DNA bases. 

 

 
Fig. 2. E-M configuration of 2-4 thread model 

 

     When we manipulate the double-threaded 

structure, we should also be aware how the possible 

application of the sums of second derivatives may 

be closely related to the concept in cellular automata 

(CA), where “basic results on CA deal with additive 

global dynamics owing to their algebraic structure” 

[18]. We keep both of these concepts in mind when 

we apply a (90-degree) structure since “[m]inima 

with nearly perpendicular base arrangement are 

important for interactions of the duplex with 

monomers, as well as for intermediate steps of helix 

unwinding and of pair formation” [19]. 

     Okay, how do we apply this? Fig. 2 illustrates 

how we advance the 2-thread three steps in a 12 step 

per 360-degree model. We force a physical 90-

degree relationship between the 2-thread and the 4-

thread structure. This gives us a sine function from 

the 2-thread and a cosine function from the 4-thread. 

In other words we are showing the total combination 

of “sin(pi/6, 6z) + cos(pi/6, 6z).” Something very 

interesting happens when we do this. 

 

Table 5 Applying E-M model to prime numbers.  

Pass Thread 
Extend Step Extend 

10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 

1 
2 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0     

4    0 0 0 0 0 0 0 0 0 0 0 1     

2 
2    0 0 0 0 0 2 0 2 0 1 1 1  1   

4    0 1 0 0 0 1 0 1 0 0 1 0 0    

3 
2    0 0 1 0 1 1 0 0 0 0 0 0     

4    0 0 1 1 0 0 0 0 0 1 1 0     

4 
2 1   1 1 1 1 1 2 0 0 0 2 0 2     

4  0  1 0 0 1 1 0 0 0 1 1 0 1     

5 
2 1 0 1 0 3 1 1 2 1 0 0 0 0 0 1  0   

4    0 0 0 0 0 1 0 0 0 1 1 1 0    

6 
2   1 0 1 1 0 0 0 0 0 1 2 0 1     

4  0 1 0 0 3 1 1 0 1 0 0 0 5 1 0 0   

7 
2 0   0 0 0 1 1 1 2 0 0 3 0 0 0    

4    0 0 0 1 0 0 0 0 0 0 0 1 0    

8 
2   1 0 1 0 1 2 0 0 0 0 1 0 1 0 0   

4  0  0 0 1 1 0 1 2 0 0 1 2 3 0 2   

9 
2    0 2 0 0 0 0 0 1 1 0 1 0 0    

4    0 0 1 1 1 0 1 2 0 1 0 2  0   

10 
2    1 0 0 2 0 2 1 4 1 0 0 1 0  0  

4    0 2 0 0 3 0 0 0 0 0 1 0    0 

11 
2    2 0 1 0 1 0 0 1 2 0 0 2  2   

4  0 2 3 2 0 1 0 0 0 0 1 1 0 1 1    

12 
2   1 1 1 1 2 0 0 1 2 1 3 0 4 0 2   

4  0  0 2 0 0 1 1 0 4 1 0 0 0 0    

13 
2 0   0 1 1 0 0 0 0 0 0 0 3 1  2   

4    1 2 0 0 0 3 0 4 0 0 1 2     

14 
2    0 0 1 0 0 0 xx xx xx xx xx xx     

4    2 2 0 0 3 1 0 1 xx xx xx xx     

 

     Table 5 is the result of applying the 90-degree 

bond concept to the 2-4 thread structure. The 2 

element that corresponds to the first 4 element in the 

2 

4 

Pass 1 

Lags by 90-
Degrees 

(3 steps) 
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first pass is 3 steps (90-dgrees) ahead; that is why it 

is in the extended area to the left of the main 12-step 

structure. This E-M approach will focus on the 

multidirectional vector relationships. 

     In Table 5, the blackened cells with white text are 

the convergence point for equivalent vectors. These 

blackened cells are also the large gap jumps in the 

prime numbers (on the 2-4 threads). Since many 

vectors overlap, portraying the overlapping and 

intersecting elements is tricky and we have pushed 

the limit for the number of vectors displayed to 

show the significant amount of data. The easiest way 

to see the vector patterns is to start at a blackened 

cell and follow the vector with a single color and 

cell pattern outward. A clear example is gained by 

starting at the blackened “3” in the 4-thread element 

at step 3 of the 6
th
 pass. The vector 1-0-1-0-1 goes 

up from the “3” both vertically and at 45-degrees. 

     This same approach can be done for all values 

greater than 1 with consistent vector results. Vectors 

with only 1 and 0 may seem trivial but they also 

exist and are most like at the core of a contributing 

recursive structure. There are definitely more 

patterns in this structure, but it is beyond our 

graphical depiction and capability for just one table. 

Hopefully, the reader will agree that the vector 

patterns of these 6z vectors do not act independently 

and the components of 6z are dependent fucntions. 

     The author attempted the same approach with a 

20-step model and advanced the 2-thread by 5 steps 

to achieve the same 90-degree affect. That model 

yielded no significant results that were either 

consistent or worth mentioning. But, why didn’t it 

work for that model? The best reason may be that 

our 12-step model is based on 30-degree steps, and a 

30-60-90 degree model has the cleanest 

relationships and values for our driving functions of 

sine and cosine. 

     So, what’s the big deal? The big deal is that the 

forced sine-cosine sums of vectors and 

electromagnetic fields seem to be the strongest 

model we have. Euler’s formula with a definite 

cosine-sine relationship on a complex plane may be 

at the core of the nature of the incompressible 

harmonic and biologically-related physical growth 

of the prime numbers. Now, that is a big deal! 

 

 

6.4 Impact on Cryptanalysis 
With regard to cryptanalysis, we may be able to 

apply another level of security and integrity. This is 

always a concern for our Information Assurance 

engineers, who continually look for better forms to 

ensure non-repudiation and data integrity. We 

consider the two basic functions in signature 

schemes: “p, q large prime number with q | (p – 1)” 

and “YU the public key of user U, where YU = g
X
U  

mod p”  [20].  

     How could we protect the integrity of the key if 

we considered that p = 5 + {the threaded sequence 

and influence of 6z}?  We could use the following 

six parameters as a type of checksum for data 

integrity:  

  

1. The coil number. 
2. A binary flag for 2-thread location. 
3. The position in the 2 to 4 bond. 
4. A binary flag for 4-thread location. 
5. The position in the 4 to 2 bond. 
6. The last multiple of 6z incremented. 

 

     For example: Prime number 29 would be defined 

in this integrity scheme as 3-0-0-0-1-1. If we accept 

this as a standard approach, a common look-up or 

reference table for all prime numbers can be easily 

generated the same way the double-threaded 

structure was built with the modulo 6 operation. An 

inexpensive step to improving current data integrity 

might be a serious benefit to this approach.  

     In a related recent WSEAS research effort, the 

authors “pointed out that the problem within Li et al. 

scheme is that the verifier cannot confirm the 

correctness of the parameter made by the original 

signer from the received proxy signature. This 

problem is the fundamental problem of Park and 

Lee’s nominative proxy signature scheme” [21]. Our 

extra checksum approach might help with this issue. 

 

 

7   Conclusion 
A 5-step or 10-step double helix model for the prime 

number growth based on the perfectly repeating 2-4 

series from performing a post “modulo 6” operation 

was the driving structure that indicated we are on the 

right path for understanding the prime numbers. 

Considering the prime number cylinder flow models 

as an expression of the sums of second derivatives 

was proposed. The multitude of perfectly reversing 

and 90-degree rotating significant sequences cannot 

be ignored. 

     An interesting multi-directional vector model 

becomes apparent when we force the 2-thread as a 

sine function and the 4-thread as a cosine function. 

Indications are that there may be interesting 

connections between this Euler type approach and 

nature of prime numbers. 

     Tools and methods for manipulating, applying, 

and implementing these core model structures and 

concepts must be taught to the current and the future 
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generations of engineers, scientists, and 

mathematicians.  

     No turning back now! Let the flexible double 

threaded highway pave the path to adapting the 

physical power and property of the prime numbers’ 

incompressible sequence to reach new 

computational destinations we could not otherwise 

obtain.  
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