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Abstract: - This paper studies the optimal producer′s replenishment policy for an economic production quantity 
(EPQ) model with rework and breakdown taking place in backorder replenishing time. A recent published 
article has studied the lot-sizing problem on an imperfect quality EPQ model. However, another reliability 
factor - random machine breakdown is inevitable in most real-life production systems. To deal with stochastic 
machine failures, production planners must practically calculate the mean time between failures (MTBF) and 
establish the robust plan accordingly, in terms of the optimal production run time that minimizes total 
production-inventory costs for such an unreliable system. This study extends Chiu’s work and assumes that a 
machine failure takes place in the backorder replenishing stage. Mathematical modeling and cost analysis are 
employed. The renewal reward theorem is used to cope with variable cycle length. Convexity of the long-run 
average cost function is proved and an optimal manufacturing lot-size that minimizes the expected overall costs 
for such an imperfect system is derived. Numerical example is provided to demonstrate its practical usages. 
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1  Introduction 
The economic production quantity (EPQ) model is 
often employed in the manufacturing sector for 
determining the optimal replenishment lot-size that 
minimizes the expected long-run average production 
inventory costs [1-3]. Disregarding the simplicity of 
the EPQ model, it is still applied nowadays and it 
remains the basis for the analyses of more complex 
systems [3-8]. An implicit assumption of EPQ model 
is that the manufactured items are of perfect quality. 
However, in real life production systems, owing to 
various unpredictable factors, generation of random 
defective items is inevitable. Many studies have 
been carried out to address the issue of imperfect 
quality items in EPQ model [9-16]. 

Lee and Rosenblatt [10] examined an EPQ model 
with joint determination of production cycle time 
and inspection schedules. A relationship that can be 
used to determine the effectiveness of maintenance 
by inspection was derived. Cheng [13] formulated 
inventory as a geometric program and obtained the 
closed-form optimal solutions for an EOQ model 

with demand-dependent unit production cost and 
imperfect production processes. Boone et al. [14] 
investigated the impact of imperfect processes on the 
production run time. They proposed a model in an 
attempt to provide managers with guidelines to 
choose the appropriate production run times to cope 
with both the defective items and stoppages 
occurring due to machine breakdowns. Cheung and 
Hausman [16] developed an analytical model of 
preventive maintenance (PM) and safety stock (SS) 
strategies in a production environment subject to 
random machine breakdowns. They illustrated the 
trade-off between investing in the two options (PM 
and SS) and also provided optimality conditions 
under which either one or both strategies should be 
implemented to minimize the associated cost 
function. Both the deterministic and exponential 
repairing time distributions are analyzed in their 
study. 

Imperfect quality items, in some circumstances, 
can be reworked and repaired. For example, the 
plastic goods in plastic injection molding process, 
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the printed circuit board assembly (PCBA) in PCBA 
manufacturing, etc. Therefore, overall production- 
inventory costs can be significantly reduced [17-23]. 
Jamal et al. [18] examined optimal manufacturing 
batch size with rework process at a single-stage 
production system. Chiu [20] studied the optimal lot 
size for an imperfect quality finite production rate 
with rework and backlogging.  

Out of stock situations may arise occasionally due 
to the excess demands. These shortages sometimes 
are allowed; and they are backordered and satisfied 
by the next replenishment. So the long-run average 
production- inventory costs can be reduced 
substantially [17,19,20,22]. 

Machine failure can be considered as a critical 
reliability factor that seems to trouble practitioners 
in their production management. Breakdown may 
occur unexpectedly even machine is under a well 
planned preventive maintenance (PM). In order to 
minimize the overall production-inventory costs, to 
effectively control and manage the disruption caused 
by machine breakdown becomes a very important 
task to most practitioners in production management 
field. Therefore, determination of the optimal run 
time for manufacturing systems subject to machine 
failures has received extensive attention from 
researchers in the past decades [24-33]. Groenevelt 
et al. [24] proposed two inventory control policies to 
deal with machine failures. One assumes that the 
production of the interrupted lot is not resumed 
(called no resumption-NR policy) after a breakdown. 
The other policy considers that the production of the 
interrupted lot will be immediately resumed (called 
abort/resume-AR policy) after the breakdown is 
fixed and if the current on-hand inventory falls 
below a certain threshold level. Repair time is 
assumed to be negligible, and effects of machine 
breakdowns and corrective maintenance on the 
economic lot sizing decisions were investigated. Giri 
and Dohi [25] presented the exact formulation of 
stochastic EMQ model for an unreliable production 
system. Their EMQ model is formulated based on 
the net present value (NPV) approach and by taking 
limitation on the discount rate the traditional 
long-run average cost model is obtained. They also 
provided criteria for the existence and uniqueness of 
the optimal production time and computational 
results showing that the optimal decision based on 
the NPV approach is superior to that based on the 
long-run average cost approach. Chiu et al. [26] 
considered the optimal run time for EPQ model with 
scrap, rework and random breakdown. They have 
proved theorems on conditional convexity of the 
integrated cost function and on bounds of the 
production run time. Then, an optimal run time was 

located by the use of the bisection method based on 
the intermediate value theorem. Makis and Fung [28] 
studied effects of machine failures on the optimal lot 
size as well as on optimal number of inspections. 
Formulas for the long-run average cost per unit time 
were obtained. Then optimal production-inspection 
policy that minimizes the expected total costs was 
derived. Chiu et al. [33] examined the EMQ model 
with imperfect rework and random breakdown under 
AR policy. Backordering was not considered in their 
proposed model. 

This paper extends the work of Chiu [20], by 
assuming that a machine breakdown takes place in the 
backorder satisfying time of such an imperfect quality 

EPQ model. The effects of machine failure on the 
optimal run time and on the long-run production- 
inventory costs are studied in this paper. Since little 
attention was paid to aforementioned area, this study 
intends to bridge the gap. 
 
 

2  Modeling and Solution Derivations 
Reexamine the EPQ model studied by Chiu [20]. A 
manufactured product can be made at an annual rate 
of P and the annual demand of this item is λ units. 
The production rate P is much larger than the 
demand rate λ, and the production system may 
randomly produce x portion of defective items at a 
rate d, where d=Px. All items produced are screened 
and the inspection cost per item is included in the 
unit production cost C. 

The production rate of perfect quality items must 
always be greater than or equal to the sum of the 
demand rate λ and the defective rate d. Hence, the 
following condition must hold: (P-d-λ)>=0 or 
(1-x-λ/P)>=0. A θ portion of the imperfect quality 
items is scrap and is discarded when regular 
production ends. The other (1-θ) portion of the 
defective items is reworked at a rate of P1 
immediately after the regular process. Stock-outs are 
allowed and backordered, they are satisfied by the 
next replenishment. Further, according to the mean 
time between failures (MTBF) data, machine 
breakdown may take place randomly in the 
backorder-filling time (see Figure 1) and the abort/ 
resume inventory control policy is adopted in this 
study. Under such a policy, when a breakdown 
happens, machine is under corrective maintenance 
immediately. A constant repair time is assumed and 
the interrupted lot will be resumed right after the 
restoration of machine. 

It is also assumed that during the setup time, prior 
to the production uptime, the working status of 
machine is fully checked and confirmed. Hence, the 
chance of breakdown in a very short period of time 
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when production begins is small. It is also assumed 
that due to tight preventive maintenance schedule, 
the probability of more than one machine breakdown 
occurrences in a production cycle is very small. 
However, if it does happen, safety stock will be used 

to satisfy the demand during machine repairing time. 
Therefore, multiple machine failures are assumed to 
have insignificant effect on the proposed model. 
Figure 1 illustrates the on-hand inventory of perfect 
quality items in the proposed EPQ. 

 

 
 

Fig. 1: On-hand inventory level of perfect quality items in EPQ 
model with rework and machine failure taking place in 
backorder replenishing time 

 
Cost parameters considered in the proposed model 

include: unit production cost C, setup cost K, unit 
holding cost h, repair cost for each defective item 
reworked CR, unit holding cost per reworked item h1, 
disposal cost per scrap item CS, unit shortage/ 
backordered cost b, and cost for repairing and 
restoring machine M. Other notation used is listed as 
follows. 
 

T1 = optimal production uptime - decision variable 
to be solved for the proposed EPQ model, 

t = production time before a random breakdown 
occurs, 

H1 = the level of backorder quantity when machine 
breakdown occurs, 

tr = time required for repairing and restoring the 
machine, 

H2 = the level of backorder quantity when machine 
is repaired and restored, 

t5 = time required for filling the backorder quantity 
B (excluding tr and tr’), 

t4 = shortage permitted time, 
T = the production cycle length, 

tr′ = time required for producing sufficient stocks 
to satisfy the demand during machine repair 
time tr, 

t1 = time for piling up stocks during the production 
uptime in each cycle, 

H3 = the level of perfect quality inventory when 
regular production process ends, 

t2 = time needed to rework (1-θ) of the repairable 
defective items, 

H4 = the maximum level of perfect quality 
inventory when rework finishes, 

t3 = time required for depleting all available 
perfect quality on-hand items, 

Q = production lot size for each cycle, 
B = the maximum backorder level allowed for 

each cycle, 
TC(T1,B) = total production-inventory costs per 

cycle, 
TCU(T1,B) = total production-inventory costs per 

unit time (e.g. annual), 
E[TCU(T1,B)] = the expected production-inventory 

costs per unit time. 
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Because t denotes the production time before a 
breakdown taking place in backorder replenishing 
period t5, that is t < t5. Let the maximum machine 
repair time be a constant and tr =g. In this study, it is 
conservatively assumed that if a failure of a machine 
cannot be fixed within a certain allowable amount of 
time, then a spare machine will be in place to avoid 
further delay of production. tr′ is time needed to 
produce required items demanded in tr. 

The following derivation procedure is similar to 
what was used by past studies [20]. From Figure 1, 
one can obtain the following: production uptime T1; 
tr′; the cycle length T; the levels of backorder H1 and 
H2; the levels of on-hand perfect quality inventory 
H3 and H4; time for piling up stocks t1; time for 
reworking repairable items t2; time required for 
depleting all available on-hand items t3; t4; time 
required for satisfying B (i.e. maximum backorder 
quantity) t5; and production lot size Q. 

51 1′= + + =r
Q

P
T t t t               (1) 

g
tr

P d

λ

λ
′ =

− −
                (2) 

( ) 
5

1= ′= + +∑i i r rT t t t              (3) 

( )1H B P d tλ= − − −            (4) 

( )2 1 rH H t B P d t gλ λ λ= + = − − − +        (5) 

( )3 1H P d tλ= − −               (6) 

( )14 3 2λ= + −H H P t              (7) 

( )1 3 /t H P d λ= − −
             (8) 

( ) ( )1 12 1 /d T Pt θ= ⋅ ⋅ −
            (9) 

43 /Ht λ=                (10) 

4 /t B λ=                (11) 

( )5 /t B P d λ= − −
            (12) 

51 1= ⋅   ′= ⋅ + +rQ P T P t t t          (13) 

where d=Px. 
The total defective items produced (see Figure 2) 

during the production uptime T1 can be obtained as 
shown in Eq. (14) and total scrap items produced 
(see Figure 3) can be calculated by Eq. (15). 

51 1⋅   ′= ⋅ ⋅ + + = ⋅rd T P x t t t x Q         (14) 
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Total cost per cycle TC(T1,B) is 
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Substituting all related parameters from Eqs. (1) to 
(15) in Eq. (16), one obtains TC(T1,B) as follows. 
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Fig. 2:  On-hand inventory of defective items in the proposed EPQ 
model with rework and machine failure taking place in 
backorder replenishing time 
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Fig. 3:  On-hand inventory of scrap items in the proposed EPQ 
model with rework and machine failure taking place in 
backorder replenishing time 

 
Due to the random defective/scrap rates and a 

uniformly distributed breakdown is assumed to 
occur in the backorder filling period, the production 
cycle length is not constant. Thus, to take the 
randomness of scrap rate and breakdown into 
account, one can employ the renewal reward 
theorem in production-inventory cost analysis to 
cope with the variable cycle length and use the 
integration of TC(T1,B) to deal with the random 
breakdown happening in period t5. The long-run 
expected costs per unit time can be calculated as 
follows. 
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then Eq. (19) becomes: 
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2.1 Convexity of Cost Function E[TCU(T1,B)] 

The optimal replenishment policy can be obtained 
by minimizing expected cost function E[TCU(T1,B)]. 
For the proof of convexity of E[TCU(T1,B)], one can 
use the Hessian matrix equations [34] and verify the 
existence of the following: 

[ ]

( ) ( )

( ) ( )

2 2
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2

1 1 1

1 2 2

1 1

2

1

, ,

  0
, ,
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T B

BE TCU T B E TCU T B

T B B

 ∂ ∂       
∂ ∂ ∂   ⋅ ⋅ >  ∂ ∂         

 ∂ ∂ ∂ 

 

(21) 

The expected production-inventory cost function 

E[TCU(T1,B)] is strictly convex only if Eq. (21) is 
satisfied for all T1 and B different from zero. From 
Eqs. (20) and (21) by computing all the elements of 
the Hessian matrix equation, one obtains Eq. (22). 
And it is resulting positive, because all parameters 
are positive. Hence, E[TCU(T1,B)] is a strictly 
convex function. 

For locating the optimal production uptime T1 and 
optimal backorder quantity B, one can differentiate 
the expected production-inventory cost function 
E[TCU(T1,B)] with respect to T1 and with respect to 
B, and then solve linear systems of Eqs.(23) and (24) 
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by setting these partial derivatives equal to zero. The 
resulting optimal T1* and B* are shown in Eqs.(25) 
and (26). 
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It is noted that practitioner should check both the 
numerator and the denominator of Eq. (25) are 
positive before adopting this optimal replenishment 
run time in real life usage. Proof of positive of 
denominator can be found in Appendix of [35]. One 
notes that verification of B* to be a positive number 
is required when put it in use. 

From Eqs. (13), (25), and (26), one can obtain the 

optimal production lot-size Q
*
 and the optimal 

backorder quantity B
*
 as displayed in Eqs. (27) and 

(28). The long-run expected production-inventory 
cost function E[TCU(T1,B)] can then be obtained by 

substituting T1 and B
*
 from Eqs.(25) and (26) into 

Eq.(19). 
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2.2 Result Verification 

Suppose one excludes the assumption of machine 
breakdown factor from the proposed model, then the 
cost and time for repairing failure machine M=0 and 
g=0, Eqs. (27) and (28) become the same equations 
as were given by Chiu [20]: 
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             (30) 

Further, if the regular production process produces 
no defective items, i.e. x=0, then Eqs. (29) and (30) 
become the same equations as were presented by the 
classical EPQ model with shortages permitted and 
backordered [2,36]. 
 
 

3  Numerical Example and Discussion 
Consider the production rate of a manufactured item 
is 9,000 units per year and annual demand of it is 
3,600 units. The percentage of defective items 
produced x, follows a uniform distribution over the 
interval [0, 0.2]. A θ=0.2 portion of defective items 
is scrap. The annual rate of rework process is 
P1=600 units. Additional parameters are summarized 
as follows. 

CR  = $0.5 for each item reworked, 
h1 = $0.8 per item per unit time, 
K = $450 for each production run, 
h = $0.6 per item per unit time, 
C = $1 per item, 
CS = $0.3 disposal cost for each scrap item, 
b = $0.2 per item backordered per unit time, 
g = 0.018 years, time needed to repair and 

restore the machine, 
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M = $500 repair cost for each breakdown. 

A demonstration of convexity of the long-run 
average costs E[TCU(T1,B)] is shown in Figure 4. 
Applying Eqs. (25), (26), (27), and (20), one can 
obtain the optimal production run time T1* =0.8478 

years, the optimal backorder quantity B*=3,037, the 
optimal lot-size Q*=7,630, and the optimal long-run 
expected cost E[TCU(T1*,B*)]= $4,754.22. 

 

 

 
 

Fig. 4: Convexity of the expected cost function E[TCU(T1,B)] for 
the proposed EPQ model with rework and machine failure 
taking place in backorder replenishing time 

 

 
 

Fig. 5: Variation of the defective rate and the scrap rate effects on 
the optimal production lot size Q* of the proposed imperfect 
EPQ model 
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Figure 5 displays the behavior of the optimal lot 
size Q* with respect to random defective rate x and 
scrap rate θ. It indicates that as the defective rate x 
increases, the value of optimal lot-size Q* decreases 
significantly. It is also noted that for different scrap 
rates, as θ increases, the optimal production lot-size 
Q* increases note-worthily. 

Figure 6 illustrates the behavior of the optimal 
production run time T1 with respect to the defective 
rate x and the scrap rate θ. One notes that as the 
defective rate x increases, the value of production run 
time T1* decreases significantly. It is also noted that 
for different scrap rates, as θ increases the value of 
optimal run time T1* increases note worthily. 

    
 

Fig.6: Behavior of the optimal production run time T1 with 
respect to the defective rate x and the scrap rate θ of 
the proposed imperfect EPQ model 

 
Variation of the defective rate x and the scrap rate 

θ effects on the optimal backorder level B* is shown 
in Figure 7. One notes that as the defective rate x 
increases, the value of optimal backorder quantity B* 

decreases significantly. For different scrap rates, as θ 

increases the value of optimal backorder level B* has 
no noteworthy change. 

If the result of this investigation is not available, 
one probably can only use a closely related lot-size 
solution given by Chiu [20] for solving such an 
unreliable EPQ model and obtaining a near optimal 
operating policy in which Q=5,251 (or T1=0.5834) 
and B=2,131. Plugging this lot-size solution into Eq. 
(20), one has the near optimal costs E[TCU(T1,B)]= 
$4,819.36. This results a 5.64% more on total setup 
and holding costs than the optimal production- 
inventory costs calculated from the present study. 
 
 

4 Conclusion 
This paper studies the optimal replenishment policy 
for an economic production quantity (EPQ) model 
with rework and machine failure taking place in 
backorder-refilling time. In most real-life production 

settings, random machine breakdown and generation 
of the defective items are inevitable. The classic EPQ 
model is not sufficient for solving such a practical 
system, because neither does it consider the machine 
failure issue, nor the imperfect quality items matter. 

The effects of these reliability situations on EPQ 
model must be specifically investigated in order to 
minimize the total production-inventory costs. The 
mean time between failures is calculated by most 
production planners to predict the occurrence time for 
unexpected breakdown. Then robust plan in terms of 
the optimal replenishment policy that minimizes total 
production-inventory costs for such an unreliable 
system can be established accordingly.  

This study extends the work of Chiu′s [20] and 
assumes that a random breakdown takes place in the 

backorder-filling period. Mathematical modeling is 
employed and convexity of the long-run average cost 
function is proved. Then an optimal production lot 
size that minimizes the long-run average costs for 
such an imperfect quality EPQ model is derived, 
where shortages are allowed and backordered. Since 
little attention was paid to the aforementioned area, 
this paper intends to fill the gap.  
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For future study, incorporating multiple machine 
failures during uptime and random repair time for 
breakdown (these may apply to certain production 
systems) into the similar imperfect EPQ model may 
be one of the interesting studies. Also, decisions on 

maximum repairing time of the machine to be 
allowed as well as acquisition of the spare machine 
may also have important effects on the replenishment 
run time studied. 

 

 
 

Fig.7: Variation of the defective rate x and the scrap rate θ 

effects on optimal backordering quantity B* of the 
proposed imperfect EPQ model 
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