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Abstract: - This paper presents four different iterative strategies for obstacle avoidance of a redundant 
manipulator. The end-effector task consists in generating the references along the contour of a curve. The 
proposed strategies are iterative in the sense that the joint configuration computed in the previous step 
represents the current point around which the methods provide the next joint configuration corresponding to 
the imposed end-effector posture. The objective of the strategies is to simultaneously minimize the end-
effector location error and the manipulator total joint displacement while the collision with the obstacle is 
avoided. The strategies are implemented using the Matlab software and the comparative simulation results are 
obtained for a planar redundant manipulator with four degrees of freedom and with its end-effector following 
the contour of a circle, whose surface is considered to be restrictive for all elements of the manipulator. 
 
Key-Words: - redundancy resolution, iterative strategy, obstacle avoidance, multiple criteria. 
 

1   Introduction 
A redundant manipulator has more joints than 

necessary for achieving the end-effector task. The 
human body, composed of several redundant parts 
like arms and legs, is a proper example of 
redundancy provided by the nature [1]. 

Kinematic redundancy has become increasingly 
popular in robotics field through the attempts to 
improve the overall performance of robots in a large 
variety of tasks. The extra degrees of freedom 
(DOF) offered by redundancy can be used to 
optimize additional performance criteria while 
solving the main end-effector task. These 
performance criteria can be defined in terms of the 
kinematic or dynamic parameters and can be related 
to the different aspects of performance. Numerous 
studies have revealed the importance of using 
performance criteria for performance enhancement 
[2-4]. Obstacle avoidance is one of the most 
important domains of redundant manipulators 
application because of the incapacity of non-
redundant structures to avoid collisions with 
workspace obstacles [5-8,22]. 

Introduction of additional criteria changes the 
redundancy problem from a known inverse 
kinematics problem to a non-linear optimization 
problem with non-linear constraints. Solving the 
inverse kinematics problem of redundant robots is 
not common since the necessary mapping from the 
task coordinates to the joint coordinates is not 
unique, and yields an infinite number of solutions. 

This paper presents four different iterative 
strategies for obstacle avoidance of a redundant 
manipulator. The first three strategies are based on 
linearized solutions and the fourth is based on a non-
linear optimization technique using genetic 
algorithms. The first two methods are based on the 
Gradient Projection Method (GPM). The constraint 
functions, based on the Maximum Distance 
Criterion (MXDC) and the Repulsive Potential 
Field (RPF), respectively, are added in the null 
space of the Jacobian matrix and are used for local 
optimisation purposes. The third approach is based 
on the Extended Jacobian Matrix (EJM), which 
augments the manipulator forward kinematics with a 
set of kinematic functions in operational space or in 
joint space reflecting the desired additional task. The 
desired additional task is to minimize an objective 
function, which is, in our case, the sum of inverses 
of the distances between the obstacle and the 
Configuration Control Points (CCP) situated on the 
elements of the manipulator. 

A genetic algorithm (GA) based strategy for 
redundancy resolution with two performance criteria 
accomplishment, while the end-effector achieves a 
number of prescribed configurations, was developed 
in a previous paper [9,22] of the authors. The 
additional constraints added to the main end-effector 
task were the same with those introduced in this 
paper. The disadvantage of the previous strategy 
was the reduced number of the end-effector imposed 
configurations (five, in the simulation results). 
Instead, the present fourth iterative strategy offers 
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the possibility to accomplish an end-effector 
prescribed path following. The problem is 
formulated as a constrained optimization problem 
and solved using an iterative GA based strategy. The 
objective of this optimization problem is to 
simultaneously minimize the end-effector location 
error and the manipulator total joint displacement 
while the collision with the obstacle is avoided.  

A short review of the redundancy resolution 
methods is presented in second section. The third 
section described the two methods with linearized 
solutions. First subsection deals with the Gradient 
Projection Method with two performance criteria: 
Maximum Distance Criteria and Repulsive Potential 
field, respectively. The Extended Jacobian Method 
is presented in the second subsection. The fourth 
section presents the genetic algorithms based 
strategy. First subsection describes a brief overview 
of the concept of GA. In second subsection the 
proposed GA iterative strategy is characterized 
through its variables, fitness function and non-linear 
constraint functions. The comparative simulation 
results are obtained for a planar redundant 
manipulator with four DOF and with its end-effector 
following the contour of a circle, whose surface is 
considered to be restrictive for all elements of the 
manipulator. These simulations are presented in fifth 
section and sixth section contains the conclusions of 
this paper. 
 
 

2   Theoretical background 
Redundant manipulators possess at least one 

DOF more than necessary for their imposed end-
effector location. In order to place the end-effector 
of a redundant manipulator on a desired location 
(position and orientation), a proper configuration of 
the manipulator must be specified, i.e. the suitable 
values of the joint angles which place the end-
effector to the given location must be computed. 
This is the well-known inverse kinematics problem. 

Mapping from the world coordinates to the joint 
coordinates for a redundant robot is not unique, 
meaning that there are an infinite number of joint 
angles settings which results for a given end-effector 
location.  

The direct geometric model gives the relation 
between the end-effector configuration vector x and 
the joint coordinates (angles vector θθθθ, for rotation 
joint case): 

T
1 2

T
1 2

( );  

[   . . .  ] ;  
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where n is the number of DOF and m is the 
workspace dimension. 

In inverse kinematics, which is necessary for 
robot control, the desired posture of the end-effector 
is given by the user. Inverse kinematics resolution 
requires the computation of all joint angles in the 
chain that place the end-effector in the imposed 
configuration. In order to derive θθθθ with a given x, 
the inverse of the equation (1) is required: 

1( )f −=θ x .                                                            (2) 

Solving equation (2) is quite difficult since is 
non-linear, involving rotations at the joint 
transformations. The redundancy resolution 
approaches can be classified into two categories: 
methods with linearized solutions and non-linear 
optimization methods. 

In the first approach, because the non-linear 
property of function makes the solution difficult, the 
problem can be made linear by localizing around the 
current operating position. As a first step, equation 
(1) is differentiated with respect to θθθθ, obtaining the 
inverse differential model:       

( )δ = θ δx J θ ,                                                         (3) 

where ( ) ( )fδ θ
θ =

δθ
J  is the manipulator Jacobian 

matrix. 
If we invert equation (3) and iterate towards a 

final goal configuration with incremental steps, the 
inverse kinematic problem can be linearly solved. 
For non-redundant manipulator structures, n = m, 
the inverse differential model is simple obtained 
using the inverse of the Jacobian matrix: 

1−δ = δθ J x .                                                            (4) 

Unfortunately, in case of redundancy, the 
Jacobian is not a square matrix, i.e. n > m. In this 
situation, instead of J-1, a pseudoinverse of Jacobian 
is used being defined as: 

T T 1( )+ −=J J JJ .                                                   (5) 

However, the simple use of this n×n square 
matrix J+ is not sufficient since this right-hand side 
term of the equation (4) represents just the least 
norm solution, which guarantees only the end-
effector task accomplishment and a minimization of 
the sum of joint displacements, but not the 
additional obstacle avoidance constraint.  

To deal with the obstacle avoidance additional 
constraint as well, two basic methods with linearized 
solutions can be distinguished in redundancy 
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literature [5-8,19]: the Gradient Projection Method 
and Extended Jacobian Method.  

GPM obtains the solution of the non-linear 
optimization problem with non-linear constraints, by 
adding to the least norm solution +δJ x  (which 
ensures that the end-effector follows the task path), 
the so-called null space solution, which takes into 
account additional constraints and consists of a self-
motion of the links in the joint space only, without 
any effect on the end-effector task configuration 
vector.  

With respect to the EJM, this second method 
defines n m−  additional constraints including the 
obstacle avoidance for the given task, thus the 
relationship between the joint space and the end-
effector space becomes non-redundant, and the 
extended Jacobian is now a square n×n square 
matrix which can be easily inverted. 

 
The secondary redundancy resolution approaches 

are non-linear optimization techniques and treats the 
problem as a minimization problem. Let e(θ) be the 
positional and orientation definition of end-effector 
depending of joint angles and g be the positional and 
orientation definition at the desired goal.  

2( ( )) ( ( )) ,P e g eθ = − θ                                             (6) 

where P(e(θ)) is a potential function that gives the 
error between the end-effector and the goal. If the 
value of the potential function is zero, then the goal 
is reached. If the goal is not reachable because of the 
joint limits, the potential function value is tried to be 
minimized as much as possible. The optimization 
problem can be formulated as follows: 

2Minimize       ( ( )) ( ( )) ,

subject to        ( ) 0,    ,  for 1i i

P e g e

h l u i n

θ = − θ
θ ≤ ≤ θ ≤ = ÷

   (7) 

where h(θ) includes the non-linear constraints, li and 
ui are the lower and upper limits of the joint angles, 
respectively.  

The most known non-linear optimization 
methods for redundancy resolution are based on 
genetic algorithm [9-11], direct search [12], neural 
networks [13], or fuzzy techniques [14].  
Recent approaches have tried to solve the 
redundancy problem by combining a method based 
on inverse kinematics with one based on the direct 
geometric model. Such combined methods can 
avoid, for example, the joint angle drift problem 
caused by the disadvantage that the pseudoinverse 
control is not repeatable. Da Graça Marcos et al. 
[15] proposes a technique that combines the closed-
loop pseudoinverse method with genetic algorithms. 

An open-loop genetic algorithm based on the direct 
geometric model is used to find the initial joint 
configuration, and also to compare the results 
provided by the new combined method. 
 
 

3 Methods with linearized solutions 
There are two basic methods with linearized 

solutions, used for redundancy resolution: Gradient 
Projection Method and Jacobian Extended Method.  

 
 

3.1 Gradient Projection Method 
The Gradient Projection Method was firstly 

introduced by Liegeois [16] with the purpose of 
using the redundancy to avoid mechanical joint 
limits. Extending the pseudoinverse solution, a 
general solution to the inverse kinematics problem 
can be expressed as: 

( - )+ +δ = δ +θ J x I J J z ,                                           (8) 

where:  
● δθθθθ is the joint angular differential 

variation,  1n×δ ∈ℜθ ;  

● ( ) 1TT  
−+ = JJJJ is the Moore-Penrose 

pseudoinverse of manipulator Jacobian matrix, 
mn×+ ℜ∈  J , nm×ℜ∈  J ;  

● δx is the differential variation of end-effector 
posture (computed in closed-loop). 
δx(k) = x(k) – x(k–1), with:  
x(k) - imposed actual posture;   
x(k–1) - previous achieved configuration. 

 1m×δ ∈ℜx ;   
● I – J+ J = P is the “projector” matrix, nn×ℜ∈  P ;  

● z is an arbitrary vector,  1n×∈ℜz . 
The first term on the right of equation (8) is the 

least norm solution. The second term is the 
homogeneous (null-space) solution, which is 
orthogonal to the first term. The homogeneous 
solution is called the self-motion of the manipulator 
and produces no end-effector motion. For a desired 
end-effector trajectory, a homogeneous solution is 
selected such that the resulting robot configuration 
optimizes a performance measure.  

To optimise a performance criterion F(θ), z is 
chosen to be: 

(θ)F= ±ψ∇z ,                                                        (9) 

where ψ is a positive real number and (θ)F∇ is the 
gradient of (θ)F . A positive sign in equation (9) 
indicates that the criterion is to be maximized, while 
a negative sign indicates minimization. 
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3.1.1 Maximum Distance Criterion 
For first GPM development, the Maximum 

Distance Criterion is used. U. Sezgin [5] introduces 
an objective function, which is based on the sum of 
the distances between key points fixed on the links 
of the both arms of a cooperative robot, for 
maximization of the sum of distances between both 
arms. These points are defined as Configuration 
Control Points and they sufficiently represent the 
robot configurations in Cartesian space. A proper 
selection of configuration control points set is of 
major importance. 

Taking into consideration the MXDC, a new 
constraint function is build introducing the 
following modifications: 
- the constraint function is defined for a single 

manipulator; 
- the positive scaling factor ψ is variable to 

increase constraint function influence only 
where performance criterion is imposed. 

In order to define the constraint vector z, one has 
to consider the Euclidian distances 

CCP (   1 ) pd p n= ÷ between the p-th CCP and the 

obstacle (nCCP is the number of the CCP). Thus, the 
performance criterion F is defined as: 

CCP

1

1n

pp

F
d=

= ∑ ,                                                        (10) 

where nCCP is the number of CCP. The constraint 
function z is: 

T

1

 .  .  .  
n

F F ∂ ∂= ψ  ∂θ ∂θ 
z .                                      (11) 

The computation procedure of GPM with MXDC 
is composed of the following steps: 
- select the CCP on the given manipulator structure; 
- express, relative to the base frame, the coordinates 
of the CCP depending on the joint coordinates; 
- write the relations that specify the distances 
between the selected CCP and the obstacle; 
- compose the performance criterion F by summing 
up the inverse of the distances dp; 
- write the equations of the direct kinematic model 
for the given manipulator; 
- determine the constraint function z by 
differentiating the function F with respect to the 
joint coordinates; 
- obtain the Jacobian matrix J and determine the 
pseudoinverse matrix J+; 
- solve equation (8) and determine the joint vector 
δθ ; 
- obtain the joint vector θθθθ. 

3.1.2 Repulsive Potential Field 
A Repulsive Potential Field (RPF) is used for the 

performance function construction of the second 
GPM. Khatib [6] originally proposed the Potential 
Field Method for on-line collision avoidance of a 
robot with proximity sensors. This method treats the 
robot as being under the influence of a virtual 
potential field U. The potential function is defined as 
the sum between an attractive potential, which 
attracts the robot toward the goal configuration, and 
a repulsive potential, which takes off the robot of 
obstacles. 

The use of potential fields is a strong and 
efficient tool to solve the collision avoidance 
problems in the workspace. Virtual potential fields 
generated by the restriction surfaces are introduced. 
The manipulator links are subjected to potential field 
forces arising from the obstacles, these forces 
inducing a virtual repulsion from the obstacle 
surface. The basic idea is the application of RPF in 
al l  CCP on the manipulator links. 

A possible choice for the mathematical 
expression of the RPF is: 

2

0
0

0

1 1 1      if   ,
ρ ρU 2

0      if   ,

−
  η ρ ≤ ρ  =   
 ρ > ρ

                   (12) 

where:  
- η is a positive scaling factor,  
- ρ is the minimum distance between robot and 
obstacle,  
- ρ0 is a positive constant called distance of 
influence. 
The constraint function z is defined as the sum of 
the potential repulsive forces that induce a virtual 
repulsion from the restriction surface: 

CCP

1

n

p
p

R
=

= ∑z ,                                                           (13) 

where the potential repulsive forces Rp are given by: 
T

1

U U
 .  .  . ;j j

p
n

R
∂ ∂ 

= − − ∂θ ∂θ 

.                                    (14) 

the steps of the computational procedure of GPM 
with RPF are: 
- determine the CCP where the repulsive potential 
forces act; 
- express, relative to the base frame, the coordinates 
of these CCP depending on the joint coordinates; 
- compose the distances between the CCP and the 
restriction surface; 
- write the equations of the direct kinematic model 
for the given manipulator; 
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- determine the constraint functions z by summing 
the potential repulsive forces; 
- obtain the Jacobian matrix J and determine the 
pseudoinverse matrix J+; 
- solve equation (8) and determine the joint angular 
differential variation δθθθθ; 
- obtain the joint vector θθθθ. 
 
 
3. 2 Extended Jacobian Method 

The Configuration Control Method augments the 
manipulator forward kinematics with a set of 
kinematic functions in operational space or in the 
joint space that reflects the desired additional task 
[17]. Let be ( )E Ef=x θ  the forward kinematic 

model of the robot, mapping the 1n ×  joint 
displacement vector θ to the 1m ×  end-effector 
coordinate vector xE. Let ( )c cf=x θ  define a set of 

  -  r n m=  kinematic functions. The augmented 
kinematic model is given by: 

c

(θ )

(θ )
E E

c

f

f

   
= =   
   

x
x

x
,                                           (15) 

where x is the 1n ×  configuration vector. The user 
can then set up the desired additional task by 
imposing the constraint ( ) = ( )c cdt tx x , where ( )cd tx  
is the user specified desired time variation of xc. The 
configuration control problem must ensure that the 
configuration vector x tracks the desired trajectory 

( )
( )

( )
Ed

d
cd

t
t

t

 
=  
 

x
x

x
 using a kinematic or dynamic 

control law. 
The direct differential model obtained from the 

direct geometric model presented in equation (15) is: 

c

(θ )
(θ )θ
(θ )(θ )

θ

E

E

c

f

f

∂ 
   ∂ δ = δ = δ = δ ∂   
 ∂ 

J
x θ θ J θ

J
,                   (16) 

where JE is the end-effector Jacobian matrix, Jc is 
the additional constraints Jacobian matrix and J is 
the extended Jacobian matrix. 

If the desired additional task is to optimise an 
objective function, then this method is called the 
Extended Jacobian Method, introduced by Baillieul 

[18]. One defines ( ) T
c

g
f

∂θ =
∂θ

N , where g(θ) is the 

scalar kinematic objective function to be optimised 
and N is the n r× null space matrix of J that 
corresponds to the self-motion of the redundant 
manipulator: 

( ) ( )
1

det ,a b
a a b

r

− 
= = 

− 

J J
N J J J J

I
,                    (17) 

where Ja is an m-squared matrix of the first columns 
of J and Jb is an m r× matrix of the remaining 
columns. 

The necessary optimality condition of g(θ) is 

c  0f = . Thus, if the desired trajectory is defined as 

( ) 0cdf t =  and the configuration control is used to 

track ( )d tx , then the kinematic optimization 
problem can be solved. 

The Transpose Jacobian Matrix method provides 
a solution of the EJM [19]: 

T (θ )δ = εθ J K ,                                                     (18) 

where K is a positive definite matrix used to vary 
the additional constraints effect on the constraints 
imposed to the end-effector and ε is the error, 

d= −ε x x . 
Because an appropriate matrix K is difficult to be 

chosen in order to obtain d≤ε ε , where dε  is the 
desired error, another method for inverse kinematic 
problem resolution must be used. This method 
consists in matrix K elimination followed by the 
Transpose Jacobian application, applied iteratively 
until d≤ε ε [7]. For a sampling step of end-effector 
task, this iterative algorithm is: 

( ) ( )( )
( ) ( ) ( )( ) ( )

( )

( )( )
( )( ) ( )

( ) ( )

T

T

T

1

while 
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+
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 = − = −  ∂      ∂θ  

δ =

= + δ

ε ε

x θ

N

θ

x
ε x x

N

θ J ε

θ θ θ

                   (19) 

 
 

4 Genetic Algorithm based strategy 
4.1 Concept of genetic algorithm 

The genetic algorithm is an efficient global 
optimization algorithm that uses operators taken 
from natural selection and survival of the fittest, 
characteristic to biological structures [20]. Due to 
the fact that this method needs no previous 
experience on the problem, it is applied on various 
problems. This method is fundamentally iterative 
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operating on a set of candidate solutions, which 
form a so called population. An initial randomized 
or imposed population that consists of a group of 
chromosomes and represents the problem variables 
produces new population through successive 
iterations, using various genetic operators. The 
elements of the chromosome are called genes. 

There are many reasons that make GA suitable 
for use in redundancy resolution: 
- GA finds global optimum in complex spaces; 
- does not need the computation of Jacobian 

matrix; 
- GA solutions need only the forward kinematic 

equations of the manipulator in inverse 
kinematics resolution; 

- does not require any additional constraints on 
the joint angles; 

- GA allows additional non-linear constraints to 
be specified. 

The common genetic operators are: selection, 
elitism, crossover and mutation. A function called 
fitness function determines when a new chromosome 
will replace a previous one or not, according to its 
value. Through several repetitions the evolution of 
the individuals leads to the domination of stronger 
ones. The applied operators in each step are: 
- Selection: The selection function chooses parents 
for the next generation based on their fitness value. 
The common selection functions are: roulette and 
tournament. The roulette function simulates a 
roulette wheel with the area of each segment 
proportional to its expectation. The algorithm then 
uses a random number to select one of the sections 
with a probability equal to its area. The tournament 
function selects each parent by choosing individuals 
at random and then choosing the best individual out 
of that set to be a parent. Tournament size specifies 
the number of individuals from which only one is 
chosen.  
- Elitism: In order to preserve the optimum 
individual of each generation for the next 
generation, the elitism operator is activated. The 
result is to keep the optimum individual of all 
previous generations in the current population and 
avoid the possibility of losing good individuals.  
Elite count is a positive integer specifying how 
many individuals in the current generation are 
guaranteed to survive in the next generation.  
- Crossover: This genetic operator combines two 
individuals, or parents, to form a new individual, or 
child, for the next generation. The most common 
method uses a single point crossover operator. This 
operator chooses a random integer number between 
1 and the number of variables and selects the vector 
entries numbered, less or equal to that number 

chosen, from the first parent, select genes numbered 
greater than the number chosen from the second 
parent, and finally combines these entries to form 
the child. For example, 

1

2

 [a b c d e f g h];

 [1 2 3 4 5 6 7 8];

crossover point (at random) = 3

child = [a b c 4 5 6 7 8]

p

p

=
=        

- Mutation: Mutation function makes small random 
changes in the individuals in the population, which 
provide genetic diversity. It operates on each binary 
bit of each chromosome and reverses the value of 1 
to 0 and conversely.  
 

 
4.1   Proposed strategy 

The manipulator is considered as an open chain 
with n revolute joints. The proposed strategy starts 
with an imposed joint configuration adequate to a 
certain end-effector posture. These n joint angles 
represent the point around which the GA will search 
and provide the joint configuration adequate to the 
following imposed end-effector location. The 
strategy is, thus, iterative (Fig. 1) and is stopped 
when the number of end-effector references 
generations, ng, is accomplished.  

θθθθ0 

k = 0 

k = k + 1 

( )1k +x

k = ng

θθθθfinal

GA

θθθθ(k+1)

No

Yes

 

Fig. 1 Iterative schema of the strategy 

The genetic algorithm variables are the joint 
angles vector corresponding to every end-effector 
imposed configuration. Thus, the number of genetic 
algorithm variables is equal with the number of 
DOF, n.  
The variables vector has the following terms: 

( ) ;   i 1 .ii n= θ = ÷v                                                (20) 
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where θi is the i-th angle joint of the manipulator. 
The lower and upper bounds for the vector 

variables at the k+1-th step of generation are 
obtained from the k-th joint angle values, subtracting 
and, respectively, adding a feasible difference ∆θi. 

( ) ( 1) ( )( ) ;   

1 ,  1 .

k k k
i i i i

g

i

i n k n

+θ − ∆θ ≤ ≤ θ + ∆θ
= ÷ = ÷

v
                      (21)     

The fitness function of the genetic algorithm is 
the objective function to minimize. In our case, this 
function is the sum of joint displacements between 
two successive end-effector locations:  

( 1) ( )

1

( ) ( )

1 ,  1 .

n
k k

i i
i

g

i i

i n k n

+

=

θ − θ

= ÷ = ÷

∑                                                 (22) 

The end-effector task and the other additional 
constraint (obstacle avoidance) are expressed in one 
non-linear constraint function of the form 0≤C , 
where C is a 2 dimensional vector containing the 
following non-linear expressions: 

0

CCP

(1) ;

(2) min( );

 1 ,  

d d

pd d

p n

= − − ε
= −

= ÷

C x x

C                                                (23) 

The first term of the vector verifies that the 
positioning and orientation error of the end-effector 
is smaller than a desired error, εd imposed by the 
user. x and xd are the vectors of the real and desired 
end-effector configuration. The second term 
guarantees the obstacle avoidance because the 
minimum of the distances dp is greater than a desired 
distance, d0 imposed by the user. The dp distances 
are calculated between the p-th Configuration 
Control Point and the obstacle. nCCP is the number 
of the CCP. The CCP are imposed by the user on the 
manipulator structure.  

The above described mathematical models for 
fitness and non-linear constraint functions are solved 
for every k-th sampling step of end-effector 
references generation using the genetic algorithm 
tool of MATLAB. Thus, the proposed strategy 
involves a number of ng successive GA resolutions. 
The input data for the GA at the k+1-th step of the 
proposed strategy for redundancy resolution are: 
- links dimensions and previous joint configuration 
vector θ(k); 
- ∆θi which gives the lower and upper bounds of GA 
variables; 
- imposed end-effector configuration for k+1-th 
sampling step;  

- desired positioning and orientation error of the 
end-effector, εd ; 
- number nCCP of CCP and its positions on 
manipulator structure; 
- value of the desired distance d0; 
- GA parameters: population size, the selection 
function, the elite count, the crossover rate, the 
mutation function, the algorithm stopping criteria 
options, etc. 

The output data is the joint configuration vector 
θ

(k+1). 
The starting population is randomly generated to 

set the variable values, which are used to calculate 
the fitness function value. GA uses selection, 
elitism, crossover and mutation procedures to create 
new generations. The new generations converges 
towards a minimum for the fitness value while the 
expressions of the non-linear constraint function are 
accomplished.  

The use of the nonlinear constraint function in 
GA supposes a rapidly convergence to a minimum 
for the fitness value because of elitism operator, 
which chooses only the individuals that respect the 
non-linear inequalities.   

The main advantage of the proposed strategy, in 
contrast with redundancy resolution methods with 
linearized solutions, consists in fact that it uses, in 
inverse kinematics resolution, only the direct 
kinematics equations. Also, it allows additional non-
linear constraints to be specified. The strategy does 
not need the computation of the Jacobian matrix and 
its pseudoinverse so that any problem related to the 
inversion of this matrix (kinematic singularities) is 
overcome. The algorithmic singularities, artificially 
introduced by any additional constraint working in 
the null-space of the manipulator Jacobian, do not 
occur as well.  
  
 

5   Simulation results 
The illustrative simulations are obtained for a 

laboratory model of planar redundant manipulator, 
possessing four DOF (Fig. 2). The experimental 
model was realized at the Laboratory of Robotics-
Mechatronics Group of Institute of Solid Mechanics 
of Romanian Academy [21].  

The proposed goal is to generate the references 
(position and orientations) of the end-effector along 
the contour of a circle with radius r, whose surface 
is considered to be restrictive for all four elements of 
the manipulator structure. The operational space 
dimension is in this case m = 3 because the position 
and orientation of the end-effector (EEF) are both 

WSEAS TRANSACTIONS on MATHEMATICS Cornel Secara, Luigi Vladareanu

ISSN: 1109-2769 217 Issue 3, Volume 9, March 2010



taken into consideration. Thus, the degree of 
redundancy is n-m = 1.  

 

Fig. 2 Laboratory model [21] 

The initial posture of the manipulator is 
illustrated in Fig. 3 and is given by the following 
measures: 

[ ]0

1 2 3 4 0 0

0.72  5.49  5.55  3.93 ;

0.12; 0.12; 0.10; 0.05; 0; 0;

0.03; 0; 0.2.c c

l l l l x y

r x y

=
= = = = = =
= = =

θ

    (24) 

where θθθθ0 is the vector of initial joint coordinates 
expressed in radians, l1, l2, l3 and l4, are the lengths 
of the links expressed in meters, x0 and y0 are the 
manipulator base coordinates, r is the radius of the 
restriction circle and xc and yc are its centre 
coordinates. 

r
(xc, yc)

x

y

(x0, y0)

θ1

θ2 θ3

θ4

l1 l2

CCP1

CCP2

l4

l3

Fig. 3 Initial manipulator configuration 

The end-effector references generation is a 
function of sampling step of generation, k:  

( )

( )

( )

cos( );

sin( );

5 .

k
d c

k
d c

k
d

x x r k

y y r k

pi k

= + ⋅ ⋅ ∆α

= + ⋅ ⋅ ∆α

Σθ = ⋅ + ⋅ ∆α

                                          (25) 

where ∆α is the angular step of generation. 

The end-effector coordinates, obtained using the 
direct geometric model, have the following 
expressions:  

4
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1 1

4
( ) ( )

1 1

4
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.
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= ⋅  

 

Σ =

∑ ∑

∑ ∑

∑

                                    (26) 

The angular step of generation is ∆α=30 and, 
thus, the number of strategy steps is =120. gn For 

all four methods, the CCP (nCCP =2) are placed in the 
middle of second element and, respectively, in the 
middle of third element of the manipulator. For first 
method, ψ - the variable scaling factor gives the 
influence of MXCD. For this particular case, the 

chosen formula was ψ 0.4
g

k

n
= ⋅ and the sum of joint 

angles displacements for all 120gn = steps is 18.2 

radians (Fig. 4). 
For GPM with RPF, the influence of the 

repulsive forces is given by η - the positive scaling 
factor and ρ0 - the distance of influence. For the 
simulation illustrated in Fig. 5, we have the 
following chosen values: 0η 0.3;ρ 0.02= = . The 
sum of joint angles displacements is smaller than 
previous case, 15.06. The simulation results using 
EJM is illustrated in Fig.6. The sum of joint angles 
displacements is, in this case, 19.3. 

For the last method based on GA we have the 
desired distance d0 = 0.015 and the imposed 
positioning and orientation error of the end-effector 
is εd = (0.001 0.001 0.1o).  

The vector that produces the lower and upper 
bounds of the GA variables is, constant for every k-

th step, 0 0 0 0[4  7  8  4 ].   ∆θ =  
The GA characteristics imposed in the Matlab 

GA tool are: 
- initial population: randomly generated 
- population size: 50 
- selection function: tournament 
- tournament size: 4 
- elite count: 5 
- crossover: single point 
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Fig. 4 Simulation results using GPM with MXDC 

 GA converges to a minimum for the value 
of the fitness function after about 20 generations, 
while the non-linear constraint function is fulfilled.  

  The simulation results obtained (Fig. 7) 
show a better performance of the GA based strategy 
compared with the redundancy resolution methods 
with linearized solutions. 

 

Fig. 5 Simulation results using GPM with RPF 

  For instance, the sum of joint angles 
displacements for all sampling steps is 13.49 
radians, smaller than 15.06, obtained using the GPM 
with RPF working in the null-space of the Jacobian 
matrix. 

 
Fig. 6 Simulation results using EJM 

 

Fig. 7 Simulation results using GA 

 
 

6   Conclusions  
Four different iterative strategies for obstacle 

avoidance of a redundant manipulator were 
presented in this paper. The end-effector task 
consists in generating the references along the 
contour of a curve. 

The objective to simultaneously minimize the 
end-effector location error and the manipulator total 
joint displacement while the collision with the 
obstacle is avoided was fulfilled by all four 
proposed strategies.  

A major advantage of GPM is that works in real 
time. The computational time required is sensible 
smaller than using EJM, which requires expensive 
computational resources because of increasing 
Jacobian dimension and of a greater number of 
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iterations necessary for optimal solution 
identification.  

The most important advantages of the EJM are 
the fact of dealing with a square Jacobian matrix 
(thus, the use the pseudoinverse is eliminated) and 
the possibility of choosing a desired error value 
(which can guarantee improved end-effector task 
accuracy while obstacle avoidance is certainly 
accomplished).  

The usual disadvantages of methods with 
linearized solutions consist in difficulties when 
choosing the constraint expressions (the used 
criteria, having complicated expressions in symbolic 
forms, must be differentiable) and in algorithmic 
singularities introduced by these additional 
constraints. These two disadvantages are eliminated 
by advanced redundancy resolution approaches, 
such as a GA based method, which offers, also, the 
possibility to add additional performance criteria 
through non-linear constraints. 

The simulations results obtained for a redundant 
planar manipulator with four DOF indicate the 
superiority of the GA based strategy in what 
concerns the sum of joint angles displacements, but, 
in the same time, the most important disadvantage is 
that requires expensive computational resources and 
cannot deal with real-time applications. 
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