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1 Introduction

Research on non-linear equations is a hot topic. The
powerful and efficient methods to find analytic solu-
tions and numerical solutions of nonlinear equations
have drawn a lot of interest by a diverse group of
scientists. Many efficient methods have been pre-
sented so far such as in [1-7]. In recent years, ex-
act solutions of non-linear PDEs have been investi-
gated by many authors. Many powerful methods have
been presented by those authors such as the homo-
geneous balance method [8,9], the hyperbolic tangent
expansion method [10,11], the trial function method
[12], the tanh-method [13-15], the non-linear trans-
form method [16], the inverse scattering transform
[17], the Backlund transform [18,19], the Hirotas bi-
linear method [20,21], the generalized Riccati equa-
tion [22,23], the Weierstrass elliptic function method
[24], the theta function method [25-27], the sineCco-
sine method [28], the Jacobi elliptic function expan-
sion [29,30], the complex hyperbolic function method
[31-33], the truncated Painleve expansion [34], the F-
expansion method [35], the rank analysis method [36],
the exp-function expansion method [37] and so on.

The objective of this paper is to use a new method

which is called the (G
′

G )-expansion method [38-42].

The value of the (G
′

G )-expansion method is that one
can treat nonlinear problems by essentially linear
methods. Moreover, it transforms a nonlinear equa-

tion to a simple algebraic computation.
We organize the rest of the paper as follows.

In Section 2, we give the main steps of the (G
′

G )-
expansion method. In the subsequent sections, we
will apply the method to obtain the travelling wave
solutions of the variant Boussinseq equation and the
(2+1)-dimensional Nizhnik-Novikov-Veselov (NNV)
system. Some conclusions are presented in section 5.

2 Description of the (G
′

G )-expansion
method

In this section we describe the (G
′

G )-expansion
method for finding traveling wave solutions of non-
linear evolution equations. Suppose that a nonlinear
equation, say in two independent variables x, t, is
given by

P (u, ut, ux, utt, uxt, uxx, ...) = 0, (2.1)

or in three independent variables x, y and t, is
given by

P (u, ut, ux, uy, utt, uxt, uyt, uxx, uyy, ...) = 0,
(2.2)
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where u = u(x, t) or u = u(x, y, t) is an
unknown function, P is a polynomial in u = u(x, t)
or u = u(x, y, t) and its various partial derivatives,
in which the highest order derivatives and nonlinear
terms are involved. In the following, we will give the

main steps of the (G
′

G )-expansion method.

Step 1. Suppose that

u(x, t) = u(ξ), ξ = ξ(x, t) (2.3)

or

u(x, y, t) = u(ξ), ξ = ξ(x, y, t) (2.4)

The traveling wave variable (2.3) or (2.4) per-
mits us reducing (2.1) or (2.2) to an ODE for u = u(ξ)

P (u, u′, u′′, ...) = 0. (2.5)

Step 2. Suppose that the solution of (2.5) can be

expressed by a polynomial in (G
′

G ) as follows:

u(ξ) = αm(
G′

G
)m + ... (2.6)

where G = G(ξ) satisfies the second order LODE
in the form

G′′ + λG′ + µG = 0 (2.7)

αm, ..., λ and µ are constants to be determined
later, αm 6= 0. The unwritten part in (2.6) is also a

polynomial in (G
′

G ), the degree of which is generally
equal to or less than m − 1. The positive integer m
can be determined by considering the homogeneous
balance between the highest order derivatives and
nonlinear terms appearing in (2.5).

Step 3. Substituting (2.6) into (2.5) and using
second order LODE (2.7), collecting all terms with

the same order of (G
′

G ) together, the left-hand side of

(2.5) is converted into another polynomial in (G
′

G ).
Equating each coefficient of this polynomial to zero,
yields a set of algebraic equations for αm, ..., λ and

µ.

Step 4. Assuming that the constants αm, ..., λ and
µ can be obtained by solving the algebraic equations
in Step 3. Since the general solutions of the second
order LODE (2.7) have been well known for us, then
substituting αm, ... and the general solutions of (2.7)
into (2.6) we have traveling wave solutions of the non-
linear evolution equation (2.1) or (2.2).

3 Application Of The (G
′

G )-
Expansion Method For The Vari-
ant Boussinseq Equation

We consider the variant Boussinseq equation [43]:

ut + uux + vx + αuxxt = 0 (3.1)

vt + (uv)x + βuxxx = 0 (3.2)

where α and β are arbitrary constants, β > 0.
Supposing that

ξ = k(x− ct) (3.3)

By (3.3), (3.1) and (3.2) are converted into ODEs

−cu′ + uu′ + v′ − αk2cu′′′ = 0 (3.4)

−cv′ + (uv)′ + βk2u′′′ = 0 (3.5)

Integrating (3.4) and (3.5) once, we have

−cu +
1
2
u2 + v − αk2cu′′ = g1 (3.6)

−cv + uv + βk2u′′ = g2 (3.7)

where g1 and g2 are the integration constants.
Suppose that the solution of (3.6) and (3.7) can be

expressed by a polynomial in (G
′

G ) as follows:

u(ξ) =
m∑

i=0

ai(
G′

G
)i (3.8)

v(ξ) =
n∑

i=0

bi(
G′

G
)i (3.9)

where ai, bi are constants, G = G(ξ) satisfies the sec-
ond order LODE in the form:

G′′ + λG′ + µG = 0 (3.10)

where λ and µ are constants.
Balancing the order of u2 and v in Eq.(3.6), the

order of u′′ and uv in Eq.(3.7), then we can obtain
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2m = n, n + 2 = m + n ⇒ m = 1, n = 2, so
Eq.(3.8) and (3.9) can be rewritten as

u(ξ) = a1(
G′

G
) + a0, a1 6= 0 (3.11)

v(ξ) = b2(
G′

G
)2 + b1(

G′

G
) + b0, b2 6= 0 (3.24)

a1, a0, b2, b1, b0 are constants to be determined later.
Substituting (3.11) and (3.12) into (3.6) and (3.7)

and collecting all the terms with the same power

of (G
′

G ) together, equating each coefficient to zero,
yields a set of simultaneous algebraic equations as
follows:

For Eq.(3.6):

(G
′

G )0 : −ca0 + b0 + 1
2a2

0− g1−αk2ca1λµ = 0

(G
′

G )1 : a0a1 − αk2ca1λ
2 + b1 − 2αk2ca1µ −

ca1 = 0

(G
′

G )2 : 1
2a2

1 − 3αk2ca1λ + b2 = 0

(G
′

G )3 : −2αk2ca1 = 0

For Eq.(3.7):

(G
′

G )0 : −cb0 − g2 + βk2a1λµ + a0b0 = 0

(G
′

G )1 : b1a0 + βk2a1λ
2 + a1b0 − cb1 +

2βk2a1µ = 0

(G
′

G )2 : a1b1 + b2a0 + 3βk2a1λ− cb2 = 0

(G
′

G )3 : 2βk2a1 + b2a1 = 0

Solving the algebraic equations above yields:

a1 = a1, a0 =
1
2
a1λ, b2 = −1

2
a2

1

b1 = −1
2
a2

1λ, b0 = −1
2
a2

1µ

k = ±1
2

√
1
β

, c = 0, g1 =
1
8
(λ2 − 4µ), g2 = 0

(3.13)
where a1 is an arbitrary constant.

Substituting (3.13) into (3.11) and (3.12), yields:

u(ξ) = a1(
G′

G
) +

1
2
a1λ (3.14)

v(ξ) = −1
2
a2

1(
G′

G
)2 − 1

2
a2

1λ(
G′

G
)− 1

2
a2

1µ (3.15)

where ξ = kx.

Substituting the general solutions of (3.10) into
(3.14) and (3.15), we have:

When λ2 − 4µ > 0

u1(ξ) =
a1

√
λ2 − 4µ
2

.(
C1 sinh

1
2

√
λ2 − 4µξ + C2 cosh

1
2

√
λ2 − 4µξ

C1 cosh
1
2

√
λ2 − 4µξ + C2 sinh

1
2

√
λ2 − 4µξ

)

v1(ξ) = a2
1λ

2

8 − 1
2a2

1µ−
a2

1
8 (λ2 − 4µ)

.(
C1 sinh

1
2

√
λ2 − 4µξ + C2 cosh

1
2

√
λ2 − 4µξ

C1 cosh
1
2

√
λ2 − 4µξ + C2 sinh

1
2

√
λ2 − 4µξ

)2

Where ξ = kx, a1, C1, C2 are arbitrary constants.

When λ2 − 4µ < 0

u2(ξ) =
a1

√
4µ− λ2

2

.(
−C1 sin

1
2

√
4µ− λ2ξ + C2 cos

1
2

√
4µ− λ2ξ

C1 cos
1
2

√
4µ− λ2ξ + C2 sin

1
2

√
4µ− λ2ξ

)

v2(ξ) = a2
1λ

2

8 − 1
2a2

1µ−
a2

1
8 (4µ− λ2)

.(
−C1 sin

1
2

√
4µ− λ2ξ + C2 cos

1
2

√
4µ− λ2ξ

C1 cos
1
2

√
4µ− λ2ξ + C2 sin

1
2

√
4µ− λ2ξ

)2

Where ξ = kx, a1, C1, C2 are arbitrary constants.

When λ2 − 4µ = 0

u3(ξ) = a1(2C2 − C1λ− C2λξ)
2(C1 + C2ξ)

+ 1
2a1λ

v3(ξ) = a2
1λ

2

8 − a2
1C

2
2

2(C1 + C2ξ)2
− 1

2a2
1µ

Where ξ = kx, a1, C1, C2 are arbitrary constants.
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4 Application Of The (G
′

G )-
Expansion Method For The (2+1)-
dimensional Nizhnik-Novikov-
Veselov System

In this section we will consider the (2+1)-dimensional
Nizhnik-Novikov-Veselov (NNV) system [44-45]:

ut+auxxx+buyyy+cux+duy = 3a(uv)x+3b(uw)y

(4.1)
ux = vy (4.2)

uy = wx (4.3)

Supposing that

ξ = kx + ly + ωt (4.4)

By (4.4), (4.1), (4.2) and (4.3) are converted into
ODEs

ωu′+ak3u′′′+bl3u′′′+cku′+dlu′ = 3ak(uv)′+3bl(uw)′

(4.5)
ku′ = lv′ (4.6)

lu′ = kw′ (4.7)

Integrating (4.5), (4.6) and (4.7) once, we have

ωu+ak3u′′+bl3u′′+cku+dlu = 3akuv+3bluw+g1

(4.8)
ku = lv + g2 (4.9)

lu = kw + g3 (4.10)

where g1, g2, g3 are the integration constants.
Suppose that the solution of (4.8), (4.9) and (4.10)

can be expressed by a polynomial in (G
′

G ) as follows:

u(ξ) =
m∑

i=0

ai(
G′

G
)i (4.11)

v(ξ) =
n∑

i=0

bi(
G′

G
)i (4.12)

w(ξ) =
s∑

i=0

ci(
G′

G
)i (4.13)

where ai, bi, ci are constants, G = G(ξ) satisfies the
second order LODE in the form:

G′′ + λG′ + µG = 0 (4.14)

where λ and µ are constants.
Balancing the order of u′′ and uv in Eq.(4.8), the

order of u and v in Eq.(4.9), the order of u and w in
Eq.(4.10), then we can obtain m + 2 = m + n, m =

n, m = s ⇒ m = n = s = 2, so Eq.(4.11), (4.12)
and (4.13) can be rewritten as

u(ξ) = a2(
G′

G
)2 + a1(

G′

G
) + a0, a2 6= 0 (4.15)

v(ξ) = b2(
G′

G
)2 + b1(

G′

G
) + b0, b2 6= 0 (4.16)

w(ξ) = c2(
G′

G
)2 + c1(

G′

G
) + c0, c2 6= 0 (4.17)

a2, a1, a0, b2, b1, b0, c2, c1, c0 are constants to be
determined later.

Substituting (4.15), (4.16) and (4.17) into (4.8),
(4.9) and (4.10) and collecting all the terms with

the same power of (G
′

G ) together, equating each
coefficient to zero, yields a set of simultaneous
algebraic equations as follows:

For Eq.(4.8):

(
G′

G
)0 : 2ak3a2µ

2 + bl3a1λµ + 2bl3a2µ
2

+dla0 + cka0 − 3aka0b0 − 3bla0c0

+ak3a1λµ + ωa0 − g1 = 0

(
G′

G
)1 : 6ak3a2λµ + cka1 + bl3a1λ

2

−3bla1c0 + dla1 + 6bl3a2λµ

+ωa1 + ak3a1λ
2 − 3aka0b1 + 2ak3a1µ

+2bl3a1µ− 3bla0c1 − 3aka1b0 = 0

(
G′

G
)2 : −3aka0b2 + 4ak3a2λ

2 + 3bl3a1λ

+dla2 − 3bla1c1 + 4bl3a2λ
2

−3bla2c0 + 8ak3a2µ− 3aka2b0

+8bl3a2µ− 3aka1b1 − 3bla0c2

+ωa2 + 3ak3a1λ + cka2 = 0

(
G′

G
)3 : 2bl3a1 − 3aka2b1 + 10ak3a2λ

+10bl3a2λ− 3bla1c2 + 2ak3a1

−3aka1b2 − 3bla2c1 = 0

WSEAS TRANSACTIONS on MATHEMATICS Qinghua Feng, Bin Zheng

ISSN: 1109-2769 194 Issue 3, Volume 9, March 2010



(
G′

G
)4 : −3aka2b2 +6ak3a2 +6bl3a2−3bla2c2 = 0

For Eq.(4.9):

(
G′

G
)0 : ka0 − lb0 − g2 = 0

(
G′

G
)1 : ka1 − lb1 = 0

(
G′

G
)2 : ka2 − lb2 = 0

For Eq.(4.10):

(G
′

G )0 : la0 − kc0 − g3 = 0

(G
′

G )1 : la1 − kc1 = 0

(G
′

G )2 : la2 − kc2 = 0

Solving the algebraic equations above yields:

Case 1:
a2 = 2kl,

a1 = 2klλ,

a0 = 2klµ

b2 = 2k2,

b1 = 2k2λ,

b0 = 2k2µ

c2 = 2l2,

c1 = 2l2λ,

c0 = 2l2µ,

k = k, l = l

ω = 4ak3µ− ak3λ2 − bl3λ2 − dl + 4bl3µ− ck

g1 = g2 = g3 = 0 (4.18)

where k, l are arbitrary constants.
Substituting (4.18) into (4.15), (4.16) and (4.17),

yields:

u(ξ) = 2kl(
G′

G
)2 + 2klλ(

G′

G
) + 2klµ (4.19)

v(ξ) = 2k2(
G′

G
)2 + 2k2λ(

G′

G
) + 2k2µ (4.20)

w(ξ) = 2l2(
G′

G
)2 + 2l2λ(

G′

G
) + 2l2µ (4.21)

where

ξ = kx+ly+(4ak3µ−ak3λ2−bl3λ2−dl+4bl3µ−ck)t.

Substituting the general solutions of (4.14) into
(4.19), (4.20) and (4.21), we have:

When λ2 − 4µ > 0

u1(ξ) = 2klµ− klλ2

2
+

kl(λ2 − 4µ)
2

.(
C1 sinh

1
2

√
λ2 − 4µξ + C2 cosh

1
2

√
λ2 − 4µξ

C1 cosh
1
2

√
λ2 − 4µξ + C2 sinh

1
2

√
λ2 − 4µξ

)2

v1(ξ) = 2k2µ− k2λ2

2
+

k2

2
(λ2 − 4µ)

.(
C1 sinh

1
2

√
λ2 − 4µξ + C2 cosh

1
2

√
λ2 − 4µξ

C1 cosh
1
2

√
λ2 − 4µξ + C2 sinh

1
2

√
λ2 − 4µξ

)2

w1(ξ) = 2l2µ− l2λ2

2
+

l2

2
(λ2 − 4µ)

.(
C1 sinh

1
2

√
λ2 − 4µξ + C2 cosh

1
2

√
λ2 − 4µξ

C1 cosh
1
2

√
λ2 − 4µξ + C2 sinh

1
2

√
λ2 − 4µξ

)2

Where

ξ = kx+ly+(4ak3µ−ak3λ2−bl3λ2−dl+4bl3µ−ck)t,

k, l, C1, C2 are arbitrary constants.

When λ2 − 4µ < 0

u2(ξ) = 2klµ− klλ2

2
+

kl(4µ− λ2)
2
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.(
−C1 sin

1
2

√
4µ− λ2ξ + C2 cos

1
2

√
4µ− λ2ξ

C1 cos
1
2

√
4µ− λ2ξ + C2 sin

1
2

√
4µ− λ2ξ

)2

v2(ξ) = 2k2µ− k2λ2

2
+

k2

2
(4µ− λ2)

.(
−C1 sin

1
2

√
4µ− λ2ξ + C2 cos

1
2

√
4µ− λ2ξ

C1 cos
1
2

√
4µ− λ2ξ + C2 sin

1
2

√
4µ− λ2ξ

)2

w2(ξ) = 2l2µ− l2λ2

2
+

l2

2
(4µ− λ2)

.(
−C1 sin

1
2

√
4µ− λ2ξ + C2 cos

1
2

√
4µ− λ2ξ

C1 cos
1
2

√
4µ− λ2ξ + C2 sin

1
2

√
4µ− λ2ξ

)2

Where

ξ = kx+ly+(4ak3µ−ak3λ2−bl3λ2−dl+4bl3µ−ck)t,

k, l, C1, C2 are arbitrary constants.

When λ2 − 4µ = 0

u3(ξ) = −klλ2

2
+

2klC2
2

(C1 + C2ξ)2
+ 2klµ

v3(ξ) = −k2λ2

2
+

2k2C2
2

(C1 + C2ξ)2
+ 2k2µ

w3(ξ) = − l2λ2

2
+

2l2C2
2

(C1 + C2ξ)2
+ 2l2µ

Where

ξ = kx+ly+(4ak3µ−ak3λ2−bl3λ2−dl+4bl3µ−ck)t,

k, l, C1, C2 are arbitrary constants.

Case 2:
a2 = 2kl,

a1 = 2klλ,

a0 =
1
3
kl(λ2 + 2µ)

b2 = 2k2,

b1 = 2k2λ,

b0 =
1
3
k2(λ2 + 2µ)

c2 = 2l2,

c1 = 2l2λ,

c0 =
1
3
l2(λ2 + 2µ),

k = k, l = l

ω = −4ak3µ + ak3λ2 + bl3λ2 − dl − 4bl3µ− ck

g1 = g2 = g3 = 0 (4.22)

where k, l are arbitrary constants.

Substituting (4.22) into (4.15), (4.16) and (4.17),
yields:

u(ξ) = 2kl(
G′

G
)2+2klλ(

G′

G
)+

1
3
kl(λ2+2µ) (4.23)

v(ξ) = 2k2(
G′

G
)2 + 2k2λ(

G′

G
) +

1
3
k2(λ2 + 2µ)

(4.24)

w(ξ) = 2l2(
G′

G
)2+2l2λ(

G′

G
)+

1
3
l2(λ2+2µ) (4.25)

where

ξ = kx+ly+(−4ak3µ+ak3λ2+bl3λ2−dl−4bl3µ−ck)t.

Substituting the general solutions of (4.14) into
(4.23), (4.24) and (4.25), we have:

When λ2 − 4µ > 0

u1(ξ) =
1
3
kl(λ2 + 2µ)− klλ2

2
+

kl(λ2 − 4µ)
2
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.(
C1 sinh

1
2

√
λ2 − 4µξ + C2 cosh

1
2

√
λ2 − 4µξ

C1 cosh
1
2

√
λ2 − 4µξ + C2 sinh

1
2

√
λ2 − 4µξ

)2

v1(ξ) =
1
3
k2(λ2 + 2µ)− k2λ2

2
+

k2

2
(λ2 − 4µ)

.(
C1 sinh

1
2

√
λ2 − 4µξ + C2 cosh

1
2

√
λ2 − 4µξ

C1 cosh
1
2

√
λ2 − 4µξ + C2 sinh

1
2

√
λ2 − 4µξ

)2

w1(ξ) =
1
3
l2(λ2 + 2µ)− l2λ2

2
+

l2

2
(λ2 − 4µ)

.(
C1 sinh

1
2

√
λ2 − 4µξ + C2 cosh

1
2

√
λ2 − 4µξ

C1 cosh
1
2

√
λ2 − 4µξ + C2 sinh

1
2

√
λ2 − 4µξ

)2

Where

ξ = kx+ly+(−4ak3µ+ak3λ2+bl3λ2−dl−4bl3µ−ck)t,

k, l, C1, C2 are arbitrary constants.

When λ2 − 4µ < 0

u2(ξ) =
1
3
kl(λ2 + 2µ)− klλ2

2
+

kl(4µ− λ2)
2

.(
−C1 sin

1
2

√
4µ− λ2ξ + C2 cos

1
2

√
4µ− λ2ξ

C1 cos
1
2

√
4µ− λ2ξ + C2 sin

1
2

√
4µ− λ2ξ

)2

v2(ξ) =
1
3
k2(λ2 + 2µ)− k2λ2

2
+

k2

2
(4µ− λ2)

.(
−C1 sin

1
2

√
4µ− λ2ξ + C2 cos

1
2

√
4µ− λ2ξ

C1 cos
1
2

√
4µ− λ2ξ + C2 sin

1
2

√
4µ− λ2ξ

)2

w2(ξ) =
1
3
l2(λ2 + 2µ)− l2λ2

2
+

l2

2
(4µ− λ2)

.(
−C1 sin

1
2

√
4µ− λ2ξ + C2 cos

1
2

√
4µ− λ2ξ

C1 cos
1
2

√
4µ− λ2ξ + C2 sin

1
2

√
4µ− λ2ξ

)2

Where

ξ = kx+ly+(−4ak3µ+ak3λ2+bl3λ2−dl−4bl3µ−ck)t,

k, l, C1, C2 are arbitrary constants.

When λ2 − 4µ = 0

u3(ξ) = −klλ2

2
+

2klC2
2

(C1 + C2ξ)2
+

1
3
kl(λ2 + 2µ)

v3(ξ) = −k2λ2

2
+

2k2C2
2

(C1 + C2ξ)2
+

1
3
k2(λ2 + 2µ)

w3(ξ) = − l2λ2

2
+

2l2C2
2

(C1 + C2ξ)2
+

1
3
l2(λ2 + 2µ)

Where

ξ = kx+ly+(−4ak3µ+ak3λ2+bl3λ2−dl−4bl3µ−ck)t,

k, l, C1, C2 are arbitrary constants.
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5 Conclusions
From above we have seen that the traveling wave so-
lutions of the variant Boussinseq equation and the
(2+1)-dimensional Nizhnik-Novikov-Veselov (NNV)
system are successfully found by using the (G

′

G )-
expansion method.

Compared to the methods used before, one can
see that this method is direct, concise and effective.
As we can use the MATHEMATICA or MAPLE to
find out a useful solution of the algebraic equations
resulted, so we can also avoids tedious calculations.
This method can also be used to many other nonlinear
equations.
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