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1 Introduction
During the past four decades or so searching for
explicit solutions of nonlinear evolution equations
(NLEEs) by using various different methods has been
the main goal for many researchers, and many pow-
erful methods for constructing exact solutions of non-
linear evolution equations have been established and
developed. Some of these approaches are the homo-
geneous balance method [8,9], the hyperbolic tangent
expansion method [10,11], the trial function method
[12], the tanh-method [13-15], the non-linear trans-
form method [16], the inverse scattering transform
[17], the Backlund transform [18,19], the Hirotas bi-
linear method [20,21], the generalized Riccati equa-
tion [22,23], the Weierstrass elliptic function method
[24], the theta function method [25-27], the sineCco-
sine method [28], the Jacobi elliptic function expan-
sion [29,30], the complex hyperbolic function method
[31-33], the truncated Painleve expansion [34], the F-
expansion method [35], the rank analysis method [36],
the exp-function expansion method [37] and so on.
Yet there is no unified method that can be used to deal
with all types of nonlinear evolution equations.

Recently a so-called (G
′

G )-expansion method has
drawn a lot of attention. The method was presented
by Mingliang Wang in [38] at first. The main merits

of the (G
′

G )-expansion method over the other methods
are that it gives more general solutions with some free

parameters and it handles NLEEs in a direct manner
with no requirement for initial/boundary condition or
initial trial function at the outset. The method was
soon been applied to other non-linear problems by
several authors [39-42].

In this paper we will apply the (G
′

G )-expansion
method to some nonlinear problems. In Section 2, we

describe the universe process of the (G
′

G )-expansion
method. In section 3 and 4, we will obtain the travel-
ling wave solutions of the fifth-order Sawada-Kotera
equation and the general Gardner equation by the
method respectively. In section 5, we will give some

conclusions on the (G
′

G )-expansion method.

2 Description of the (G
′

G )-expansion
method

In this section we describe the (G
′

G )-expansion
method for finding traveling wave solutions of non-
linear evolution equations. Suppose that a nonlinear
equation, say in two independent variables x, t, is
given by

P (u, ut, ux, utt, uxt, uxx, ...) = 0, (2.1)
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or in three independent variables x, y and t, is
given by

P (u, ut, ux, uy, utt, uxt, uyt, uxx, uyy, ...) = 0,
(2.2)

where u = u(x, t) or u = u(x, y, t) is an
unknown function, P is a polynomial in u = u(x, t)
or u = u(x, y, t) and its various partial derivatives,
in which the highest order derivatives and nonlinear
terms are involved. In the following, we will give the

main steps of the (G
′

G )-expansion method.

Step 1. Suppose that

u(x, t) = u(ξ), ξ = ξ(x, t) (2.3)

or

u(x, y, t) = u(ξ), ξ = ξ(x, y, t) (2.4)

The traveling wave variable (2.3) or (2.4) per-
mits us reducing (2.1) or (2.2) to an ODE for u = u(ξ)

P (u, u′, u′′, ...) = 0. (2.5)

Step 2. Suppose that the solution of (2.5) can be

expressed by a polynomial in (G
′

G ) as follows:

u(ξ) = αm(
G′

G
)m + ... (2.6)

where G = G(ξ) satisfies the second order LODE
in the form

G′′ + λG′ + µG = 0 (2.7)

αm, ..., λ and µ are constants to be determined
later, αm 6= 0. The unwritten part in (2.6) is also a

polynomial in (G
′

G ), the degree of which is generally
equal to or less than m − 1. The positive integer m
can be determined by considering the homogeneous
balance between the highest order derivatives and
nonlinear terms appearing in (2.5).

Step 3. Substituting (2.6) into (2.5) and using
second order LODE (2.7), collecting all terms with

the same order of (G
′

G ) together, the left-hand side of

(2.5) is converted into another polynomial in (G
′

G ).
Equating each coefficient of this polynomial to zero,
yields a set of algebraic equations for αm, ..., λ and
µ.

Step 4. Assuming that the constants αm, ..., λ and
µ can be obtained by solving the algebraic equations
in Step 3. Since the general solutions of the second
order LODE (2.7) have been well known for us, then
substituting αm, ... and the general solutions of (2.7)
into (2.6) we have traveling wave solutions of the non-
linear evolution equation (2.1) or (2.2).

3 Application Of The (G
′

G )-
Expansion Method For The Fifth-
Order Sawada-Kotera Equation

We begin with the fifth-order Sawada-Kotera equation
[43]:

uxxxxx + ut + 45uxu2 + 15(uxuxx + uuxxx) = 0
(3.1)

In order to obtain the traveling wave solutions of
Eq.(3.1), we suppose that

u(x, t) = u(ξ), ξ = x− ct (3.2)

c is a constant that to be determined later.
By using the wave variable (3.2), Eq.(3.1) is con-
verted into an ODE

u(5) − cu′ + 45u′u2 + 15u′u′′ + 15uu′′′ = 0 (3.3)

Integrating (3.3) with respect to ξ once, we obtain

u(4) − cu + 15u3 + 15uu′′ = g (3.4)

where g is the integration constant that can be deter-
mined later.

Suppose that the solution of the ODE (3.4) can

be expressed by a polynomial in (G
′

G ) as follows:

u(ξ) =
m∑

i=0

ai(
G′

G
)i (3.5)

where ai are constants, G = G(ξ) satisfies the second
order LODE in the form:

G′′ + λG′ + µG = 0 (3.6)

where λ and µ are constants.
Balancing the order of u3 and u(4) in Eq.(3.4), we get
that 3m = m + 4 ⇒ m = 2, so Eq.(3.5) can be
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rewritten as

u(ξ) = a2(
G′

G
)2 + a1(

G′

G
) + a0, a2 6= 0 (3.7)

a2, a1, a0 are constants to be determined later.
Then we can obtain

u′(ξ) = −2a2(
G′

G
)3 + (−a1 − 2a2λ)(

G′

G
)2

+(−a1λ− 2a2µ)(
G′

G
)− a1µ

u′′(ξ) = 6a2(
G′

G
)4 + (2a1 + 10a2λ)(

G′

G
)3

+(8a2µ + 3a1λ + 4a2λ
2)(

G′

G
)2

+(6a2λµ + 2a1µ + a1λ
2)(

G′

G
) + 2a2µ

2 + a1λµ

u′′′(ξ) = −24a2(
G′

G
)5 + (−54a2λ− 6a1)(

G′

G
)4

+(−12a1λ− 38a2λ
2 − 40a2µ)(

G′

G
)3

+(−52a2λµ− 7a1λ
2 − 8a2λ

3 − 8a1µ)(
G′

G
)2

+(−14a2λ
2µ− a1λ

3 − 16a2µ
2 − 8a1λµ)(

G′

G
)

−a1λ
2µ− 2a1µ

2 − 6a2λµ2

u(4)(ξ) = 120a2(
G′

G
)6 + (24a1 + 336a2λ)(

G′

G
)5

+(330a2λ
2 + 240a2µ + 60a1λ)(

G′

G
)4

+(50a1λ
2 + 130a2λ

3 + 40a1µ + 440a2λµ)(
G′

G
)3

+(16a2λ
4+15a1λ

3+136a2µ
2+60a1λµ+232a2λ

2µ)(
G′

G
)2

+(22a1λ
2µ+16a1µ

2+120a2λµ2+30a2λ
3µ+a1λ

4)(
G′

G
)

+14a2λ
2µ2 + 16a2µ

3 + a1λ
3µ + 8a1λµ2

On substituting Eq.(3.7) into the ODE (3.4) and

collecting all the terms with the same power of (G
′

G )
together, equating each coefficient to zero, yields a set
of simultaneous algebraic equations as follows:

(
G′

G
)0 : 16a2µ

3 + 15a0a1λµ + 14a2λ
2µ2

+8a1λµ2 − ca0 + 15a3
0 + a1λ

3µ

−g + 30a0a2µ
2 = 0

(
G′

G
)1 : 30a2λ

3µ + 30a0a1µ + 30a1a2µ
2

+45a2
0a1 + 90a0a2λµ + 15a0a1λ

2

+22a1λ
2µ− ca1 + 16a1µ

2 + a1λ
4

+15a2
1λµ + 120a2λµ2 = 0

(
G′

G
)2 : 120a0a2µ + 15a2

1λ
2 + 16a2λ

4

+30a2
1µ + 45a2

0a2 + 136a2µ
2

+105a1a2λµ + 232a2λ
2µ + 15a1λ

3

+60a1λµ + 60a0a2λ
2 + 45a0a

2
1 + 45a0a1λ

−ca2 + 30a2
2µ

2 = 0

(
G′

G
)3 : 75a1a2λ

2 + 130a2λ
3 + 90a2

2λµ

+90a0a1a2 + 30a0a1 + 150a1a2µ

+15a3
1 + 440a2λµ + 40a1µ

+45a2
1λ + 50a1λ

2 + 150a0a2λ = 0

(
G′

G
)4 : 330a2λ

2 + 30a2
1 + 90a0a2

+120a2
2µ + 60a2

2λ
2 + 60a1λ

+45a2
1a2 + 195a1a2λ

+240a2µ + 45a0a
2
2 = 0

(
G′

G
)5 : 45a1a

2
2 + 150a2

2λ + 336a2λ

+24a1 + 120a1a2 = 0
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(
G′

G
)6 : 15a3

2 + 90a2
2 + 120a2 = 0

Solving the algebraic equations above, we can
get the results for two cases:

Case 1:
a2 = −4,

a1 = −4λ,

a0 = −1
3
(λ2 + 8µ)

c = −8λ2µ + 16µ2 + λ4,

g =
128
9

µ3 +
8
3
λ4µ− 32

3
λ2µ2 − 2

9
λ6 (3.8)

where λ, µ are arbitrary constants.

Substituting (3.8) into (3.7), we get that

u(ξ) = −4(
G′

G
)2 − 4λ(

G′

G
)− 1

3
(λ2 + 8µ)

ξ = x + (−8λ2µ + 16µ2 + λ4)t (3.9)

where λ, µ are arbitrary constants.

Substituting the general solutions of Eq.(3.6) into
(3.9), we can obtain three types of traveling wave
solutions of the fifth-order SawadaCKotera equation
(3.1) as follows:

When λ2 − 4µ > 0

u1(ξ) = λ2 − (λ2 − 4µ).C1 sinh
1
2

√
λ2 − 4µξ + C2 cosh

1
2

√
λ2 − 4µξ

C1 cosh
1
2

√
λ2 − 4µξ + C2 sinh

1
2

√
λ2 − 4µξ


2

−1
3
(λ2 + 8µ),

where

ξ = x + (−8λ2µ + 16µ2 + λ4)t.

C1, C2 are arbitrary constants.

When λ2 − 4µ < 0

u2(ξ) = λ2 − (4µ− λ2).

−C1 sin
1
2

√
4µ− λ2ξ + C2 cos

1
2

√
4µ− λ2ξ

C1 cos
1
2

√
4µ− λ2ξ + C2 sin

1
2

√
4µ− λ2ξ


2

−1
3
(λ2 + 8µ),

where

ξ = x + (−8λ2µ + 16µ2 + λ4)t.

C1, C2 are arbitrary constants.

When λ2 − 4µ = 0

u3(ξ) = λ2 − 4C2
2

(C1 + C2ξ)2
− 1

3
(λ2 + 8µ),

where

ξ = x + (−8λ2µ + 16µ2 + λ4)t.

C1, C2 are arbitrary constants.

Case 2:
a2 = −2,

a1 = −2λ,

a0 = a0,

c = 120a0µ + 45a2
0 + 22λ2µ

+15a0λ
2 + λ4 + 76µ2

g = −32µ3 − 2λ4µ− 44λ2µ2

−120a2
0µ− 30a3

0 − 52a0λ
2µ

−15a2
0λ

2 − a0λ
4 − 136a0µ

2 (3.10)

where a0, λ, µ are arbitrary constants.

Substituting (3.10) into (3.7), we get that

u(ξ) = −2(
G′

G
)2 − 2λ(

G′

G
) + a0

ξ = x+(120a0µ+45a2
0+22λ2µ+15a0λ

2+λ4+76µ2)t
(3.11)

where a0, λ, µ are arbitrary constants.

Substituting the general solutions of Eq.(3.6) into
(3.11), we can obtain three types of traveling wave
solutions of the fifth-order SawadaCKotera equation
(3.1) as follows:
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When λ2 − 4µ > 0

u1(ξ) =
1
2
λ2 − 1

2
(λ2 − 4µ).C1 sinh

1
2

√
λ2 − 4µξ + C2 cosh

1
2

√
λ2 − 4µξ

C1 cosh
1
2

√
λ2 − 4µξ + C2 sinh

1
2

√
λ2 − 4µξ


2

+a0,

where

ξ = x+(120a0µ+45a2
0+22λ2µ+15a0λ

2+λ4+76µ2)t.

a0, C1, C2 are arbitrary constants.

When λ2 − 4µ < 0

u2(ξ) =
1
2
λ2 − 1

2
(4µ− λ2).−C1 sin

1
2

√
4µ− λ2ξ + C2 cos

1
2

√
4µ− λ2ξ

C1 cos
1
2

√
4µ− λ2ξ + C2 sin

1
2

√
4µ− λ2ξ


2

+a0,

where

ξ = x+(120a0µ+45a2
0+22λ2µ+15a0λ

2+λ4+76µ2)t.

a0, C1, C2 are arbitrary constants.

When λ2 − 4µ = 0

u3(ξ) =
1
2
λ2 − 2C2

2

(C1 + C2ξ)2
+ a0,

where

ξ = x+(120a0µ+45a2
0+22λ2µ+15a0λ

2+λ4+76µ2)t.

a0, C1, C2 are arbitrary constants.

4 Application Of The (G
′

G )-
Expansion Method For The Gen-
eral Gardner Equation

In this section, we will consider the general Gardner
equation[44]:

ut +(p+ qun + ru2n)ux +uxxx = 0, n ≥ 0, r < 0
(4.1)

when n = 1, q 6= 0, r 6= 0, Eq.(4.1) becomes the
KdV-mKdV equation

ut + (p + qu + ru2)ux + uxxx = 0,

when n = 1, q 6= 0, r = 0, Eq.(4.1) becomes the KdV
equation

ut + (p + qu)ux + uxxx = 0,

when n = 1, q = 0, r 6= 0, Eq.(4.1) becomes the
mKdV equation

ut + (p + ru2)ux + uxxx = 0

In the following, we shall construct exact travel-
ing wave solutions of Eq.(4.1).

In order to obtain the traveling wave solutions of
Eq.(4.1), we suppose that

u(x, t) = u(ξ), ξ = k(x− ωt) (4.2)

k, ω are constants that to be determined later.
By using (4.2), (4.1) is converted into an ODE

−kωu′ + k(p + qun + ru2n)u′ + k3u′′′ = 0 (4.3)

Suppose that the solution of (4.3) can be ex-

pressed by a polynomial in (G
′

G ) as follows:

u(ξ) =
m∑

i=0

ai(
G′

G
)i (4.4)

where ai are constants.
Balancing the order of u2nu′ and u′′′ in Eq.(4.3),

we have 2mn + m + 1 = m + 3 ⇒ m = 1
n . So we

make a variable u = v
1
n , then (4.3) is converted into

−k(ω−p−qv−rv2)n2v2v′ +k3(1−n)(1−2n)(v′)3

+3k3n(1− n)vv′v′′ + k3n2v2v′′′ = 0 (4.5)

Suppose that the solution of (4.5) can be ex-

pressed by a polynomial in (G
′

G ) as follows:

v(ξ) =
l∑

i=0

bi(
G′

G
)i (4.6)

where bi are constants, G = G(ξ) satisfies the second
order LODE in the form:

G′′ + λG′ + µG = 0 (4.7)

where λ and µ are constants.
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Balancing the order of v4v′ and (v′)3 in Eq.(4.5),
we have 4l + l + 1 = 3l + 3 ⇒ l = 1. So Eq.(4.6)
can be rewritten as

v(ξ) = b1(
G′

G
) + b0, b1 6= 0 (4.8)

b1, b0 are constants to be determined later.
Substituting (4.8) into (4.5) and collecting all

the terms with the same power of (G
′

G ) together
and equating each coefficient to zero, yields a set of
simultaneous algebraic equations as follows:

(
G′

G
)0 : −k3a3

1µ
3 + 3k3a3

1nµ3 + kn2a1ωa2
0µ

−k3n2a2
0a1λ

2µ + 3k3n2a2
1a0µ

2λ− kn2a1qa
3
0µ

−2k3a3
1n

2µ3 − 2k3n2a2
0a1µ

2 − 3k3na2
1a0µ

2λ

−kn2a1ra
4
0µ− kn2a1pa2

0µ = 0

(
G′

G
)1 : −3kn2a2

1qa
2
0µ + 6k3a3

1nλµ2

+4k3n2a2
1a0λ

2µ + 2k3n2a2
1a0µ

2 − 4kn2a2
1ra

3
0µ

−kn2a1qa
3
0λ− 3k3an3

1 λµ2 − kn2a1pa2
0λ

−8k3n2a2
0a1λµ− kn2a1ra

4
0λ− 6k3na2

1a0λ
2µ

−2kn2a2
1pa0µ + 2kn2a2

1ωa0µ + kn2a1ωa2
0λ

−3k3a3
1n

2λµ2 − k3n2a2
0a1λ

3 − 6k3na2
1a0µ

2 = 0

(
G′

G
)2 : −kn2a1pa2

0 + kn2a1ωa2
0 − k3a3

1n
2λ2µ

−3k3a3
1λ

2µ−3kn2a3
1qa0µ−2kn2a2

1pa0λ+kn2a3
1ωµ

−kn2a3
1pµ−kn2a1qa

3
0−8k3n2a2

0a1µ−3k3na2
1a0λ

3

+k3n2a2
1a0λ

3 − 4kn2a2
1ra

3
0λ + 2kn2a2

1ωa0λ

+2k3n2a2
1a0λµ− 3k3a3

1µ
2 − kn2a1ra

4
0 + 3k3a3

1nµ2

+3k3a3
1nλ2µ− 2k3a3

1n
2µ2 − 3kn2a2

1qa
2
0λ

−6kn2a3
1ra

2
0µ− 18k3na2

1a0λµ− 7k3n2a2
0a1λ

2 = 0

(
G′

G
)3 : −6kn2a3

1ra
2
0λ + 2kn2a2

1ωa0

−3kn2an3
1 qa0λ− 2knn3n2a2

1a0λ
2 − 4kn3n2a2

1a0µ

−k3a3
1λ

3 − 12k3na2
1a0µ− 4kn2a4

1ra0µ− kn2a3
1pλ

−6k3a3
1λµ− 4kn2a2

1ra
3
0 − 2kn2a2

1pa0 − kn2a4
1qµ

−12k3na2
1a0λ

2 + kn2a3
1ωλ− 2k3a3

1n
2λµ

−3kn2a2
1qa

2
0 − 12k3n2a2

0a1λ = 0

(
G′

G
)4 : kn2a3

1ω − 3k3a3
1nµ− kn2a4

1qλ− kn2a5
1rµ

−3k3a3
1µ− 3kn2a3

1qa0 − 3k3a3
1λ

2 − 15k3na2
1a0λ

−kn2a3
1p− 2k3a3

1n
2µ− 3k3a3

1nλ2 − k3a3
1n

2λ2

−9k3n2a2
1a0λ− 4kn2a4

1ra0λ− 6kn2a3
1ra

2
0

−6k3n2a2
0a1 = 0

(
G′

G
)5 : −kn2a5

1rλ− 6k3n2a2
1a0 − kn2a4

1q

−3k3a3
1n

2λ− 3k3a3
1λ− 6k3na2

1a0 − 4kn2a4
1ra0

−6k3a3
1nλ = 0

(
G′

G
)6 : −2k3a3

1n
2 − k3a3

1 − 3k3a3
1n

−kn2a5
1r = 0

Solving the algebraic equations above, yields:
Case 1: when λ2 − 4µ > 0

b1 = ±(2n + 1)q
(n + 2)r

√
1

λ2 − 4µ

b0 =
q

2(n + 2)r

[
−2n± (2n + 1)λ

√
1

λ2 − 4µ
∓ 1

]

k = ± qn

n + 2

√
−(2n + 1)

(λ2 − 4µ)(rn + r)

ω =
prn3 + 5prn2 + 8npr − 2nq2 + 4pr − q2

r(n + 2)2(n + 1)
(4.9)

Substituting (4.9) into (4.8), we have

v(ξ) = ±(2n + 1)q
(n + 2)r

√
1

λ2 − 4µ
(
G′

G
)+

q

2(n + 2)r

[
−2n± (2n + 1)λ

√
1

λ2 − 4µ
∓ 1

]
,
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ξ = ± qn

n + 2

√
−(2n + 1)

(λ2 − 4µ)(rn + r)

[x− prn3 + 5prn2 + 8npr − 2nq2 + 4pr − q2

r(n + 2)2(n + 1)
t]

(4.10)

Substituting the general solutions of (4.7) into
(4.10), we have:

v1(ξ) = ∓(2n + 1)qλ
2(n + 2)r

√
1

λ2 − 4µ
±

(2n + 1)q
2(n + 2)r

C1 sinh
1
2

√
λ2 − 4µξ + C2 cosh

1
2

√
λ2 − 4µξ

C1 cosh
1
2

√
λ2 − 4µξ + C2 sinh

1
2

√
λ2 − 4µξ



+
q

2(n + 2)r

[
−2n± (2n + 1)λ

√
1

λ2 − 4µ
∓ 1

]
,

then

u1(ξ) = (v1(ξ))
1
n .

Where

ξ = ± qn

n + 2

√
−(2n + 1)

(λ2 − 4µ)(rn + r)

[x− prn3 + 5prn2 + 8npr − 2nq2 + 4pr − q2

r(n + 2)2(n + 1)
t],

C1 and C2 are two arbitrary constants.

Case 2: when λ2 − 4µ < 0

b1 = ±(2n + 1)q
(n + 2)r

√
1

4µ− λ2 i

b0 =
q

2(n + 2)r

[
−2n± (2n + 1)λ

√
1

4µ− λ2 i∓ 1

]

k = ± qn

n + 2

√
−(2n + 1)

(4µ− λ2)(rn + r)
i

ω =
prn3 + 5prn2 + 8npr − 2nq2 + 4pr − q2

r(n + 2)2(n + 1)
(4.11)

Substituting (4.11) into (4.8), we have

v(ξ) = ±(2n + 1)q
(n + 2)r

√
1

4µ− λ2 i(
G′

G
) +

q

2(n + 2)r

[−2n± (2n + 1)λ

√
1

4µ− λ2 i∓ 1],

ξ = ± qn

n + 2

√
−(2n + 1)

(4µ− λ2)(rn + r)
i

[x− prn3 + 5prn2 + 8npr − 2nq2 + 4pr − q2

r(n + 2)2(n + 1)
t]

(4.12)

Substituting the general solutions of (4.7) into
(4.12), we have:

v2(ξ) = ∓(2n + 1)qλ
2(n + 2)r

√
1

4µ− λ2 i±

(2n + 1)q
2(n + 2)r

i(
C1 sinh

1
2

√
λ2 − 4µξ + C2 cosh

1
2

√
λ2 − 4µξ

C1 cosh
1
2

√
λ2 − 4µξ + C2 sinh

1
2

√
λ2 − 4µξ

)

+
q

2(n + 2)r

[
−2n± (2n + 1)λ

√
1

4µ− λ2 i∓ 1

]
,

then
u2(ξ) = (v2(ξ))

1
n .

Where

ξ = ± qn

n + 2

√
−(2n + 1)

(4µ− λ2)(rn + r)
i

[x− prn3 + 5prn2 + 8npr − 2nq2 + 4pr − q2

r(n + 2)2(n + 1)
t],

C1 and C2 are two arbitrary constants.
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5 Conclusions
The main points of the method are that assuming
the solution of the ODE reduced by using the trav-
eling wave variable as well as integrating can be ex-

pressed by an m-th degree polynomial in (G
′

G ), where
G = G(ξ) is the general solutions of a second or-
der LODE. The positive integer m is determined by
the homogeneous balance between the highest order
derivatives and nonlinear terms appearing in the re-
duced ODE, and the coefficients of the polynomial
can be obtained by solving a set of simultaneous alge-
braic equations resulted from the process of using the
method. Compared to the methods used before, one
can see that this method is direct, concise and effec-
tive. Moreover, the method can also be used to many
other nonlinear equations.
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