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Abstract: We study a nonlinear system under regime switching and subject to an environmental noise. The stochas-
tic differential equations with Markovian switching (SDEwMSs), one of the important classes of hybrid systems,
have been used to model many physical systems that are subject to frequent unpredictable structural changes. The
research in this area has been both theoretical and applied. Most of SDEwMSs do not have explicit solutions so
it is important to have numerical solutions. It is surprising that there are not any numerical methods established
for SDEwMSs yet, although the numerical methods for stochastic differential equations (SDEs) have been well
studied. We will considered some more general conditions for the coefficient functions and prove a result on the
existence using the Schauder’s fixed point theorem extended some similarly results on linear systems. The most
important results in this paper is to develop a numerical scheme for SDEwMSs and estimate the error between
the numerical and exact solutions. Also, we study the application of these system to control the electronic circuits
using the benefit of stochastic resonance

Key–Words:stochastic differential equation with Markovian switching, pathwise uniqueness, fixed point technique,
numerical solution, Euler-Maruyama method, stopping times, stochastic resonance

1 Introduction

The hybrid systems driven by continuous-time
Markov chains have been used to model many prac-
tical systems where they may experience abrupt
changes in their structure and parameters caused by
phenomena such as component failures or repairs,
changing subsystem interconnections, and abrupt en-
vironmental disturbances. The hybrid systems com-
bine a part of the state that takes values continuously
and another part of the state that takes discrete val-
ues. The term describing the influence of interest rates
was modeled by a finite-state Markov chain to provide
a quantitative measure of the effect of interest rate
uncertainty on optimal policy (see Bensoussan 2000,
Bouks 1993, Ghosh 1993, Hu 2000, etc.) . One of the
important classes of the hybrid systems is the stochas-
tic differential equations with Markovian switching
(SDEwMSs) (see Ji, 1990, Mao, 1999, Mao, 2006)

In this paper, we shall discuss the existence
and uniqueness of the solution on a general nonlin-
ear stochastic differential equations with Markovian

switching of the form

dx(t) = f(x(t), t, r(t))dt+

+g(x(t), t, r(t))dw(t)
(1)

This equation can be regarded as the result of the
following N equations:

dx(t) = f(x(t), t, i)dt + g(x(t), t, i)dw(t),

1 ≤ i ≤ N
(2)

switching from one to the others according to the
movement of the Markov chain. We consider
r(t), t0 ≤ t ≤ T , be a right-continuous Markov
chain on the probability space taking values in a fi-
nite state space S = {1, 2, . . . , N} with generator
Γ = (γij)ij=1,N given by

P [r(t + ∆) = j|r(t) = i] =

=

{
γij + o(∆), if i 6= j
1 + γij + o(∆), if i = j
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where ∆ > 0 Here γij is transition rate from i to j
if i 6= j while γii = −∑

j 6=i γij . We assume that
the Markov chain r(t) is independent of the Brownian
motion w(t) . It is well known that almost every sam-
ple path of r(t) is a right-continuous step function and
r(t) is ergodic. It is known that almost every sample
path of r(t) is a right-continuous step function with a
finite number of simple jumps in any finite subinterval
of R+ .

Most of SDEwMSsdo not have explicit solu-
tions and hence require numerical solutions. How-
ever, there are no numerical methods available for
SDEwMSs yet, although the numerical methods for
stochastic differential equations (SDEs) have been
well studied (see for example [27]). There are several
reasons. The main one is that a mathematical diffi-
culty has arisen from the Markovian switching which
requires a new technique to be developed. The proof
of Theorem 3.1 below demonstrates the new tech-
nique to overcome this difficulty. It is there we will
see that the proof for SDEwMSs is certainly not a
straightforward generalization of that for SDEs. An-
other reason is that many SDEwMSs do not satisfy
the global Lipschitz condition, but even in the case of
SDEs (not SDEwMSs, of course), there are only a few
papers on the numerical methods without the global
Lipschitz condition (see [?], Yuan and Mao 2004).

2 Existence and uniqueness
Let {w(t)}, 0 ≤ t0 ≤ t ≤ T (T ∈ R+) , de-
note a Wiener process defined on the probability space
(Ω, F, P ) . Suppose {Ft : t0 ≤ t ≤ T} is a non-
anticipating family of sub- σ -algebras of F with re-
spect to the Wiener process wt .

First, in a some similar way as (Athanassov, 1990,
Constantin A., 1996, Negrea 2003), we give the fol-
lowing lemma:

Lemma 2.1. Let u(t) a continuous, positive
function on a < t ≤ b ( a < b , two real numbers),
having nonnegative derivative u′(t) ∈ L(a, b) . Let
v(t) a continuous, nonnegative functions for a ≤ t ≤
b such that v(t) = o(u(t)) as t → a+ and v(t) ≤∫ b
a+

u′(s)
u(s) v(s)ds, ∀ a ≤ t ≤ b.

Then v(t) ≡ 0 on a ≤ t ≤ b .

The basic idea in proving the existence of the so-
lution in a SDEwMS is to analyze a standard SDE
on each interval [tk, tk+1], k ≥ 0 , where (tk)k≥1

are the associated stopping times of the Markov pro-
cess {r(t)}t∈[t0,T ] . Some results on the existence
and uniqueness of solutions and on the convergence
of successive approximations for stochastic differen-
tial equations, assuming the existence of a function u

controlling the growth and the continuity of f and g
(as in Constantin A., 1996, Negrea 2003, Constantin
I., 2004, etc.) generalizing to the setting of stochas-
tic differential equations driven by Brownian motion
a result of Athanassov (see Athanassov 1990).

Now, we recall the SDEwMS (1) and we consider
the equivalent integral equation

x(t) = x(t0) +
∫ T
t0

f(x(s), s, r(s))ds+

+
∫ T
t0

g(x(s), s, r(s))dWs

(3)

with f, g : Ω × R × [t0, T ] × R and the following
hypotheses:

(H1). f, g are B ⊗ P ⊗B measurable functions;
(H2). f(0, ·, i) ∈ M2([t0, T ], R) and g(0, ·, i) ∈

M2([t0, T ], R) ;
(H3). there exists u(t) a continuous, positive and

derivable function on t0 < t ≤ T with u(t0) = 0
, having nonnegative derivate u′(t) ∈ L(t0, T ) such
that

|f(x, t, i)− f(y, t, i)|2 ∧ |g(x, t, i)− g(y, t, i)|2 ≤

≤ u′(t)
3u(t)

|x− y|2, (4)

for all x, y ∈ R, t0 < t ≤ T, i ∈ S;
(H4). with the same function u(t) as above we

have

|f(x, t, i)|2 ∧ |g(x, t, i)|2 ≤ u′(t)(1 + |x|2); (5)

(H5). x(t0) = x0 is a given Ft0 -measurable ran-
dom variable such that E[|x0|2] < ∞ .

Remark. A result on the existence and unique-
ness of the solution for the equation (1) in the above
hypotheses was given in [24] (see Negrea et.al. 2009),
in a classical way, using an approximation sequence
for the existence of the solution. In the following the-
orem we give an elegant way (and also, a shorter man-
ner) to prove the existence of the solution.

Theorem 2.2. Let be f and g satisfying the
hypotheses (H1)-(H5) and x0 ∈ L2(Ω, Ft0 , P, R) ,
then there exists a unique solution x ∈ L2((t0, T ), R)
which satisfies the equation (1) for t0 ≤ t ≤ T .

Proof. Uniqueness. Let be x(t) nd y(t) two
solutions in L2([t0, T ], R) of the equations (5). We
have

E|x(t)− y(t)|2 ≤

≤ 3{E[
∫ t

t0
|f(x(s), s, r(s))−f(y(s), s, r(s))|2ds+
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+
∫ t

t0
|g(x(s), s, r(s))− g(y(s), s, r(s))|2ds]} ≤

≤
∫ t

t0

u′(s)
u(s)

E[|x(s)− y(s)|2]ds

and from the Lemma 2.1. with v(t) = E[|x(t) −
y(t)|2] yields that x(t) ≡ y(t) on [t0, T ] .

Existence. Recall that almost every simple path
of r(·) is a right continuous step function on [t0, T ]
. Therefore, is a sequence {tk}k≥1 of stopping times
such that for almost every ω ∈ Ω there is a finite K =
K(ω) for t0 < t1 < . . . < tk = T and tk = T if
k > K and r(t) = r(tk)

not= rk on tk ≤ t < tk+1 for
all k ≥ 1 .

We first consider the equation (1) on t ∈ (t0, t1)
which becomes

dx(t) = f(x(t), t, r0)dt + g(x(t), t, r0)dWt (6)

with the initial data x0 and r0 .
We consider the operator

T : Ca([t0, t1]) → Ca([t0, t1])

by

Tx(t) = x0(t) +
∫ t1

t0
f(s, x(s), r0)d(s)+

+
∫ t1

t0
g(s, x(s), r0)dw(s)

As in [4] we define the set

B = {x ∈ Ca([t0, t1]) : ‖x(t)‖2
n ≤ m(t), t0 ≤ t ≤ t1}

where m(t) is the maximal solution of the differential
equation

m′(t) = 6Ku(t)m(t), t ∈ [t0, t1]

with the initial condition

m(0) = Q = 3 sup
t∈[t0,t1]

‖x0(t)‖2 + 3KMt1

with

M = max{‖f(t, 0, r0)‖2, ‖g(t, 0, r0)‖2}.

We deduce that

‖Tx(t)‖ ≤ ‖x0(t)‖2 + x0(t)+

+
∫ t1

t0
‖f(s, x(s), r0)‖2d(s)+

+
∫ t1

t0
‖g(s, x(s), r0)‖2dw(s) ≤

≤ sup
t∈[t0,t1]

‖x0(t)‖

+[
∫ t1

t0
(‖f(s, x(s), r0)− f(s, 0, r0)‖+

+‖f(s, 0, r0)‖)2ds]
1
2

+[
∫ t1

t0
(‖g(s, x(s), r0)− g(s, 0, r0)‖+

+‖g(s, 0, r0)‖)2ds]
1
2

≤ sup
t∈[t0,t1]

‖x0(t)‖+

√
2K{

∫ t1

t0
u′(s)(‖x(s)‖2)ds + Mt1}

1
2

+
√

2K{
∫ t1

t0
u′(s)(‖x(s)‖2

n)ds + Mt1}
1
2

= sup
t∈[t0,t1]

‖x0(t)‖n+

+
√

2K{
∫ t1

t0
u′(s)(‖x(s)‖2)ds + Mt1}

1
2

+
√

2K{
∫ t1

t0
u′(s)(‖x(s)‖2)ds + Mt1}

1
2

and for x ∈ B we obtain that

‖Tx(t)‖2 ≤ sup
t∈[t0,t1]

‖x0(t)‖+ (7)

+
√

2K{
∫ t1

t0
u′(s)(m(s))ds + Mt1}

1
2

+
√

2K{
∫ t1

t0
u′(s)(m(s))ds + Mt1}

1
2 ≤

≤ 3 sup
t∈[t0,t2]

‖x0(t)‖2+

+6K2
∫ t1

t0
u′(s)(m(s))ds+

+6K2
∫ t1

t0
u′(s)(m(s))ds + 6K2Mt1 =

= Q + 6K2
∫ t1

t0
u′(s)(m(s))ds+

+6K2
∫ t1

t0
u′(s)(m(s))ds = m(t), t0 ≤ t ≤ t1

We proved so that T (B) ⊆ B, and it is easy to see
that the set B is a closed, bounded and convex subset
of the Banach space (Ca([t0, t1]), |||.|||), with

|||(x, y)||| =
√
‖x‖2 + ‖y‖2
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where ‖x‖2 = E[sup0≤t≤1 |x(t)|2].
On the other hand we have that

‖Tx(t)− Tx(s)‖2 ≤ (8)

≤ 6K2
∫ t

s
u(s)(m(s))ds + 6K2

∫ t

s
u(s)(m(s))ds+

+3 sup
t∈[t0,t1]

‖x0(t)− x0(s)‖2 + 6K2M(t− s),

t0 ≤ s ≤ t ≤ t1 and thus the set T (B) is equicon-
tinuous.

In a similar way we prove that for x, y ∈ B we
have

‖Tx(t)− Ty(t)‖ ≤ (9)

{
∫ t1

t0
‖f(s, x(s), r0)− f(s, y(s), r0)‖2ds} 1

2 +

+{
∫ t1

t0
‖g(s, x(s), r0)− g(s, y(s), r0)‖2ds} 1

2 ,

t0 ≤ t ≤ t1.
From (H3) and the continuity of f(s, x, r0) and

g(s, x, r0) in x on L2 we deduce by Lebesgue conver-
gence theorem that T is continuous.

An application of Schauder’s fixed point theorem
enables us to deduce that T has a fixed point in B,
thus equation (1) has a solution on [t0, t1].

We repeat this procedure and we can see that the
equation has a solution x(t) on [t0, T ] .

Remark. It is easy to see that our results ex-
tend more classical results (with lipschitz conditions
for example, (see Mao 1999, Mao 2006, etc.). The
problems of discontinuities in the stopping times ti,
(i = 1, 2, . . . , N) appears in more applications when
are some changes in the behavior of physical phenom-
ena modeling from the adapted process x(t) .

Remark. Some results on the stability properties
of the solution of the equation (1), was given by the
author (see [25]). Below, we present just two of them.

First, if we consider families of SDEwMS by the
form

xλ(t) = x(t0) +
∫ T
t0

fλ(xλ(s), s, rλ(s))ds+

∫ T
t0

gλ(xλ(s), s, rλ(s))dWs = Xλ,

whit λ ∈ Λ- an open and bounded set ⊂ R.

Theorem 2.3. ([]) If, for any λ ∈ Λ, the co-
efficient functions fλ and gλ satisfy the hypothesis
(H1)-(H5), then the family equations from above has
a unique solution (xλ) ∈ M2([t0, T ], R).

Moreover, if

|xλ,m(t0)− xλ(t0)| → 0, m →∞,

then, we have that

lim
m→∞ |xλ,m − xλ| = 0.

on [t0, T ] and any λ ∈ Λ.

Another interesting result on the stability of the
solution for the equation (1) is the following:

It is known (see A.Constantin A. 1996) that if

ϕλ(x(t), t, r(t)) P−→ ϕλ0(x(t), t, r(t)), λ → λ0

then

lim
λ→λ0

∫ T

t0
|ϕ(x(s), s, r(s))−ϕλ0(x(s), s, r(s))|2ds = 0

Theorem 2.4. In the hypotheses (H1)-(H5), we
have that if

lim
λ→λ0

|xλ(t0)− xλ0(t0)| = 0,

then
lim

λ→λ0

|xλ − xλ0 |2 = 0,

on [t0, T ], where ϕ is any functions f or g.

Remark. These results assure the stability of the
solution for the equation (1) with respect to the ini-
tial conditions and with respect to the coefficient func-
tions. Is known that a stability result is very important
for to prove the consistency of a numerical method.

3 Numerical method

It known that, except some very few cases, we can’t
give an analytical solution for an SDEwMS. For this
reason we will give some results which assure that a
Cauchy-Maruyama (Euler-Maruyama) procedure can
be imply in our case.

To analyze the EulerMaruyama method as well as
to simulate the approximate solution, we will use the
Lemma 2.1 from [27] (see Yuan and Mao 2004).

In a similar way as in the above lemma, for a
given ∆ >) we consider a discrete Markov chain
r∆
k = r(∆k), k − 0, 1, 2, . . . with the one-step transi-

tion probability matrix

P (∆) = {Pij(∆)}i,j∈I = e∆Γ
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(for details see Lemma 2.1 from [27])
Since the γij are independent of x, the path of r

can be generated independently of x and, in fact, be-
fore computing x. In analogous way as in [27] we
will describe just few steps for the simulation of the
Markov chain (see Yuan and Mao 2004 for more de-
tails) :

Let r∆
0 = i0 and generate a random number ξ1

which is uniformly distributed in [0, 1]. Define

r∆
1 =





i1 if ξ1 ∈ S \ {N} such that

∑i1−1
j=1 Pi0,j(∆) ≤ ξ1 <

∑i1
j=1 Pi0,j(∆),

N if
∑N−1

j=1 Pi0,j(∆) ≤ ξ1

where
∑0

j=1 Pi0,j(∆) = 0 as usual. Generate inde-
pendently a new random number ξ2 which is again
uniformly distributed in [0, 1] and then define

r∆
2 =





i2 if ξ2 ∈ S \ {N} such that

∑i2−1
j=1 Pr∆

1 ,j(∆) ≤ ξ1 <
∑i2

j=1 Pr∆
1 ,j(∆),

N if
∑N−1

j=1 Pr∆
1 ,j(∆) ≤ ξ2

Repeating this procedure a trajectory of (r∆
k ),

k = 0, 1, 2, . . . can be generated. This procedure can
be carried out independently to obtain more trajecto-
ries.

Let Π = (t1, . . . , tm+1, τ1, . . . , τm) be a Cauchy
partition in particular of [a, b) and for every function
F defined on [a, b)], we define

∆kF = F (tk+1)− F (tk)

We denote the Cauchy-Maruyama (Euler-Maruyama)
approximation corresponding to the partition Π by
xΠ, and we write the successive steps of its definition
in the form

xΠ(a) = x0

xΠ(tk+1) = xΠ(tk) + f(xΠ(tk), tj , r(tk))∆kt+

+g(xΠ(tk), tk, r(tk))∆kW + ε(tk).
(10)

Theorem 3.1. Let the hypotheses [H1] - [H5] be
satisfied. Assume further that whenever ϕ is any one
of the functions in the set f, g and X is a process Ft-
adapted and L2-continuous on [a, b], the composite
function t 7→ ϕ(xt, t, rt) has an integral (Riemman
and respectively Ito) from a to b. Assume also that
xΠ is Ft-adapted, and that the adjustment term ε(tj)
defined by (6) is such that there exists a function Ψ on

(0,∞) that has limit 0 at the origin and satisfies for
q = 1, . . . , k

|
q∑

k=1

ε(tk)| ≤

≤ Ψ(mesh Π)[1 + sup{|xΠ(s)|, a ≤ s ≤ tq}]

Then as mesh Π tends to 0, xΠ converges uniformly in
L2 to the solution x of (1).

Proof. If x is a solution of the equation (1), from
the proof of Theorem 2.2, we have that there exists an
upper bound, which we denote by M , for |x(t)|. Let ε
by positive. There exists a δ1 such that if |s− t| < δ1,
|x(s)− x(t)| < ε. Define:

X(tq) = x(a) +
q−1∑

k=1

f(xΠ(tk), tj , r(tk))∆kt+

+
q−1∑

k=1

g(xΠ(tk), tk, r(tk))∆kW

(11)
Because ϕ(x(t), t, r(t)) has an integral (Riemman
and respectively Ito), there exists a positive δ2 (from
Negrea et al 2009) Theorem 1) such that if mesh
(Π) < δ2, |X(tq) − x(tq)| < ε/n. Also there is a
positive δ3 such that if 0 < u < δ3 then ψ(s) <
min{ε/M, 1/2} (because ψ(s) → 0, u → 0).

Now let Π be a Cauchy partition with mesh Π
less than min{δ1, δ2, δ3}. Let t ∈ [a, b] and tq be the
lengthest of the numbers t1, . . . , tk+1 that does not ex-
ceed t. Then:

xΠ(t)− x(t) = {x(a) +
q−1∑

k=1

f(xΠ(tk), tk, rk)∆kt+

+
q−1∑

k=1

g(xΠ(tk), tk, rk)∆kW + εΠ(tq)}+
+{X(tq)− x(a) + x(a)+

+
q−1∑

k=1

f(x(tk), tk, rk)∆kt−

−
q−1∑

k=1

g(x(tk), tk, rk)∆kW − {x(tq)− x(tq)} =

= [X(tq)− x(tq)] + [x(tq)− x(t)] + εΠ(tq)+

+
q−1∑

k=1

[f(xπ(tk), tk, rk)− f(x(tk), tk, rk)]∆kt+

+
q−1∑

k=1

[g(xΠ(tk), tk, rk)− g(x(tk), tk, rk)]∆kW
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From (3), (5) and the Cauchy-Bunyakowsky-
Schwarz’s inequality we have that

∣∣∣
q−1∑

k=1

{[f(xπ(tk), tk, rk)− f(x(tk), tk, rk)]∆kt+

[g(xΠ(tk), tk, rk)− g(x(tk), tk, rk)]∆kW
∣∣∣ ≤

≤ 2C
{ ∫ tq

a

u′(s)
3u(s)

‖xΠ(s)− x(s)‖2ds
}1/2

(12)

We define N(t) = sup{|xΠ(s)− x(s)| : a ≤ s ≤ t}.
Since M − 1 is an upper bound for x(t), we have

1 + sup{‖xΠ(t)‖ : a ≤ s ≤ tq} ≤ MN (t)

so by the hypotheses and the choice of δ (δ =
min{δ1, δ2, δ3}) we obtain:

q−1∑

k=1

εΠ(tk) ≤ ψ(mesh Π)(M +N(t)) ≤ ε/n+
N(t)
2n

With the help of these estimates, (12) yields

|xΠ(t)− x(t)| ≤ n
[

3ε
n + N(t)

2 +

+2C{
∫ tq

a

u′(s)
3u(s)

|xΠ(s)− x(s)|2ds}1/2
]

Here we may replace the t in the right member by any
larger number in [a, b] or equivalently replace t in the
left member by any smaller number in [a, b]. That is
the estimate holds if we replace the left member by
N(t). This implies:

2N(t) ≤ 6ε + N(t)+

+4C{
∫ tq

a

u′(s)
3u(s)

|xΠ(s)− x(s)|2ds}1/2 ⇔

⇔ N(t) ≤ 6ε+

+4C{
∫ tq

a

u′(s)
3u(s)

|xΠ(s)− x(s)|2ds}1/2 ⇔

⇔ N(t)2 ≤
[
6ε+

+4C{
∫ tq

a

u′(s)
3u(s)

|xΠ(s)− x(s)|2ds}1/2
]2 ≤

2
[
(6ε)2 + [16C2

∫ tq

a

u′(s)
3u(s)

|xΠ(s)− x(s)|2ds ≤

≤ 72ε2 + 32C2
∫ tq

a

u′(s)
3u(s)

|xΠ(s)− x(s)|2ds

We apply the Lemma 2.1 and we obtain that N(t)2 →
0. Therefore, xΠ converges to x uniformly in L2, as

mesh Π → 0.

Now, in the same way as I .Constantin (2001),
we can give an analogous theorem on the Cauchy-
Maruyama approximation.

Theorem 3.2. Let us suppose that the hypotheses
[H-1]-[H-5] are satisfied. Let x(t) be a solution of the
equation (1) with a.s. continuous functions. Then as
meshΠ → 0 we have:
(i) xΠ(t) converges to x(t) uniformly in L2 on [a, b]
and xΠ(t, ω0) converges uniformly to x(t, ω0) for
each ω0 ∈ Ω;
(ii) the random variable

sup
a≤t≤b

|xΠ(t, ω)− x(t, ω)|

converges to zero in probability.

Proof. It easy to see that the process xΠ(t) =

X(τ(t,Π))
6

=XΠ, t ∈ [a, b], where τ(t,Π) is the
greatest number in the set t1, . . . , tm that is ≤ t, sat-
isfies the hypotheses of the previously lemma with
εΠ = 0. Then, by that lemma, xΠ(t) converges to
x(t) uniformly in L2 as meshΠ → 0.

If tk ≤ t ≤ tk+1 we have

XΠ(t)− xΠ(t) = f(xΠ(tk), tk, rk)[t− tk]+

+g(xΠ(tk), tk, rk)[W (t)−W (tk)]
(13)

On the other hand, from the hypotheses [H-4], we
have

|ϕ(xΠ(tk), tk, rk)|2 ≤ u′(tk)(1 + |xΠ(tk)|2) ≤

≤ u(t)− u(tk)
t− tk

Qm ≤ Mu ·M
where Mu = supt∈[a,b](u(t)) and M is the upper
bound of x. Then, since t − tk ≤ meshΠ, these tend
to zero uniformly on [a, b] as meshΠ → 0.

The second assertion of the theorem it can prove
in a same way as that of the theorem of the paper of I.
Constantin (2001).

Examples. We give the following examples:

dx(t) = sin(t)
√

x(t)r(s)dt+

+sin(s)
√

x(t)r(t)dW (t)
(14)

with x0 = 10, the states of Markov chain S = (−1 1),
the initial distribution

µ =

(
−1 1
0 1

)
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and the transition probability matrix

P =

(
0.99 0.01
0.005 0.995

)
.

For n = 100 and ∆ = 10−4 we have the following
graph:
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Figure 1: The simple path of the solution for the equa-
tion (14).

dx(t) = sin(t) 3
√

x(t)2r(t)dt+

+sin(t) 4
√

x(t)3r(t)dW (t)
(15)

with x0 = 10, the states of Markov chain S = (−1 1),
the initial distribution

µ =

(
−1 1
0 1

)

and the transition probability matrix

P =

(
0.9 0.1
0.15 0.55

)
.

Here, we can give two simple example for the control
function control u as u(t) = sqrt(t) or u(t) = log(t+
1).

For n = 100 and ∆ = 10−4 we have the follow-
ing graph:

4 Comments and Applications
The motivation for to study of the SDEwMSs by an
interdisciplinary team is based on the more engineer-
ing application of these equations which are very good
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Figure 2: The simple path of the solution for the equa-
tion (15).

models for to control of some actually devices. It is
enough to mention just two current and interesting ex-
ample, as following:

1. The ABS (Anti-lock Braking System) and the
Airbags for a car- work different for different
speed levels. For a good and safety control of
these special devices we must to use a modeling
with a hybrid system.

2. The signal of a mobile phone depend by its link
with an external amplifier. There exist a switch
moment when we pass from one amplifier area
to other.

Remark. About the last example we have an in-
teresting situation: during to a telephone call, we pass
form an amplifier to other (i.e. we have the Marko-
vian switching process), and we have a very short de-
lay and this because is changed the link of our mobile
phone from the last amplifier to the new amplifier and
hence we have a discontinuity point in the behavior of
the phone signal. Therefore, is necessary to consider
some general coefficient functions and good stability
properties of the solutions.

Noise in dynamical system is usually considered
a nuisance. However, in certain nonlinear systems, in-
cluding electronic circuits and biological sensory sys-
tems, the presence of noise can enhance the detection
of weak signals. The phenomenon is termed stochas-
tic resonance and is of great interest for electronic
instrumentation (see Gammaitoni, 1998, McNamara,
1989, Negrea, 2007a, Negrea, 2007b).
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The essential ingredient for the stochastic reso-
nance is a nonlinear dynamical system, which typi-
cally has a period signal and noise at the input and
output that is a function of the input as well as the in-
ternal dynamics of the system. The nonlinear compo-
nent of the dynamical system is sometimes provided
by a threshold which must be crossed for the output
to be changed or detected. A nonlinear system is es-
sential for stochastic resonance to exists, since in a
system that is well characterized by linear response
theory, the signal-to-noise ratio at the output must be
proportional to the signal-to-noise ratio at the input.

Engineers have normally sought to minimize the
effect of noise in electronic circuits and communica-
tion systems. Today, however, it is acknowledged that
noise or random motion is beneficial in breaking up
the quantization pattern in a video signal, in the dither-
ing of analog to digital converters, in the area of Brow-
nian ratchets, etc.

A model of one-dimensional nonlinear system
that exhibits stochastic resonance is the damped har-
monic oscillators with the Langevin equation of mo-
tion (see Gammaitoni, 1998):

mẍ(t) + γẋ(t) = −dU(x)
dx

+
√

Dξ(t)

This equation describes the motion of a particle of
mass m moving in the presence of friction γ . The
restoring force is expressed as the gradient of some
bistable or multi-stable potential function U(x) . In
addition, there is an additive stochastic force ξ(t) with
intensity D , and, in generally, it supposed as been a
white Gaussian noise.

In the case of symmetrical bistable system, the
potential function is a simple symmetric function and,
adding a period signal and considering case of time
dependent system (see Berglund 2002, Gammaitoni,
1998)

U(x, t) = U(x)−Ax sin(ωst) =

= −a
x2

2
+ b

x4

4
−Ax sin(ωst)

where A and are the amplitude and the frequency of
the periodic signal, respectively.

In the last years, engineers used the asymmetri-
cal bistable system (see Herman 2002, Imkeller 2001),
when the potential function has the expression:

U(x, t) =

{
U(x)−Ax sin(ωst), if t ∈ [0, 1

2)
U(−x)−Ax sin(ωst) if t ∈ [12 , 1]

,

U(x) = −a
x2

2
+ b

x4

4

or more general model with k switching times
(see Imkeller, 2001)

U(x, t) =
∑

k≥0

U(x)1[k,k+0.5) + U(−x)1[k+0.5,k+1)

About these models there is a simple observation:
we can not say exactly if the external perturbation is
present just at the discrete moments. A continuous
model appears as more adequate. This approach is
possible just using the theory of stochastic differential
equations.

A problem, which frequency appear in practice,
is the value of initial state x0 . This value is ”pro-
posed” but in some non-standard external conditions,
this make an discontinuity of the simple path of the
process {x(t)} and this phenomena is repeating at any
stopping time ti, (i = 1, 2, . . . , N) and we will have
new discontinuities at these time moments. In applica-
tions, we have a right-continuity for the Markov pro-
cess but just a left-continuity for the process {x(t)}
(we have a very short delay at the stopping times).
Therefore, is necessary to consider some general co-
efficient functions and good stability properties of the
solutions. On the other hand, the stochastic resonance
make possible a control of the electronic circuits in
some external stochastic perturbations by controlling
the adapted process {x(t)} .

The simulation for this case is given in the follow-
ing example:

dx(t) = (−sin(0.5t)− x(t) + x(t)3)r(t)dt+

+0.5r(t)dW (t)
(16)

with x0 = 10, the states of Markov chain

S = (0 1 2 3 4 5),

the initial distribution

µ =

(
0 1 2 3 4 5
1 0 0 0 0 0

)

and the transition probability matrix

P =




0 1 0 0 0 0
0.1 0.1 0.8 0 0 0
0.01 0.01 0.1 0.88 0 0

0.0001 0 0.01 0.1 0.8899 0
0.0001 0 0 0.01 0.3 0.68999




.

For n = 100 and ∆ = 10−4 we have the following
graph:
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Figure 3: The simple path of the solution for the equa-
tion (16).
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