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MÉXICO
momr@xanum.uam.mx
Corresponding Author

ENRIQUE LEMUS-RODRÍGUEZ
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Col. Lomas Anáhuac
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Abstract: Markov Decision Processes [MDPs] have been repeteadly used in Economy and Engineering but appar-
ently are still far from achieving its full potential due to the computational difficulties inherent to the subject due
to the usual impossibility of finding explicit optimal solutions. Value iteration is an elegant, theoretical method
of approximating an optimal solution, frequently mentioned in Economy when MDPs are used. To extend its use
and benefits, improved understanding of its convergence is needed still even if it would appear not to be the case.
For instance, the corresponding convergence properties of the policies is still not well understood. In this paper
we further analyze this issue: using Value Iteration, if a stationary policy fN is obtained in th N -th iteration, such
that the optimal discounted rewards of f∗ and fN are close, we would like to know whether are the corresponding
actions f∗(x) and fN (x) necessarily close for each state x? To our knowledge this question is still largely open. In
this paper it is studied when it is possible to stop the value iteration algorithm so that the corresponding maximizer
stationary policy fN approximates an optimal policy both in the total discounted reward and in the action space
(uniformly over the state space). In this article the action space is assumed to be a compact set and the reward func-
tion bounded. An ergodicity condition on the transition probability law and a structural condition on the reward
function are needed. Under these conditions, an upper bound on the number of steps needed in the value iteration
algorithm, such that its corresponding maximizer is a uniform approximation of the optimal policy, is obtained.

Key–Words: Markov decision process, compact action space, bounded reward, expected total discounted reward,
approximation of optimal policies by means of value iteration policies

1 Introduction
Markov Decision Processes [MDPs] are frequently
mentioned in the engineering and economic litera-
ture, lets quote Ada and Cooper Dynamic Economics:
Quantitative Methods and Applications, MIT Press,
2003, p. 7:

The mathematical theory of dynamic pro-
gramming as a means of solving dynamic
optimization problems dates to the early
contributions of Bellman (1957) and Bert-
sekas (1976). For economists, the contribu-
tions of Sargent (1987) and Stokey and Lu-
cas (1989) provide a valuable bridge to this
literature.

Nevertheless, the wider application of this tech-
niques seems to be way below its actual potential.
This is the case partly due to the fact that it is often
virtually impossible to find an explicit optimal station-
ary policy f∗ with an optimality criterion as the total
discounted reward case.

Bellman himself was well aware of this situation,
and, in Dynamic Programming and Modern Control
Theory, Academic Press, 1965, writes with his co-
author Robert Kalaba, p. vii:

The processes studied in physics, engineer-
ing, economics, biology, and operations re-
search possess a bewildering array of spe-
cial features (. . . ). It is essential for the suc-
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cessful analyst to know how to incorporate
any of all of these features, (. . . ). Further-
more, he must have an awareness of the ca-
pabilities and limitations of modern com-
puting machines and of the interfaces be-
tween theoretical formulation and numeri-
cal solution.

Nowadays the computational power far exceeds
that of the machines Bellman used, but apparently his
advised has been not often followed. The lack of the
interfaces Bellman mentions is partially responsible
for this situation.

In this case, dynamic programming is embodied
in Value iteration, a popular algorithm for theoreti-
cally finding an optimal policy. Its simplicity, ele-
gance and relation to Banach’s fixed point theorem,
makes it an excellent choice, under convenient cir-
cumstances, that constitutes a feasible procedure for
obtaining, in theN -th iteration, a stationary policy fN
that approximates the optimal policy f∗ in the sense
that their total discounted rewards are close.

For applications it would be important to know if
indeed this policies are close, but the above mentioned
fact does not necessarily imply that in each state x the
corresponding actions f∗(x) and fN (x) are close. To
the best of our knowledge, this question is not only
still largely open but also deserves more attention: it
is important to further theoretical research in MDPs
that may have a positive impact in practical compu-
tational matters that may foster their further applica-
tion. In this paper the problem is fully stated in Sec-
tion 2 in the context of a larger research program, ,and
in Section 3 the solution is presented with full detail
and with some relevant remarks: Basically it is studied
the problem of determining when it is possible to stop
the value iteration algorithm so that the correspond-
ing maximizer stationary policy fN approximates an
optimal one both in the action space and in the total
discounted reward. In fact, under the conditions to be
described in the problem statement in Section 2, these
policies could be stable in the following sense: choos-
ing an action close to fN (x) while in the state x would
still provide a useful approximate policy (which con-
stitutes a matter of further research). It is important
to stress once more that this kind of results shed light
on important computability issues of great practical
interest. In fact, they are related to the interesting
Theorem 6.8.1, p. 218 and Corollary 6.8.4 quoted by
M. L. Puterman in his classic work in [11], where a
lower bound is found on the number of steps neces-
sary to stop Value Iteration and obtain an optimal pol-
icy for finite state and finite action MDPs. Henceforth
both these results combined will be called the Plan-
ning Horizon Theorem [PHT]. Such a result suggests

some interesting problems: how it is possible to es-
tablish similar results for the Borel case. In Section 2
we will see how this question is addressed. The solu-
tion presented in Section 3 relates the lower bound to
the value function of the problem. Finally, in the last
Section the concluding remarks on the conditions are
given and further future research is discussed.

Lets stress then that it would be desirable to fol-
low Bellmans advise, and in this particular case, close
the gap between the abstract Borel state space theory
and actual computations. This paper, hopefully, is a
small step in that direction.

2 Problem Formulation
The control problem in this paper is stochastic. Why
should incur in such a complication? Let’s recall,
quoting Ada and Cooper Dynamic Economics: Quan-
titative Methods and Applications, MIT Press, 2003,
p. 29, that:

While the nonstochastic problem may be a
natural starting point, in actual applications
it is necessary to consider stochastic ele-
ments. The stochastic growth model, com-
sumption/savings decisions by households,
factor demand by firms, pricing decisions
by sellers, search decisions, all involve the
specification of dynamic stochastic enviro-
ments.

A Markov Decision Process [MDP] is a flexi-
ble tool for the above mentioned purpose that is used
in applications both in engineering and economics as
both a modelling and optimization framework whose
potential has not been yet fully explored. In partic-
ular, the total discounted reward case frequently ap-
pears in that kind of applications. But, it would seem
that notwithstanding its mathematical elegance and its
wide applicability as a tool, MDPs are not used as of-
ten they should, one reason beeing the heavy compu-
tational burden regarding the actual solution of the op-
timization problem.

As it is well known, iterative procedures as Value
or Policy iteration present an elegant mathematical
framework where a sequence (indirectly or directly)
of stationary policies fN is obtained, that under suit-
able conditions, converge to an f∗, an optimal station-
ary policy [3]. As Value Iteration is related to Ba-
nach’s Fixed Point Theorem and Policy Iteration to
Newton-Raphson-Kantorovich’s Method (under suit-
able conditions), there is considerable purely theoret-
ically research regarding this algorithms. Neverthe-
less, some of this research, as it stands, is not suitable
for a more direct actual use. For instance. sometimes
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the hypothesis under which convergence of the sta-
tionary policies fN hold can not be directly verified
from the description of the model, i.e., its dynamics
and reward function. That is, the hypothesis are not
structural, they are not directly stated in terms of the
actual structure of the MDP. This has to be stressed:
if the conditions can not be verified directly from the
structure of the systm, how could it be possible to
analyse the system without actually simulating or ex-
perimentally observing it with the corresponding extra
cost?

On the other hand, many of those results disregard
the actual convergence of the sequence fN of station-
ary policies, for instance, in Value Iteration, the case
dealt with in this paper. This may happen because,
apparently, if the value function of an approximating
stationary policy fap to the optimal value V ∗, then it
would be irrelevant whether fap(x) is actually close to
f∗(x) (the optimal stationary policy). Nevertheless, in
the actual implementation, the action

fap + ε,

(where ε is an enviromental error) is the one that will
be actually used, and hence the corresponding value
no longer needs to be close to the optimal. It is impor-
tant to further explore this problem, that in a sense is a
stability and robustness one. One important small step
in this direction would be to understand the asymp-
totic behaviour of the sequence fN of stationary poli-
cies, what, to our knowledge, is often ignored in the
literature.

As it appears, this happens because it is not al-
ways clear that there exists a unique optimal policy
or, on the contrary, there are at least two different op-
timal policies and consequently classical convergence
of the fN may not hold. But recent work has estab-
lished some important cases where from uniqueness
of the optimal policy [2], not only convergence of this
sequence fN can be established, but even a stopping
rule can be stated. In plain words, such a research
helps answer the question: when are the Value Itera-
tion maximizers close to an optimal stationary policy,
and how much?

The problem solved in this paper is now stated:

Problem:

To find a meaningful family of Markov De-
cision Processes such that given a positive
tolerance ε it is possible to find a bound
on the number of steps that Value Iteration
needs so that its corresponding stationary
policy fN (x) is within tolerance from an
optimal policy f∗(x), that is, the distance

between fN (x) and f∗(x) is less than ε uni-
formly on the state space X of the Markov
Decision Process. In particular, this fam-
ily of Markov Decision Processes should in-
clude Borel State and Action spaces.

The last requirement will hopefully allow some el-
egant but theoretical work in Borel space MDPs to
be extended in a compatible fashion with numeri-
cal mathematics and consequently applied in concrete
cases. In the solution to be presented in the next sec-
tion an important case is studied: the reward is strictly
concave. This clearly is relevant as covers a situation
important when the reward is a utility function and
hence its concavity allows for risk aversion or the law
of diminishing rewards, etc . . .

Giving an explicit and structural (this has to be
stressed) set of conditions that solve the problem in a
Borel space setting partially answers how close are the
maximizer to an optimal policy and indeed helps to
close the gap between the elegant Borel space theory
and actual computational issues.

Let’s recall that due to the discount, it is plausi-
ble that a stationary optimal policy for a finite hori-
zon problem should be close to the optimal one in
infinite horizon for a sufficiently large finite horizon.
That would be the heuristic motivation of the Plan-
ning Horizon approach: find stationary solutions to an
increasing sequence of control horizons Tn and estab-
lish the corresponding convergence of their values to
the optimal value of the infinite horizon problem. If
we are given a set of conditions that ensure that con-
vergence, we get a Planning Horizon Theorem (PHT).

The statement and solution of our problem is in-
spired by Planning Horizon approach, adapted to the
Borel case, with the extra improvement that the cor-
responding bound on the planning horizon does not
depend explicitly on the value function of the corre-
sponding Markov Decision Process, but depends on
information easy to deduce directly from its structure.
In particular, the present paper deals with infinite ac-
tion spaces.

The most recent antecedent on this topic is
[10],which deals with discounted MDPs with a Borel
state space and finite action sets, and under suitable
versions of the Ergodicity Condition (EC) and the In-
dividuality Condition (IC), stated in section 3, it is es-
tablished that the corresponding policy fn obtained in
the n-th step of the Value Iteration Algorithm (VIA)
for some n is indeed an optimal stationary policy.
Note that the approximation result presented here is
different from the one above in which the approxima-
tion is estimated by means of the difference between
the expected total discounted reward of a maximizer
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of the VIA and the optimal value function (see Theo-
rem 3.1 in [7]). In this paper we are able to provide
insight on when the value iteration maximizer policies
are close enough to an optimal one pointwisely on the
action space.

3 Problem Solution

Due to the complexity of the Borel state space setting
in Markov Decision Processes, this section will be
partitioned in order to somehow ease its heavy tech-
nical burden. So, this section is divided as follows:

• The Control Model, where the model is explic-
itly presented with detail.

• Conditions, where they are presented and dis-
cussed.

• The Actual Solution, where the theorem that
solves the problem stated in the previous section,
and its proof are presented.

• Concavity, where the case of strictly concace re-
ward is studied, due to its importance in economy
and engineering.

• Remarks on the Conditions, where many tech-
nical details of the solution and their minutiae are
discussed.

3.1 The Control Model

The standard Borel model is analyzed in this paper.
Let (X,A, {A(x) : x ∈ X}, Q, r) be the basic

discrete-time Markov decision model (see [6], [11]),
which consists of the state space X , the action space
A, the transition law Q, and the reward function r.
Both X and A are assumed to be Borel spaces (B(X)
and B(A) denote the Borel sigma-algebras of X and
A, respectively). Furthermore, for every x ∈ X there
is a nonempty set A(x) ∈ B(A) whose elements
are the admissible actions when the state of the sys-
tem is x. In this article it is assumed that, for every
state x,A(x) = A, and also that A is a compact set
containing more than one element (as the case with
one element considered is trivial). The transition law
Q(B|x, a), where B ∈ B(X) and (x, a) ∈ X × A, is
a stochastic kernel on X , given X × A. The reward
function r(·, ·) is a nonnegative, upper bounded (by a
bound denoted by M ), and a measurable function on
X ×A.
Let Π be the set of all (possibly randomized, history-
dependent) admissible policies (see [6], [11], for de-
tails). By standard convention, a stationary policy is

taken to be a measurable function f : X → A. The
set of the stationary policies is denoted by F.

For every π ∈ Π and state x ∈ X , let

V (π, x) = Eπx

[
+∞∑
t=0

αtr(xt, at)

]
(1)

be the expected total discounted reward. The number
α ∈ (0, 1) is called the discount factor. In our case,
there will be some restrictions on α to be explicitly
stated later (see Remark 3). Here, {xt} and {at} de-
note the state and the control sequences, respectively,
andEπx is the corresponding expectation operator with
respect to the probability measure P πx defined on the
space Ω := (X × A)∞ in a canonical way. The op-
timal control problem is to find a policy π∗ such that
V (π∗, x) = supπ∈Π V (π, x), for all x ∈ X , in which
case π∗ is said to be optimal.
As usual, the optimal value function is defined as

V ∗(x) = sup
π∈Π

V (π, x), (2)

x ∈ X .

Notation 1

• (a) Denote the metric in A by d, and for ε >
0, x ∈ X and a∗ ∈ A, let Bε(a∗) := {a ∈
A : d(a, a∗) < ε}, and Bc

ε (a
∗) := {a ∈ A :

d(a, a∗) ≥ ε} . Observe that Bc
ε (a
∗) is a (possi-

bly empty) compact set.

• (b) Let γ be the diameter of the set A, i.e., γ :=
sup{d(z, w) : z, w ∈ A} . (Note that since A is
a compact set, γ < ∞ and there exist b, c ∈ A
such that γ = d(b, c); moreover, sinceA contains
more than one element, then γ > 0.)

Lemma 1. For each ε such that 0 < ε < γ/2, and
a∗ ∈ A,Bc

ε (a
∗) 6= φ.

Proof. Let b and c be as in Notation 1 (b). Fix
a∗ ∈ A and ε ∈ (0, γ/2). Then d(b, a∗) ≥ γ/2 or
d(c, a∗) ≥ γ/2 (otherwise, if d(b, a∗) < γ/2 and
d(c, a∗) < γ/2, the triangle inequality implies that
γ = d(b, c) ≤ d(b, a∗) + d(c, a∗) < γ/2 + γ/2 = γ,
which is a contradiction). Hence d(b, a∗) ≥ ε or
d(c, a∗) ≥ ε, i.e., Bc

ε (a
∗) 6= φ.

The following assumption will define in part the
class of Markov Decision Processes where the prob-
lem is solved.

When does Assumption 1 hold?

For that, see the end of this subsection.
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Assumption 1

(a) The optimal value function V ∗, defined
in (2), satisfies the Dynamic Programming
Equation (DPE), i.e. for all x ∈ X ,

V ∗(x) = max
a∈A

[
r(x, a) + α

∫
V ∗(y)Q(dy|x, a)

]
.

(3)
There also exists f∗ ∈ F such that:

V ∗(x) = r(x, f∗(x))+α
∫
V ∗(y)Q(dy|x, f∗(x)),

(4)
x ∈ X , and f∗ is optimal.

(b) The Value Iteration Algorithm is valid.
That is, the value iteration functions induc-
tively defined as

vn(x) = max
a∈A

[
r(x, a) + α

∫
vn−1(y)Q(dy|x, a)

]
,

(5)
x ∈ X and n = 1, 2, . . . , with v0 =
0, are well-defined, and for each x ∈
X, vn(x) → V ∗(x). Besides, for each
n = 1, 2, . . . ,there exist fn ∈ F such that,
for each x ∈ X ,

vn(x) = r(x, fn(x))+α
∫
vn−1(y)Q(dy|x, fn(x)).

(6)

Let

G(x, a) := r(x, a) + α

∫
V ∗(y)Q(dy|x, a),

(x, a) ∈ X×A (note thatG(x, f∗(x)) = V ∗(x), x ∈
X).

Remark 1 Using (4) and the fact that
supx∈X |V ∗(x) − vn(x)| ≤ (αnM)/(1 − α),
for all n ≥ 1, it is easy to verify that for each x ∈ X
and n = 1, 2, . . . ,

|G(x, fn(x))−G(x, f∗(x))| ≤ (2Mαn)/(1− α).
(7)

Let Φ(X) = {real-valued bounded measurable func-
tions on X}.
The span of a function ψ ∈ Φ(X) is defined by
sp(ψ) := supx∈X ψ(x)− infx∈X ψ(x).

Remark 2
(a) Observe that −sp(V ∗) ≥ −M(1− α).

(b) In the proof of Lemma 3.5, p. 59 in [6], it is ob-
tained that for any (x, a) and (x′, a′) in X × A and
any ψ ∈ Φ(X),∫
ψ(y)Q(dy|x, a)−

∫
ψ(y)Q(dy|x′, a′) ≤ λsp(ψ).

(8)
The reader may legitimately ask:

When does Assumption 1 hold?

A classical set of conditions, stated in p. 18 [6]
do the trick:

• For each state x ∈ X , the set A(x)
of admissible controls is (non-empty)
compact subset of A.

• For some constant M ,

|r(k)| ≤M,

for all k = (x, a), x ∈ X, a ∈ A(x),
and moreover, for each x ∈ X , r(x, a)
is a continuous function of a ∈ A(x).

• And: ∫
u(y)Q(dy|x, a)

is a continuous function of a ∈ A(x)
for each x ∈ X and each bounded and
measurable function u from X to the
set of real numbers.

It is to be stressed that all of the above properties are
structural, that is, can be verified directly from the
control model

(X,A, {A(x) : x ∈ X}, Q, r).

3.2 Conditions
It will clear in the proof ot the theorem that solves
our problem, that some technical comparison between
integrals is needed. Some minimal ergodicity allows
us to make that comparison, and hence, the following
condition will be decisive:

Ergodicity Condition (EC)
There exists a number λ < 1 such that

sup
k,k′
‖Q(·|k)−Q(·|k′)‖V ≤ 2λ, (9)

where the sup is taken over all k, k′ ∈ X ×
A, and ‖ · ‖V denotes the variation norm for
signed measures.
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For x ∈ X , and ε > 0 such that Bc
ε (a
∗) 6= φ, define

Dx,ε := inf
a∗∈A

inf
a∈Bcε (a∗)

|r(x, a)− r(x, a∗)|,

auxiliary expression needed in the statement of the:

Individuality Condition (IC) There exist ε
and Dε such that 0 < ε < γ/2 and Dε > 0,
and Dx,ε ≥ Dε, for each x ∈ X .

Remark 3 The IC determines the admissible values
for the parameter α. Let H(α) = α/(1 − α), α ∈
(0, 1).Then, from Dε > 0 and solving H(α) <
Dε/(λM), where λ is given in (9) and M is an upper
bound for r, it follows that α ∈ (0, H−1(Dε/(λM))
(note that H(·) is increasing on (0,1)). In fact,
throughout the present article, a fixed value of α in
this interval is considered. Observe that hence

K∗ε := Dε − (αλM)/(1− α) > 0. (10)

As α may not be close to 1, further research will be
needed if techniques like the vanishing discount ap-
proach are used to obtain a PHT-like results in the av-
erage reward case.

Lemma 2. Suppose that Assumption 1, the EC and
the IC hold. Then, for each x ∈ X ,

inf
a∈Bcε (f∗(x))

|G(x, a)−G(x, f∗(x))| ≥ K∗ε . (11)

Proof Take x ∈ X . Then using Remark 2 it follows
that

infa∈Bcε (f∗(x)) |G(x, a)−G(x, f∗(x))|

≥ inf
a∗∈A

inf
a∈Bcε (a∗)

|G(x, a)−G(x, a∗)|

= inf
a∗∈A

inf
a∈Bcε (a∗)

 |r(x, a)− r(x, a∗)+
α
∫
V ∗(y)Q(dy|x, a)−

α
∫
V ∗(y)Q(dy|x, a∗)|



≥ infa∗∈A infa∈Bcε (a∗)

 |r(x, a)− r(x, a∗)|−
α|
∫
V ∗(y)Q(dy|x, a∗)−∫
V ∗(y)Q(dy|x, a)|


≥ infa∗∈A infa∈Bcε (a∗) [|r(x, a)− r(x, a∗)| − αλsp(V ∗)]

≥ infa∗∈A infa∈Bcε (a∗)

[
|r(x, a)− r(x, a∗)|−

(αλM)/(1− α)

]
≥ Dε − (αλM)/(1− α) = K∗ε .

Remark 4 In the finite action case, (11) would im-
ply the uniqueness of f∗ (see [10]), but in the present
situation that would not be necessarily the case. On
the other hand, different optimal policies should be ε-
pointwise close.

3.3 The actual solution
Now it is possible to state and prove a Theorem that
constitutes a solution to the problem, and is indeed a
small step to closing the gap between the elegant but
highly theoretical research in the Borel state frame-
work in MDPs and actual computations.

So, the maximizers eventually get pointwise close
to the optimal stationary policy, in other words:

Theorem 1
Suppose that Assumption 1, the EC and the IC hold.
Let ε be a positive number that satisfies IC. Let
N(ε) = [(ln((1 − α))K∗ε /2M)/ lnα] + 1 (here [z]
is the integer part of z). Then d(fN(ε)(x), f∗(x)) < ε
, for all x ∈ X .

Proof Let x be a fixed state. Firstly, denote

δ := inf
a∈Bcε (f∗(x))

|G(x, a)−G(x, f∗(x))|.

(Observe that from (10) and (11), δ ≥ K∗ε > 0.) Con-
sequently, if d(a, f∗(x)) ≥ ε, then

|G(x, a)−G(x, f∗(x))| ≥ δ ≥ K∗ε , i.e.,

if
|G(x, a)−G(x, f∗(x))| < K∗ε , (12a)

then
d(a, f∗(x)) < ε. (12b)

Secondly, choose the minimal positive integer N(ε)
such that,

(2MαN(ε))/(1− α) < K∗ε . (13)

Now, it follows from (7), (12a), (12b) and (13) that
N(ε) = [(ln((1 − α))K∗ε /2M)/ lnα] + 1, and
d(fN(ε)(x), f∗(x)) < ε . Since x is arbitrary, the re-
sult follows.

Remark 5

a Note tha if A is a finite set, then γ = 1, and since
0 < ε < γ/2 = 1/2, Theorem 1 implies that

fN(ε)(x) = f∗(x),

for x ∈ X .
Recall that in this case, the metric used is the dis-
crete metric, that is d(z, w) is 0 if z = w, other-
wise is 1.

b In Theorem 3.1(a) of [7] it is proved that for each
positive integer n,

|V ∗(x)− V (fn, x)| ≤ Mαn

1− α
,

for x ∈ X.
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3.4 Concavity

As mentioned in the second section, it is important
to know if the previous solution holds in at least one
case where the reward function is strictly concave. As
a matter of fact, that is the case. Two partial solu-
tions are more or less straighforward under the two
following sets of assumptions. Both of them imply
the lemma in this subsection.

The following set is inspired in some previous re-
search in uniqueness of optimal policies [2].

Assumption 2

a) X is a convex subset of IR, and A is a closed
interval [w, z], w, z ∈ IR, w < z.

b) Q is induced by a difference equation:

xt+1 = F (xt, at, ξt),

t = 0, 1, . . . , where F : X × A × S → X is
a measurable function, and {ξt} is a sequence of
i.i.d. random variables with values in S ⊆ IR. In
addition, it is supposed that F (·, ·, s) is a con-
vex function on X × A , and if x < y, then
F (x, a, s) ≤ F (y, a, s) for each a ∈ A and
s ∈ S.

c) r is strictly concave onX×A, and if x < y, then
r(x, a) ≥ r(y, a) for each a ∈ A.

The next set of assumptions is an alternative way
of obtaining uniqueness, see [2].

Assumption 3

a) Same as Assumption 2(a).

b) Q is given by the relation

xt+1 = ρxt + σat + ξt,

t = 0, 1 . . . , where {ξt} is a sequence of i.i.d.
random variables with values in S ⊆ IR, and
where ρ and σ are real numbers.

c) r is strictly concave on X ×A.

Lemma 3. Suppose that Assumption 1 holds. Then
each Assumption 2 or 3 implies that for each x ∈
X,G(x, ·) is strictly concave, for eachψ > 0 there ex-
ists a closed interval J = J(x, ψ) and τ = τ(x, ψ) >
0 such that a ∈ J and |G(x, a) − G(x, f∗(x))| < τ
implies that |a− f∗(x)| < ψ, and f∗ is unique.

Proof
The proofs of the strictly concavity of G(x, ·),

x ∈ X , and the uniqueness of the optimal policy f∗
are similar to the proofs of Lemmas 6.1 and 6.2, and
Theorem 3.4(i) in [2]. Now, fix x ∈ X . Consider
G(x, a), a ∈ (w, z).

Hence, in that interval, G(x, ·) is a continuous
function (see Theorem 3, p.113 in [1]), and since
G(x, ·) is strictly concave, f∗(x) ∈ (w, z). Take w′
and z′ such that w < w′ < f∗(x) < z′ < z.

From Lemma 4.48, p.202 in [13], it follows that
G(x, ·) is strictly increasing in [w′, f∗(x)], and strictly
decreasing in [f∗(x), z′]. Firstly, consider G(x, a),
a ∈ [w′, f∗(x)]. From Proposition 2.18, p. 80 in [8],
it results that G(x, a), a ∈ [w′, f∗(x)] has an inverse
function which is also continuous and increasing. In
particular, this inverse function is right-continuous in
G(x, f∗(x)), i.e. given ψ > 0, there is τ1 > 0 such
that G(x, a) ∈ [G(x,w′), G(x, f∗(x)] and |G(x, a)−
G(x, f∗(x))| < τ1 implies that |a − f∗(x)| < ψ or
equivalently, given ψ > 0 there is τ1 > 0 such that
a ∈ [w′, f∗(x)] and |G(x, a) − G(x, f∗(x))| < τ1

implies that |a− f∗(x)| < ψ.
Secondly, in a similar way, it is possible to obtain

that for each ψ > 0 there exists τ2 > 0 such that
a ∈ [f∗(x), z′)] and |G(x, a) − G(x, f∗(x))| < τ2

implies that |a− f∗(x)| < ψ.
Finally,taking J = [w′, z′], and τ = min{τ1, τ2},

and since x is arbitrary, Lemma 3 follows.

This theoretical version of the solution of our
problem is in form and spirit very close to results
stated by Stokey and Lucas in his work [12] for a
general abstract optimization problem. This Lemma
would be then a non-trivial translation (as this result
in not a particular case of Stokey and Lucas) to the
Borel MDPs that would deserve further attention.

3.5 Remarks on the Conditions

Some technical remarks are in order.
Remark 6 In [6] pp. 56-60 (see, also [7] p. 1123 )
several sufficient conditions for the EC are presented.
In particular, Condition 3.1 (1) states : there exists
a state x∗ ∈ X and a positive number β such that
Q({x∗}|x, a) ≥ β for all (x, a) ∈ X × A (see [6] p.
56), which implies the EC, and holds in the following
two examples (see examples 1 and 2 below).

PHT-like results are useful in MDPs related to Eco-
nomics and Finance models, as many researchers
from these fields need explicit computing procedures
to find approximations of optimal policies. In these
cases the reward function is usually a utility function.
A simple relevant example of such a possible applica-
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tion is presented:

Example 1 (Adapted from example 3.1 in [5]) A
household with monthly income u (a positive con-
stant) has to decide on the proportion λ̄ (in (0,1)) of
its current wealth xt to be consumed. The remaining
wealth (1 − λ̄)xt is to be invested in a security with
random return rate ξt. In this case it is possible to take
the state space as X = [u,∞) and the action space as
A = [0, 1]. The transition probability law is given by

xt+1 = ξt(1− λ̄)xt + u, (14)

t = 0, 1, . . . , where ξ0, ξ1, . . . are i.i.d. nonnega-
tive random variables. Let ξ be a generic element
of the sequence {ξt}.Suppose that due to severe eco-
nomic conditions P [ξ = 0] = κ > 0, and, for each
B ∈ B((0,∞)), P [ξ ∈ B] =

∫
B η(z)dz, where

η : R → R is a measurable and nonnegative function
such that

∫
(0,∞) η(z)dz = 1 − κ. Here, using (14), it

is direct to prove that Q({u}|x, a) = P [ξ = 0] = κ
for all (x, a) ∈ X × A. Hence Condition 3.1 (1) in
[6] holds with β = κ. In this case r(x, λ̄) = U(λ̄x),
where U is a utility function, that is, the household
reward is the utility of the consumption λ̄x. Most util-
ity functions easily satisfy Assumption 2 below and
hence this model would satisfy all the Assumptions of
this article.

Example 2 Let η and n > 1 be a positive constant and
a positive integer, respectively. Consider the transition
probability law induced by a system equation of the
type

xt+1 = min{[xt + at − ξt]+, η}, (15)

t = 0, 1, . . . , where ξ0, ξ1, . . . are i.i.d. random
variables with values in S = [0,∞) , and [z]+ de-
notes the positive part of z. Here the control space is
A = [η + 1, η + n], X = [0, η]. It is not difficult to
verify that under the condition:

P [ξ0 > 2η + n] > 0,

implies that the contidion 3.1 in [6] holds with β =
P [ξ0 > 2η + n] > 0.

Remark 7 It is worth mentioning that in some very
important cases IC holds independently of x, for in-
stance, when there are two functions Ψ and Λ,Ψ :
X → R and Λ : A → R such that r(x, a) =
Ψ(x) + Λ(a), (x, a) ∈ X ×A (notice that in this case
|r(x, a)−r(x, a∗)| = |Λ(a)−Λ(a∗)| for x ∈ X, a∗ ∈
A, and a ∈ Bc

ε (a
∗)).

The IC can be verified in the special case described in
Lemma 4 below.

Assumption 4

(a) A ⊆ R;
(b) For each x ∈ X , there exists an open set I such
that A ⊆ I , and r(x, ·) is defined and is of class C1

on I . Moreover, there exists a positive constant θ such
that ra ≥ θ, for all x ∈ X (ra denotes the first deriva-
tive of r with respect to the variable a).

Lemma 4. Under Assumption 4, Dε = εθ. Hence, IC
holds for each ε which satisfies 0 < ε < γ/2.

Proof. For x ∈ X , a∗ ∈ A, a ∈ Bc
ε (a
∗), and using

the classical one-variable Mean Value Theorem,

|r(x, a)− r(x, a∗)| = |ra(x, a′)||(a− a∗)|

≥ θ|a− a∗| (16)

≥ εθ, (17)

where a′ is a point between a and a∗. Hence,

inf
a∗∈A

inf
a∈Bcε (a∗)

|r(x, a)− r(x, a∗)| ≥ εθ,

for each x ∈ X, i.e., Dε = εθ.

Remark 8
(a) Notice that if inequality (16) is valid for all a, a∗ ∈
A, then r(x, ·) is injective for each x ∈ X . Let n
and m be positive integers (m < n). Inequalities of
type (17) applied to a continuous function W : Rn →
Rn (that is, for some positive constant θ, ‖W (s) −
W (z)‖ ≥ θ‖s − z‖, for all s, z in Rn ; here ‖ · ‖
denotes the usual norm in Rn) have been used to study
the existence of an inverse function for W (see, [4]
p. 12, problem 71 and [14] p. 105, problem 5 (c)).
Moreover, it is interesting to note that in the case of a
continuous function W : Rn → Rm, there is not an
inverse for W (see, [9] p. 368 exercise 2).
(b) It is important to observe that neither the C1 prop-
erty (or the continuity property) nor the existence of
an inverse for a reward function is necessary for a re-
ward function to satisfy the IC.

For an example,for X a Borel space, take A =
A(x) = [0, 1] × [0, 1/4] and let r : X × A →
R be defined, for each x ∈ X , by r(x, a) = 0
if a ∈ Θ0 = [0, 1/4) × [0, 1/4], r(x, a) = 1 if
a ∈ Θ1 = [1/4, 2/4) × [0, 1/4], r(x, a) = 2, if
a ∈ Θ2 = [2/4, 3/4) × [0, 1/4], and r(x, a) = 3
if a ∈ Θ3 = [3/4, 1]× [0, 1/4].

Note that, in this example, for each x ∈ X ,Γh =
{a ∈ A : r(x, a) ≥ h} is closed for every h ∈ R. In
fact, Γh = [0, 1] × [0, 1/4] if h ≤ 0, Γh = [1/4, 1] ×
[0, 1/4] if 0 < h ≤ 1, Γh = [2/4, 1] × [0, 1/4] if
1 < h ≤ 2, Γh = [3/4, 1] × [0, 1/4] if 2 < h ≤
3, and Γh = φ if h > 3. Hence, r(x, ·) is upper
semicontinuous, for each x ∈ X .
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This upper semicontinuity of r(x, ·) for each x ∈
X is necessary for Assumption 1 to be valid (see [6]
pp.18-19). Secondly, observe that γ/2 = (17)1/2/8
(in fact,γ is equal to the distance between the points
P (0, 0) and Q(1, 1/4)). Take ε = 1/2 (note that
0 < 1/2 < (17)1/2/8). Now, take x ∈ X , and
a∗ ∈ A. Without loss of generality assume that
a∗ ∈ Θ0 (the proof of the other cases is similar). It
is easy to verify that Θ0 ⊂ B1/2(a∗), or equivalently,
Bc

1/2(a∗) ∩ A ⊂ Θ1 ∪ Θ2 ∪ Θ3 (observe that the di-
ameter of each square [0, 1/4]× [0, 1/4], [1/4, 2/4]×
[0, 1/4], [2/4, 3/4] × [0, 1/4] and [3/4, 1] × [0, 1/4]
is (2)1/2/4, and that (2)1/2/4 < 1/2 < (17)1/2/8).
Consequently, infa∈Bc

1/2
(a∗) |r(x, a) − r(x, a∗)| ≥ 1.

Since a∗ and x are arbitrary, it follows that D1/2 = 1.

4 Conclusion

4.1 Further research

PHT-like results as those developed in this article de-
serve further attention for their possible application in
practical computing schemes and in stability issues re-
lated to small errors in optimal actions. For instance,
if in order to find an approximation to an optimal pol-
icy by digital computer, it is necessary to discretize the
action space A or select a finite subset of “adequate”
representatives of A, PHT-like results could suggest
desirable properties of the resulting new finite action
so that the Value iteration procedure would be more
efficient.

Let it be mentioned that the present article has its
roots in previous research on pointwise convergence
of value iteration maximizers to the optimal policy,
see [3], work that was partially inspired by some the-
oretical material in [12].

Finally, some open questions should be men-
tioned.

• In the case the reward does not depend on the
state x, but only on the action a, as often hap-
pens in many economical applications, it should
be straightforward, from the main result, to ob-
tain uniform convergence of the maximizers. In
particular, if the Assumptions in Lemma 3 hold
and the transition probability law is also inde-
pendent of the state of the system, does the se-
quence of maximizers {fn} converges uniformly
to f∗ on each closed interval J ′ ⊂ (w, z) with
f∗(x) ∈ J ′ for each x ∈ X?

• It would be very interesting to weaken the Er-
godicity Condition (EC) needed in the proof of

Theorem 1. In particular, that would help to ex-
tend the results of the present paper to determin-
istic frameworks.

• Bounds of the kind:

|V ∗(x)− V (fn, x)| ≤ Mαn

1− α
,

x ∈ X,n = 1, 2, 3, . . . , mentioned in Remark 5
may have an interpretation as stability or robust-
ness results worth studying.

Recently, the study of problems in the mathe-
matical modelling and optimization of sustainable de-
velopment strategies has revived interest in the study
of Average Reward Markov Decision Processes, as a
matter of fact, a Discounted Reward Markov Deci-
sion approach would guarantee a non-sustainable so-
lution, in the sense that first generations in a commu-
nity would tend to earn all possible reward as soon
as possible leaving a compromised future for poste-
rior generations. It is natural to ask in this case if a
vanishing discount approach would be feasible in the
extension of the results of this paper to the average
reward case [6]. The results presented in this paper
impose some restrictions on the discount factor with
respect to the ergodicity index, and hence this issue is
open.

4.2 Final words

Bellman, in his seminal work Dynamic Programming,
Princeton University Press, 1957, p. ix, states, regard-
ing the solution of a problem in dynamic program-
ming (and hence, perfectly relevant to the contents of
this paper):

The problem is not to be considered solved
in the mathematical sense until the structure
of the optimal policy is understood.

Much further research needs to be done in this
subject if we are to follow Bellmans mandate.
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