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Universidad Autónoma de Puebla

Facultad de Ciencias Fı́sico-Matemáticas
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MÉXICO
rroldan@alumnos.fcfm.buap.mx

Abstract: This paper deals with Markov Decision Processes (MDPs) on Borel spaces with an infinite horizon and
a discounted total cost. It will be considered a stochastic optimal control problem which arises by perturbing the
transition law of a deterministic control problem, through an additive random noise term with coefficient epsilon.
In the paper, we will analyze the behavior of the optimal solution (optimal value function and optimal policy)
of the stochastic system, when the coefficient epsilon goes to zero. Specifically, conditions given in the paper
guarantee the uniform on compact sets convergence of both the optimal value function and the optimal policy of
the stochastic system to the optimal value function and the optimal policy of the deterministic one, when epsilon
goes to zero, respectively. Finally, two examples which illustrate the developed theory are presented.

Key–Words: Stochastic Optimization, Markov Decision Process, Dynamic Programming, Total Discounted Cost,
Deterministic Approximation, Inventory/Production System

1 Introduction

This paper will deal with discrete-time Markov Deci-
sion Processes (MDPs) with an infinite horizon and a
total discounted cost (see [2], [10] and [11]). MDPs
are widely used to model controlled dynamical sys-
tems in control theory, operations research, image fu-
sion (see [3]), artificial intelligence (see [3], [15] and
[19]) and others. Besides, the MDPs in question pos-
sess the objective function known as the discounted
cost function.The principal goal of MDPs is to deter-
mine the optimal policy f and to obtain the optimal
value function V . One widely studied methodology
to characterize and determine f and V is called the
dynamic programming equation (see [10] and [11]).

In this article, for the MDPs taken into account,
there will be assumed the existence of optimal policies
and the validity of the Dynamic Programming Equa-
tion (see [2] and [11]). Besides, the MDPs in question
posses, possibly unbounded cost functions.

There will be considered a deterministic Markov
Decision Process (MDP), and a family of the stochas-
tic MDPs indexed by a coefficient ε with values in a
certain compact set of real numbers containing zero,
and for each element of this family the probability law
is the transition law of the deterministic MDP per-
turbed by an additive random noise multiplied by ε.
It will be interesting to analyze the behavior of the
optimal value function and the optimal policy of the

stochastic system, when the coefficient ε goes to zero.

Specifically, conditions given in the paper guaran-
tee the uniform on compact sets convergence of both
the optimal value function and the optimal policy of
the stochastic MDP to the optimal value function and
the optimal policy of the deterministic one, when ε
goes to zero, respectively.

This article was inspired by the papers of Flem-
ming (see [8]), Lipster, Runggaldier and Taksar (see
[16]), and Cruz-Suárez & Montes-de-Oca (see [5]).
The first article is the one related to the theory of
small disturbances for problems of control in conti-
nuous time with a finite horizon. In this paper this
approach is used to obtain expansions of a optimal
value function of a stochastic MDP in powers ε, ε2, ....
This work was one of the pioneers regarding the ana-
lysis of problems of control with small disturbances.
Nowadays, this approach has been applied to models
of economic growth (see [6], [7], [17] and [20]) and in
asymptotic methods (see [13] and [14]). Lipster et al’s
paper deals with a stochastic control system in conti-
nuous time with a finite horizon and with nonnegative
costs. In [16] the stochastic problem is approximated
by a deterministic system when the noise intensitiy ε
is small. In the paper of Cruz-Suárez & Montes-de-
Oca (see [5]), a stochastic control system via a de-
terministic one is analyzed. In this case, the solution
of the stochastic system (the optimal value function
and the optimal policy) is induced by the determinis-
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tic control system.
This paper is organized as follows. In Section 2,

basics concepts and results in the theory of MDPs are
presented. In Section 3, the statement of the problem
is established and some results of Lipschitz functions
are presented. In Section 4, the theory about the uni-
form convergence is developed. Finally, in Section
5, two examples which illustrate the developed theo-
ry are presented, and, in Section 6, some concluding
remarks are provided.

2 Discounted Markov Decision Pro-
cesses

A Markov control model (see [2], [10] and [11]) is a
five-tuple (X,A, {A(x) : x ∈ X}, Q, c) consisting of

(a) a Borel space X , called the state space;

1. a Borel space A, called the action set;

(b) a family {A(x) : x ∈ X} of nonempty mea-
surable subsets A(x) of A, where A(x) denotes
the set of feasible actions when the system is
in state x ∈ X . The set K = {(x, a) : x ∈
X, a ∈ A(x)} of admissible state-actions pairs is
assumed to be a measurable subset of the carte-
sian product X ×A;

(c) a stochastic kernel Q on X given K called the
transition law. Specifically, Q(·|x, a) is a prob-
ability measure on X for every (x, a) ∈ K, and
Q(B|·) is a measurable function on K for every
B ∈ B(X) (B(X) denotes the Borel σ−algebra
of X);

(d) c is a real-valued measurable function on K
called the cost-per-stage (or one-stage cost) func-
tion.

For each t = 0, 1, ..., let xt and at be the state
and the control at time t, respectively. If the system
is in the state xt = x at time t and the control ac-
tion at = a ∈ A(x) is applied, then a cost c(x, a)
is paid and the system moves to a new state xt+1 by
means of the probability distribution Q (·|x, a) on X
(i.e. Q(B |x, a) = Pr(xt+1 ∈ B |xt = x, at = a),
B ∈ B(X) and (x, a) ∈ K)

In this article, the transition law is specified by a
dynamic model of the form

xt+1 = M(xt, at, ξt),

t = 0, 1, ..., where the random perturbations {ξt}
is a sequence of independent and identically dis-
tributed (i.i.d.) random elements with values in some

nonempty Borel subset of an Euclidean space S and a
common distribution µ. Meanwhile,M : K×S → X
is a measurable function. In this case, the transition
law Q is given by

Q(B |x, a) = Pr(xt+1 ∈ B |xt = x, at = a)
= µ ({s ∈ S : M(x, a, s) ∈ B}) ,

for all B ∈ B(X) and (x, a) ∈ K.
A control policy π is a sequence {π̂t : t =

0, 1, ...}, where, for each t = 0, 1, ..., π̂t(· |ht) is a
conditional probability on the Borel σ−algebra B(A),
given the history ht := (x0, a0, ..., xt−1, at−1, xt),
such that π̂t(A(xt) |ht) = 1. In this paper, the set
of policies will be denoted by Π.

Let F := {θ : X → A such that θ is measurable
and θ(x) ∈ A(x), x ∈ X}. A sequence π = {θt : t =
0, 1, ...} of functions θt ∈ F is called a Markov policy.
A Markov policy π = {θt : t = 0, 1, ...} is said to be
a stationary policy if θt = θ ∈ F, for all t.

Given the initial state x0 = x, x ∈ X , and any
policy π ∈ Π, there is a probability measure P πx in-
duced by the pair (x, π) on the space Ω = (X×A)∞,
with F as the product sigma-algebra, in a canonical
way (see [10]). The corresponding expectation opera-
tor will be denoted by Eπx . The pair (x, π) determines
a stochastic process (Ω,F , P πx , {xt}) called a Markov
Decision Process (MDP).

Let (X,A, {A(x) : x ∈ X}, Q, c) be a fixed con-
trol model. For each policy π and initial state x ∈ X ,
consider

v(π, x) = Eπx

[ ∞∑
t=0

αtc(xt, at)

]
.

v(π, x) from the equation above is called the total ex-
pected discounted cost, where α ∈ (0, 1) is the dis-
count factor.

The optimal control problem is then to find a pol-
icy π∗ ∈ Π, such that

v(π∗, x) = inf
π∈Π

v (π, x) ,

x ∈ X , and in this case π∗ is called an optimal policy.
The function v̂ defined by

v̂(x) = v(π∗, x),

x ∈ X , is called the optimal value function.
The value iteration functions are defined as

Vn(x) = min
a∈A(x)

{
c(x, a) + α

∫
Vn−1(M(x, a, s))dµ(s)

}
,

(1)
x ∈ X , and n = 1, 2, ..., with V0 (·) ≡ 0.

Let w : X → [1,∞) be a measurable function. If
m is a real-valued function on X , then its w−norm is
defined as

‖m‖w := sup
x∈X

|m(x)|
|w(x)|

.

WSEAS TRANSACTIONS on MATHEMATICS Hugo Cruz-Suarez, Rocio Ilhuicatzi-Roldan

ISSN: 1109-2769 121 Issue 2, Volume 9, February 2010



(w is called a weight function.)

Assumption I

(a) A(x) is a compact subset for each x ∈ X .

(b) c(x, a) is lower semicontinuous (l.s.c.) in a ∈
A(x) for each x ∈ X . (i.e. for each x ∈
X , lim infn→∞ c(x, an) ≥ c(x, a), for any se-
quence {an} in A that converges to a.)

(c) For each x ∈ X , the function

u(x, a) =
∫
u(y)Q(dy |x, a)

is continuous in a ∈ A(x), for every bounded
measurable function u on X .

(d) There exist nonnegative constants r and β, with
1 ≤ β < 1/α, and a weight function w ≥ 1 on
X such that, for every state x ∈ X ,

i) supa∈A(x) |c(x, a)| ≤ rw(x) and

ii) supa∈A(x)

∫
w(y)Q(dy |x, a) ≤ βw(x).

(e) For every state x ∈ X , the function

w′(x, a) =
∫
w(y)Q(dy |x, a)

is continuous in a ∈ A(x).

Lemma 1. Suppose that Assumption I holds. Then:

(a) The optimal value function v̂ is a solution for the
following equation:

v̂(x) = min
a∈A(x)

{
c(x, a) + α

∫
v̂(y)Q(dy |x, a)

}
,

x ∈ X . (This equation is called the Dynamic
Programming Equation.)

(b) There exists θ ∈ F such that

v̂(x) = c(x, θ(x)) + α

∫
v̂(y)Q(dy |x, θ(x)) ,

(2)
x ∈ X , and θ is optimal.

(c) Vn(x)→ v̂(x), when n→∞ for each x ∈ X .

Remark 2. The proof of the previous Lemma could
be consulted in [11] pp. 51-53. In particular, in this
source the following inequality is proved,

|v̂(x)| ≤ r

1− γ
w(x), (3)

x ∈ X and γ := αβ. Inequality (3) will be used in
the following sections.

Consider a deterministic MDP with a space state
X , a space controlA, with admissible setsA(x) ⊂ A,
x ∈ X . Suppose that the dynamic of the system is
given by the difference equation

xt+1 = F (xt, at), (4)

t = 0, 1, ..., where F : K→ X is a given measurable
function, and the cost function c : K→ R is measura-
ble as well. In this case, Q is given by

Q(B |x, a) = IB(F (x, a)),

for all B ∈ B(X) and (x, a) ∈ K, where IB(·)
denotes the indicator function of B. The transition
law of the deterministic problem will be denoted by
QF . Then the Markov control model is given by
(X,A, {A(x) : x ∈ X}, QF , c).

Remark 3. Observe that, when F is a continuous
function on K, the transition law QF is weakly con-
tinuous, i.e.∫

u(y)QF (dy |x, a) = u(F (x, a))

is a continuous function of (x, a) ∈ K for every
u ∈ {ζ : X → R : ζ is a bounded continuous
function}.

Assumption II

(a) Same as Assumption I (a). Moreover, the mul-
tifunction x 7−→ A(x) is upper semicontinuous
(u.s.c.).

(b) The cost function c is l.s.c. on K.

(c) F is a continuous function on K.

(d) There exist nonnegative constants rd and βd with
1 ≤ βd < 1/α, and a continuous weight function
wd ≥ 1 on X such that for every state x ∈ X:

i) supa∈A(x) |c(x, a)| ≤ rdwd(x) and

ii) supa∈A(x)wd(F (x, a)) ≤ βdwd(x).

Remark 4. Under Assumption II a similar version of
Lemma 1 holds for a deterministic MDP (see [11], pp.
65-67). (In this case, in Lemma 1 it is just necessary
to change the transition law Q for QF .)
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3 Statement of the Problem

Let (X,A, {A(x) : x ∈ X}, QF , c) be a deterministic
Markov control model as introduced in the previous
section. Besides, consider a stochastic control system
with the same: state space X , control space A, ad-
missible sets A(x), x ∈ X , and the cost function c,
but with the following dynamic of the system:

xt+1 = F (xt, at) + εξt, (5)

t = 0, 1, ..., where {ξt} is a sequence of i.i.d. random
elements taking values in a Borel space S ⊆ X with a
distribution function µ and ε ∈ Ξ, where Ξ is a com-
pact subset of the real numbers containing zero. Note
that in this case a family of Markov control models in-
dexed by ε: {(X,A, {A(x) : x ∈ X}, Qε, c) : ε ∈ Ξ}
is considered, where the transition law Qε is given by

Qε(B |x, a) =
∫
IB(F (x, a) + εs)dµ(s),

B ∈ B(X) and (x, a) ∈ K.

Remark 5. Observe that in the stochastic transition
law (5), when ε → 0, the stochastic system goes to
the deterministic system (4). The rest of the paper will
be focused on analyzing conditions which allow both
the optimal value function and the optimal policy of
the stochastic MDP tend to the corresponding optimal
value function and the optimal policy of the determi-
nistic MDP.

In the next sections, the value function of the
stochastic system will be denoted by V ε and the de-
terministic system by V . In the same way, the optimal
policy of the stochastic system will be denoted by f ε
and the deterministic optimal policy by f . Moreover,
it will be supposed that Assumptions I or II hold for
each MDP considered. (The weight functions will be
denoted by w and wε for the deterministic MDP and
for the stochastic one, respectively, and similarly for
Vn and V ε

n .) Also, there will be assumed the existence
of a unique stationary optimal policy f for the deter-
ministic control system (see [4]).

Let (Ê, d̂) be a metric space. If B is a subset of
Ê and a ∈ Ê, it is defined that

d̂(a,B) = inf
{
d̂(a, b) : b ∈ B

}
.

Let B1 and B2 be two nonempty closed subsets of Ê.
Define

d̂(B1, B2) = sup
{
d̂(b, B2) : b ∈ B1

}
,

and

d̂(B2, B1) = sup
{
d̂(b, B1) : b ∈ B2

}
.

The function

H(B1, B2) = max
{
d̂(B1, B2), d̂(B2, B1)

}
(6)

where B1 and B2 are nonempty closed subsets of Ê,
is called the Hausdorff metric. It has the properties of
a metric on the family of nonempty closed subsets of
Ê.

In the rest of this Section it will be supposed
that d1 and d2 denote, respectively, the metrics on X
and A. Besides, let d be the metric on K defined by
d := max{d1, d2}.

Assumption III
There is L1 > 0 such that

H(A(x), A(x′)) ≤ L1d1(x, x′),

for every x and x′ in X where H is the Hausdorff
metric (6).

Lemma 6. Under Assumption III, the multifunction
x→ A(x) is u.s.c..

Proof. Let {xn} ⊂ X be a sequence such that xn →
x, x ∈ X and let {an} be a sequence of elements of
A(xn), n ≥ 1. Using Assumption III, it results that

H(A(xn), A(x)) ≤ L1d1(xn, x),

n ≥ 1. Then, when n → ∞ in the last inequa-
lity and using the definition of H , it is obtained that
d2(A(xn), A(x))→ 0. In particular,

lim
n→∞

d2(an, A(x)) = 0. (7)

Fix n ≥ N . For each k ≥ 1, there exists bnk ∈ A(x)
such that

d2(an, A(x)) +
1
k
> d2(an, bnk). (8)

Since A(x) is a compact subset of A, there exists a
subsequence {bnkl

} of {bnk} and bn ∈ A(x) such that
bnkl
→ bn. Then, substituting k by kl and letting l →

∞ in (8) it results that

d2(an, A(x)) ≥ d2(an, bn). (9)

Using a similar argument (now, considering n as va-
riable), there exist a subsequence {bnz} and a ∈
A(x), such that bnz → a when z → ∞. Then, by
(9) and (7) it is obtained that

lim
z→∞

d2(anz , b
nz) = 0.

On the other hand,

d2(anz , a) ≤ d2(anz , b
nz) + d2(bnz , a).

Therefore, when z → ∞, anz → a. Now, from
Lemma 2.20 in [3], it follows that x→ A(x) is u.s.c..
This concludes the proof of Lemma 6.
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Now, let G : K→ R be a measurable function. It
is supposed that there is a function Λ : X → R such
that G(x, a) ≥ Λ(x), for all x ∈ X and a ∈ A(x).
Define g : X → R by

g(x) = inf
a∈A(x)

G(x, a), (10)

x ∈ X .
The following Lemma is similar to Proposition 24

in [1]. The proof of this Lemma is presented here for
the completeness of the paper.

Lemma 7. Suppose that Assumptions I a) and III
hold. Let G : K → R be a Lipschitz function on K
with a Lipschitz’s constant L. Then g given by (10) is
a Lipschitz function on X with a Lipschitz’s constant
Lmax{L1, 1}.

Proof. It will be known that due to Assumption I a),
Lemma 6, and the fact that G is Lipschitz there exists
h ∈ F such that g(x) = G(x, h(x)), x ∈ X (see
Proposition D.3, Appendix D in [10]). Fix x, x′ ∈ X .
Using Assumption III, it results that

inf
{
d2(h(x), a) : a ∈ A(x′)

}
≤ L1d1(x, x′).

Then, there exists a′ ∈ A(x′) such that

d2(h(x), a′) ≤ L1d1(x, x′). (11)

Therefore,

g(x′)− g(x) = g(x′)−G(x, h(x))
≤ G(x′, a′)−G(x, h(x))
≤ Lmax

{
d1(x, x′), d2(h(x), a′)

}
=
{

Ld1(x, x′), if d1(x, x′) ≥ d2(h(x), a′)
Ld2(h(x), a′), if d1(x, x′) < d2(h(x), a′)

.

(12)
Now, using (11) in (12), it is obtained that

g(x′)− g(x) ≤ Lmax{L1, 1}d1(x, x′).

In a similar way it is possible to demonstrate that

g(x′)− g(x) ≤ Lmax{L1, 1}d(x, x′).

Therefore, since x and x′ are arbitrary the result fol-
lows.

Now the following assumption will be presented.

Assumption IV
There are constants L0 and L2 such that:

(a) |c(k)− c(k′)| ≤ L0d(k, k′) for every k and k′ in
K.

(b) |F (k)− F (k′)| ≤ L2d(k, k′) for every k and k′
in K.

Now, let G : K→ R be a function defined by

G(k) = c(k) + α

∫
V ε(F (k) + εs)dµ(s), (13)

k = (x, a) ∈ K. And for each n, let Gn : K → R be
a function defined by

Gn(k) = c(k) + α

∫
V ε
n (F (k) + εs)dµ(s), (14)

k = (x, a) ∈ K.

Lemma 8. Suppose that Assumptions I, III, and IV
hold. Then for each ε ∈ Ξ,

(a) V ε
n (see (1)) is a Lipschitz function with a cons-

tant

Kn = (L0 + αKn−1L2) max{1, L1},

for n = 1, 2, ..., with K0 = 0.

(b) The optimal value function V ε is a Lipschitz
function.

Proof. (a) Fix ε ∈ Ξ. The proof will be made by
induction. For n = 1 it results that, due to Lemma
7 and Assumption IV (a), V ε

1 is a Lipschitz function
on X with a constant K1 = L0 max{1, L1}. Suppose
that V ε

n−1 is a Lipschitz function with a constant

Kn−1 = (L0 + αKn−2L2) max{1, L1},

for n > 1. Let k, k′ ∈ K. Then, using (14) and
Assumption IV, it results that∣∣Gn(k)−Gn

(
k′
)∣∣ ≤ ∣∣c(k)− c(k′)

∣∣+
α

∫ ∣∣V ε
n−1(F (k) + εs)− V ε

n−1(F (k′) + εs)
∣∣ dµ(s)

≤ L0d(k, k′) + αKn−1

∣∣F (k)− F (k′)
∣∣

≤ L0d(k, k′) + αKn−1L2d(k, k′)
≤ (L0 + αKn−1L2) d(k, k′).

Hence, Gn is a Lipschitz function and then, using
Lemma 7 and the fact that ε is arbitrary, the result
follows.

(b) Firstly, it will be proved that the sequence
{Kn} given in a) is convergent. The sequence {Kn}
satisfies the following equation:

Kn+1 = (L0 + αKnL2) max{1, L1}, (15)
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for n ≥ 1 and K0 = 0, since V0 ≡ 0. Iterating (15), it
results that

Kn = L0 max{1, L1}
n−1∑
i=0

Bi,

where B = αL2 max{1, L1} and n > 1. Without
losing generality, it is assumed that 0 < B < 1. Then,
when n→∞, it follows that

K = lim
n→∞

Kn

=
L0 max{1, L1}

1− αL2 max{1, L1}

=
L0 max{1, L1}

1−B
.

Now, using a) and (13) it results that∣∣G(k)−G(k′)
∣∣ ≤ Kd(k, k′),

for k, k′ ∈ K. Therefore, using Lemma 7 the result
follows.

Remark 9. The Lipschitz continuity in the context of
MDPs using the Kantorovich metric can be consulted
in Hinderer [12].

Lemma 10. The optimal policy f is continuous.

Proof. The proof is made by contradiction: suppose
that f is not continuous. Then there exist x ∈ X and
a sequence {xn} inX such that xn converges to x, and
f (xn) 9 f(x). It is possible to obtain a subsequence
{xnk

} of {xn} such that

d2(f(xnk
), f(x)) ≥ τ, (16)

for some τ > 0 and for all k = 1, 2, .... Since
ynk

= f(xnk
) ∈ A(xnk

), k = 1, 2, ... and the mul-
tifunction x → A(x) is compact-valued and is also
u.s.c., there exists a subsequence {ynkl

} of {ynk
} such

that ynkl
→ y, for some y ∈ A(x).

On the other hand, using (1) applied to the deter-
ministic MDP, it results that

V (xnkl
) = c(xnkl

, ynkl
) + αV (F (xnkl

, ynkl
), (17)

l = 1, 2, .... Then, when l → ∞ in (17), it follows
that

V (x) = c(x, y) + αV (F (x, y)).

But the deterministic optimal policy f is unique, so
y = f(x). This last conclusion is a contradiction,
since d2(y, f(x)) ≥ τ , due to (16). Therefore, f is
continuous.

In the following section the main results of the
paper will be presented: see Theorems 11 and 12, be-
low.

4 Main Results

Assumption V
w (·) and wε (·) are continuous functions on X .
Let Υ be a compact subset of X and KΥ :=

{(x, a) : x ∈ Υ, a ∈ A(x)}.
Theorem 11. Suppose that Assumptions I-V hold. Let
{εn} ⊂ Ξ be a sequence such that εn → 0. Then
{V εn} converges uniformly to V on every nonempty
compact subset of X .

Proof. Firstly, observe that for each n ≥ 1,

‖V εn − V ‖wεn
≤ R, (18)

where wεn(x) = w(x) + wεn(x), x ∈ X, and R =
max{r/ (1− γ) , rd/ (1− γd)} and r and γ are the
constants of the stochastic systems given by Assump-
tion I, meanwhile rd and γd are the constants of the
deterministic system. Inequality (18) is a direct con-
sequence of inequality (3) applied to both problems:
the deterministic and the stochastic one.

Let x ∈ Υ, where Υ a fixed compact subset of X .
Then using Lemma 8 it results that

|V εn(x)− V (x)|

≤ α min
a∈A(x)

∣∣∣∣∫ V εn(F (x, a) + εns)dµ(s)− V (F (x, a))
∣∣∣∣

≤ α min
a∈A(x)

∫
|V εn(F (x, a) + εns)− V (F (x, a))| dµ(s).

(19)
On the other hand, for a ∈ A(x) and s ∈ S,

|V εn(F (x, a) + εns)− V (F (x, a))|

≤ |V εn(F (x, a))− V (F (x, a))|
+ |V εn(F (x, a) + εns)− V εn(F (x, a))|

≤ K |εn| |s|+ ‖V εn − V ‖wεn
wεn(F (x, a))

≤ K |εn| |s|
+ ‖V εn − V ‖wεn

sup
(k,εn)∈KΥ×Ξ

wεn(F (k)).

(20)

Then, using (20) in (19), it results that

|V εn(x)− V (x)| ≤ αL̂ ‖V εn − V ‖wεn
+ αK |εn|E |ξ| ,

where L̂ = sup(k,εn)∈KΥ×Ξwεn(F (k)). Since
wεn ≥ 1, it results that

‖V εn − V ‖wεn
≤ α

1− αL̂
K |εn|E |ξ| .

Then,

sup
x∈Υ
|V εn(x)− V (x)| ≤ α

1− αL̂
KL̂ |εn|E |ξ| .

(21)
Therefore, when n →∞ in (21), and since Υ is arbi-
trary the result follows.
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Theorem 12. Suppose that Assumptions I-V hold. Let
{εn} ⊂ Ξ be a sequence such that εn → 0. Then
{f εn} converges uniformly to f on every nonempty
compact subset of X .

Proof. The proof will be made by contradiction. Let
Υ ⊂ X be a fixed compact set and take gn(x) =
f εn(x), x ∈ X, εn ∈ Ξ, n ≥ 1 with εn → 0. Suppose
that

sup
x∈Υ

d2(gn(x), f(x)) 9 0.

Then there exists τ > 0 such that for allm, there exist
n ≥ m, such that

sup
x∈Υ

d2(gn(x), f(x)) ≥ τ > 0.

Let {nk} be a subsequence of {n} such that

sup
x∈Υ

d2(gnk
(x), f(x)) ≥ τ.

For each, k ≥ 1, there exists xnk
∈ Υ, such that

d2(gnk
(xnk

), f(xnk
)) ≥ τ. (22)

Because Υ is compact, there exists x ∈ Υ, such that
xnk
→ x. Since the multifunction x→ A(x) is u.s.c.

and gnk
(xnk

) ∈ A(xnk
), k ≥ 1, there exists a ∈ A(x)

such that gnkl
(xnkl

) → a. Now, taking xnk
equal

to xnkl
in (22), using the continuity of f , and letting

l→∞ in this inequality, it results that

d2(a, f(x)) ≥ τ > 0, (23)

x ∈ X . On the other hand, by (2) it is obtained that

Vnkl
(xnkl

) = c(xnkl
, gnkl

(xnkl
))

+α
∫
Vnkl

(F (xnkl
, gnkl

(xnkl
)) + εnkl

s)dµ(s).

Hence, when l→∞,

V (x) = c(x, a) + αV (x, a),

x ∈ X . But, the uniqueness of f implies that a =
f(x), which is a contradiction to (23). Therefore,
since Υ is arbitrary, Theorem 12 follows.

In the following examples there will be verified
the assumptions given in this paper.

5 Examples

In this section d1 and d2 are considered as the usual
metric in R, that is d1(z1, z2) = d2(z1, z2) =
|z1 − z2| , z1, z2 ∈ R.

Example 13. The dynamic of the system is given by

xt+1 = at + εξt,

t = 0, 1, ..., and {ξt} is a sequence of random va-
riables i.i.d. taking values in S = [0,M/2] and
ε ∈ [0, 1]. Observe that in this case, trivially,E |ξ0| <
+∞. The state space is X = [0,M ], where M is
a fixed positive number; the control space is A =
[0,M/2]; the set of admissible controls in a state x
is A(x) = [0,min{x,M/2}], and the cost function is

c(x, a) = ex−a,

(x, a) ∈ K.

Remark 14. For Example 13 Assumptions I, II and V
trivially hold as a consequence of the boundness of the
cost function c and of the compactness of A(x), x ∈
X .

Lemma 15. For this Example Assumptions III and IV
hold.

Proof. Assumption III holds since the Hausdorff me-
tric is given by: H(A(x), A(x′)) = |x− x′|, if
x, x′ ∈ [0,M/2], H(A(x), A(x′)) = 0; if x, x′ ∈
[M/2,M ], H(A(x), A(x′)) = |x−M/2|; if x ∈
[0,M/2] and H(A(x), A(x′)) = |x′ −M/2|; if x′ ∈
[0,M/2] and x′ ∈ [M/2,M ]. In all the previous cases
the continuity of Lipschitz holds.
Now, let

F (x, a) = a,

(x, a) ∈ K and s ∈ S. Then∣∣F (k)− F (k′)
∣∣ =

∣∣a− a′∣∣
≤ max{

∣∣x− x′∣∣ , ∣∣a− a′∣∣}
= d(k, k′),

where k = (x, a), k′ = (x′, a′) ∈ K.
Afterwards, the Lipschitz’s continuity of the cost
function c will be proved. Let k, k′ ∈ K, then∣∣c(k)− c(k′)

∣∣
=

∣∣∣e−a (ex − ex′)+ ex
′
(
e−a − e−a′

)∣∣∣
≤ e−a

∣∣∣ex − ex′∣∣∣+ ex
′
∣∣∣e−a − e−a′∣∣∣ .

Using the Mean Value Theorem, it results that there
exist constants M1 and M2 such that∣∣c(k)− c(k′)

∣∣ ≤ ∣∣∣ex − ex′∣∣∣+ eM/2
∣∣∣ea − ea′∣∣∣

≤ M1

∣∣x− x′∣∣+M2

∣∣a− a′∣∣
≤ Md(k, k′),

where k, k′ ∈ K and M = max{M1,M2}.
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Example 16. An Inventory/Production System. Con-
sider a finite capacity C < ∞ of an inven-
tory/production system in which the state variable xt
is the stock level at the beginning of the period t,
where t = 0, 1, 2, .... The control variable at is the
quantity ordered or produced at the beginning of the
period t, and the disturbance process {ξt} is the co-
rresponding demand. {ξt} is a sequence of i.i.d. ran-
dom variables with values in the space S = [0,∞)
with distribution µ. It will be supposed that the
demand distribution µ is absolutely continuous with
density ∆, i.e.

µ (B) =
∫
B

∆(s)ds,

B ∈ B(R). Denoting the amount sold during the pe-
riod t by

xt+1 = xt + at − εξt,

and letting the initial state be some given inventory
level x0 independent of {ξt}. It will be assumed that
E |ξ| < +∞, where ξ is a generic element of the se-
quence {ξt}. The state space is X = R, the control
space is A = [0, C], the set of admissible controls in
the state x is A(x) = A, and the cost function is

c(x, a) = ψ(a) +
∫

[pmax (0, x+ a− εs)

+hmax (0,−x− a+ εs)]∆(s)ds, (24)

(x, a) ∈ K, where ψ : A → R is the cost produc-
tion (i.e. ψ(a) represents the cost to order a units),
h is the unit holding cost for excess inventory, and p
is the shortage cost for unfilled demand. These unit
costs are all positive. Moreover, it will be assumed
that ψ (0) = 0, ψ is strictly convex and Lipschitz
continuous. Take α ≤ 1/2. ε belongs to some fixed
nonempty subset containing zero.

Remark 17. Assumptions I (a) and (b), and II (a) and
(b) trivially hold. The proof of the uniqueness of the
policy f is similar to the proof given for Example 4.5
in [4], and Assumption I (c) is also verified in that
reference. The rest of the Assumptions are shown in
the following Lemmas.

Lemma 18. The weight-functions w and wε are given
by

wε(x) = h |x|+ Tε,

x ∈ X, and
w(x) = h |x|+ T,

x ∈ X , where Tε = η + Ch + εpE[ξ] + 1, T =
η + Ch+ 1, and η = supa∈A ψ(a).

Remark 19. Observe that the weight-functionsw and
wε satisfy the following assumptions: Assumption I
(d) and II (c), with r = rd = 1 and β = βd = 2 (these
are consequences of the fact that α ≤ 1/2). Besides
Assumptions I (e), II (b) and IV, trivially hold.

Proof. Taking y = x+ a in (24), it results that

c(x, y − x) = ψ (y − x) + λ(y),

where

λ(y) = hE [max (0, y − εξ)]
+pE [max (0,−y + εξ)] .

Using the Change Variable Theorem (assuming that
ε 6= 0), it is obtained that

λ(y) = hyµ
(y
ε

)
− ε (h+ p)

∫ y/ε

−∞
sdµ(s)

+pεE[ξ]− py
(

1− µ
(y
ε

))
.

Then,
λ(y) ≤ hyµ

(y
ε

)
+ pεE [ξ] .

Since

1. 0 ≤ µ
(y
ε

)
≤ 1; and

2. y ∈ [x, x+ C], x ∈ X,

it results that

|c(x, a)| ≤ η + Ch+ hx+ pεE [ξ]
≤ η + Ch+ h |x|+ pεE [ξ] + 1,

(x, a) ∈ K. Then wε(x) = h |x| + Tε, x ∈ X, and
in a similar way it is possible to prove that w(x) =
h |x|+ T , x ∈ X .

Lemma 20. For Example 16, Assumptions III,IV, and
V hold.

Proof. To prove this Lemma it is just necessary to
demonstrate that the cost function c and the function

F (x, a) = x+ a,

(x, a) ∈ K are Lipschitz functions. Observe that
in this case the Hausdorff metric is constant, i.e.
H(A(x), A(x′)) = 0, x, x′ ∈ X . First of all, it will
be proved that F is a Lipschitz function. To do so, let
k, k′ ∈ K and∣∣F (k)− F (k′)

∣∣ ≤ ∣∣a− a′∣∣+
∣∣x− x′∣∣

≤ 2 max
{∣∣a− a′∣∣ ∣∣x− x′∣∣}

= 2d(k, k′).
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Now, it will be proved that c is a Lipschitz function.
Since, the function ψ is Lipschitz, it is just necessary
to prove that the function

Ĥ(k) :=
∫
pmax (0, k − εs) ∆(s)ds

+
∫
hmax (0,−k + εs) ∆(s)ds,

k ∈ K, is Lipschitz. Let k, k′ ∈ K. Then, using the
identity max (0, z) = (z + |z|) /2, z ∈ R, it results
that ∣∣∣Ĥ(k)− Ĥ(k′)

∣∣∣
≤ p+ h

2

∫ ∣∣k − k′∣∣∆(s)ds

+
p+ h

2

∫ ∣∣|k − εs| − ∣∣k′ − εs∣∣∣∣∆(s)ds

≤ (p+ h)
∣∣k − k′∣∣

≤ (p+ h)
(∣∣x− x′∣∣+

∣∣a+ a′
∣∣)

≤ 2(p+ h)d(k, k′).

Therefore, the result follows.

6 Concluding Remarks

In this article there have been established conditions
which guarantee the uniform of compact sets conver-
gence of both the optimal value functions and the opti-
mal policies of a certain class of stochastic systems to
the optimal value functions and the optimal policies of
the deterministic systems associated, in an convenient
sense, to the stochastic ones, respectively.

With the results obtained in this article, it is now
possible to study the perturbation methodology in
the context of MDPs (see [13] and [14]) and to find
inequalities to estimate the stability (robustness) be-
tween the stochastic system and the deterministic one.

Research in these directions is still in progress.
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