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Abstract:- In this study effects that are significant on the fuel consumption of F-4 aircrafts are analyzed by using 
different statistical methods and the results of those different methods are compared. The response variable of 
every possible combination of factors and interactions are analyzed to provide information about main effect(s) 
and interaction effect(s). MARS is applied in order to find the relationship and a tree model in order to 
summarize the relationship of main effects and the interactions on a plot. Also a 25 factorial experiment with 4 
replications is performed to determine the significant main effects and interactions. The analysis is repeated for 
one-half fractional factorial experiment. A comparison of performance of the methods is made in order to 
investigate their applicability.  
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1   Introduction 
Classification and modeling are commonly used 
statistical methods in application. One of the recent 
methods for classification in regression analysis is 
regression trees. Several algorithms are proposed 
and extensively studied for building regression 
trees by adaptive recursive partitioning of the data 
sets. The origin of recursive partitioning regression 
is the AID (Automatic Interaction Detection) 
program written by Morgan and Sonquist in 1963 
[1]. A regression tree is a piecewise constant or 
piecewise linear estimate of a regression function, 
constructed by recursively partitioning the data and 
sample space [2]. The innovations were made by 
Breiman et al. in 1984 [3]. Loh studied that 
regression tree models can provide simpler and 
more intuitive interpretations of interaction effects 
as differences between conditional main effects. He 
used regression trees on small data sets including 
replicated and unreplicated factorial experiments  

 
[4]. Kurematsu et al. studied the classification of a 
data set on human speech [5]. Enescu et al. studied 
the numerical investigation of the polynomial 
regression models [6]. Johanna [7] worked on the  
problem of determinants of the auction prices of the 
works of art using three statistical methods: 
analysis of variance (Anova), multiple regression 
models and classification trees. Chaudhuri [8] 
defined the smooth and unsmooth piecewise 
polynomial regression trees (SUPPORT) algorithm. 
The latter explanation of recursive partitioning may 
be considered as MARS. It is recent statistical 
method presented in Hastie et al. [9,10] and can be 
considered as generalization of classification and 
regression trees. MARS solves the problem of high 
dimensions. The MARS algorithms choose basis 
functions for the approximation of response by 
partitioning the domain region of regressors into 
subregions [11]. On the other hand, Woods and 
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Lewis in 2005 studied on all-bias designs for 
polynomial spline regression models [12]. Grove et 
al. [13] studied multifactor B-spline mixed models 
in designed experiments for the engine mapping 
problem.  
 
 

           2 Material and Method 
 
2.1 2k Factorial Experiments 
Many experiments involve the study of the effects 
of two or more factors with two levels. Factorial 
designs are the most efficient for this type of 
experiment. By a factorial design we mean that in 
each complete trial or replication of experiment all 
possible combinations of the levels of the factors 
are investigated. 

The results for the two-factor factorial design 
may be extended to the general case where a levels 
of factor A, b levels of factor B, c levels of factor 
C, and so on, arranged in a factorial experiment. In 
general, there will be abc…n total observations if 
there are n replicates of the complete experiment. 
Once again, note that at least two replicates must 
be done to determine a sum of squares due to error 
if all possible interactions are included in the 
model.  

The levels of a factor may be quantitative, or 
qualitative with two or more levels. In some 
experiments, we may find that the difference in 
response between the levels of one factor is not the 
same at all levels of the other factors. That means 
there is an interaction between the factors. A 
complete replicate of such a design requires 2k 
observations and is called a 2k factorial design 
[14]. 

 
2.2  The One-Half Fraction of the 2k Design 
Under the assumption that higher-order interactions 
are negligible in an experiment, low-order 
interactions and main effects might give the 
information by running only a fraction of the 
complete factorial experiment. The objective of 
using fractional factorial experiments is to identify 
the factors that have large effects. 

The design is formed by selecting a generator. 
One-half fraction of the 2k design may be 
constructed by writing down a basic design for a 
full 2k-1 factorial. The kth factor by identifying its 
plus and minus levels with the plus and minus signs 
of the highest-order interaction ABC…(K-1). Any 
interaction effect could be used to generate the 
column for the kth factor. Hence, the number of 
treatment combinations is reduced [15]. 

 
 
  

2.3 Recursive Partitioning 
The response variable y depend on some unknown 
way on a vector of p predictor variables, 

1 2 p(x , x ,..., x )=x , that is modeled with (1). 
 

1 2 pf (x , x ,..., x )= + εy   (1) 
 

Assume V be the input space and there are n 
samples of y, n

i i i 1{ , } =y x . Let S
j j 1{R } =  be a set of 

disjoint subregions of V, pV ⊂ℜ such that       

       
S

V j
j 1

R=
=
U  

 
Recursive partitioning estimates the unknown 

function f(x) at x with  
 

j
ˆ ˆf ( ) f ( )=x x  for  jR∈x   (2) 

 
where the function jf̂ ( )x  estimates the true but 
unknown function f(x) over the Rjth subregion of 
V. In recursive partitioning, jf̂ ( )x is taken to be the 
constant function [1,11]. 
 Firstly, the space V is split into two regions, 
and  the response is modeled by the mean of y in 
each region. The variable and split-point to achieve 
the best fit is chosen. Then one or both of these 
regions are split into two more regions, and this 
process is continued, until a stopping rule is 
applied. 

The corresponding regression model predicts 
y with a constant jc  in region jR . The algorithm 
needs to automatically decide on the splitting 
variables and split points, and also what topology 
(shape) the tree should have.  

The partitioning of V is accomplished through 
recursive splitting of subregions by an algorithm. A 
subregion jR  is split into two regions at a knot k 

for a covariate vx  as below: 
 
if jR∈x  then,      

if vx k≤ , then lR∈x  
 else rR∈x  
end if      
 

Here vx  alone represents the values of the 
vth covariate. 
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The subregion jR  is deleted and replaced by 

l rR ,R . The main problem is to choose the values 
of k. Indeed those are prespecified knots from a set 
of the covariate v. Generally, this knot set consists 
of every distinct data value or some subset of these 
values. 

Initially, we start the space region V with the 
corresponding constant basis function 1B ( ) 1=x , 
taking into account all of the data. Then, a splitting 
variable j and split point k, and replacement of V 
by the pair of half-planes (two subregions) is 
considered. 
 

1 j

2 j

R ( j, k) {X X k}

R ( j, k) {X X k}

= ≤

= >
   (3) 

 
The basis function 1B ( ) 1=x  is split into two 

step functions are vI(x k)≤  and vI(x k)> . If the 

one of the subregions, 1R  is split at knot *k  for a 

covariate *v , then we get the interaction term for 
*

v vx x . Those step functions are represented by the 

two basis functions *
*

v v
I(x k)I(x k )≤ ≤  and 

*
*

v v
I(x k)I(x k )≤ > .  

Suppose we have a partition into M regions 
1 2 MR ,R ,...,R ,  and we model the response as a 

constant jc  in each region: 
 

M

j j
j 1

f ( ) c I( R )
=

= ∈∑x x    (4) 

 
             where j i i iĉ ave(y x R )= ∈ . 
 

A key advantage of the recursive binary tree 
is its interpretability. The feature space partition is 
fully described by a single tree. 

 
 

               2.4 MARS  
MARS was first proposed by Friedman as a 
nonparametric modeling technique. Its main 
purpose is to predict the values of a continuous 
dependent variable, ×n 1y  from a set of independent 

explanatory variables, 1i pix ,..., x n
i=1x = ( ) . The 

MARS model is represented as: 
 

y f ( )= + εx     (5) 

where ε  is an error vector whose expected value is 
assumed to be zero.  

MARS includes a two step procedures to 
construct the final model. First it partitions the 
space of explanatory variables in several possible 
subregions and fits truncated spline functions in 
each subregion by a forward stepwise procedure. 
This implements a very complex and overfitted 
model therefore a second procedure needs to be 
introduced. Then the redundant basis functions are 
removed one by a backward stepwise procedure. A 
truncated spline function consists of a left-sided 
and, a right-sided segment separated by a so-called 
knot location as given below: 

q
q

q
(t x) , x t

b (x t) [ (x t)]
0 otherwise

−
+

 − <
− = − − = 


 

q
q

q
(x t) , x t

b (x t) [ (x t)]
0 otherwise

+
+

 − <
− = + − = 


     (6) 

where qb (x t)− −  and qb (x t)+ −  are the spline 
functions describing the regions right and left of the 
knot location t, respectively, and q the power to 
which the spline is raised. The subscript “+” 
indicates that the result of the function is 0 when 
the argument is not satisfied. For each of the 
descriptive variables in the data set MARS selects 
the pair of spline functions and the knot location 
that best describes the response variable. In the 
following step all the spline functions are combined 
in a complex non-linear model, describing the 
response as a function of the descriptive variables. 
The model has the form: 

M
ŷ a a B ( )m m0 m 1
= + ∑

=
x   (7) 

where ŷ  is the predicted value for the response 
variable, 0a  the coefficient of the constant term, M 
the number of spline basis functions, and mB  the 
mth spline basis function which may be a single 
spline function or a product (interaction) of two or 
more spline basis functions and ma  its coefficient, 
respectively.  

MARS determines which basis functions are 
included to the final model by a generalized cross-
validation criterion (GCV). The GCV is the mean 
squared residual error divided by a penalty 
dependent on the model complexity. The GCV 
criterion is defined as in Eq.(8): 
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N 2ˆ(y - f (x ))Mi ii=1GCV(M) = 2(1-C(M)/N)

∑
              (8) 

 
Here, where C(M) is a complexity penalty 

that increases with the number of basis functions in 
the model and which is defined as: 
 

C(M) (M 1) dM= + +    (9) 
 

where M is the number of basis functions in Eq. 
(7), and the parameter d is a penalty for each basis 
function included into the model [10]. 
 
3. Application 
In the application part of the study, the factors 
affecting the fuel consumption of F-4 aircrafts 
using factorial experiments, fractional factorial 
experiments, regression trees and MARS are 
obtained. Note that, for a 2k-1 factorial design, the 
half of the treatment combinations is used for 
analysis of variance. Therefore, the half of the 
treatment combinations is analyzed to reach one-
half fractional factorial design. The same half is 
used to obtain a regression tree and MARS model. 
Each method is used on 128observations and 64 
observations, respectively. 

The capital letters A, B, C, D, and E denote 
the names of the variables, Compressor Input 
Temperature (CIT),  Power Lever Angle (PLA), 
Revolutions of the Engine(RPM), Input Flow, Air 
pressure as well as their main effects [15].  
 
Table 1. The factors related with the performance 
of the main fuel control unit 
Factors 1 (-) 2 (+) 
Compressor Input     

Temperature(CIT) A 0.0605 0.296

Power Lever Angle (PLA) B 40 100
Revolutions of the 

Engine(RPM) C 1250 3160

Input Flow D 8000 18000
Air pressure E 100 150
 

Moreover, AB, BC,…, ABC,…, ABCD,…, 
ABCDE are named to represent the interaction 
effects. The levels of each factor are indicated in 
two way by signs as (-) and (+). There are five 
independent factors each has two levels affecting 
the main fuel control unit’s performance as shown 
in Table 1.  

Below there are two analyses of variance for 
the fuel consumption of F-4 aircrafts derived from 
a 25 factorial design and 25-1 fractional factorial 
design.  

The significant main effects and interactions 
are shown in Table 2. According to the results, 
factor A, D, and E are statistically significant. Then 
interaction terms AC, AD, CD, and DE are found 
significant. Third order interactions as ABC, ACD, 
ACE and ADE are found significant by the analysis 
of variance. Finally, fourth order interaction term 
ACDE is found significant at 95% significance 
level. 

The experiment is replicated for four times. 
Therefore the design matrix is adopted according to 
the replications. The observations of four 
experiments are stacked into one column and the 
corresponding design matrix is constructed for 
MARS. Hence a model including all possible 
variables and their interactions are fitted to the data. 
 
 Table 2. Anova for 25 factorial experiments 
Source df Mean Square F-test Sig.
A 1 7082907.031 2201.641 0.00
B 1 11514.031 3.579 0.62
C 1 10011.125 3.112 0.81
D 1 906531.125 281.785 0.00
E 1 186853446.125 58081.255 0.00
AB 1 19306.125 6001 0.16
AC 1 616882.781 191751 0.00
BC 1 12129.031 3770 0.55
ABC 1 17860.500 5.552 0.20
AD 1 680069.531 211.392 0.00
BD 1 3341.531 1.039 0.31
ABD 1 5304.500 1.649 0.20
CD 1 42486.125 13.206 0.00
ACD 1 70218.781 21.827 0.00
BCD 1 1696.531 0.527 0.47
ABCD 1 3528.000 1.097 0.30
AE 1 10694.531 3.324 0.71
BE 1 7290.281 2.266 0.14
ABE 1 4900.500 1.523 0.22
CE 1 2.000 0.001 0.98
ACE 1 13489.031 4.193 0.43
BCE 1 2945.281 0.916 0.34
ABCE 1 3828.125 1.190 0.28
DE 1 378015.125 117.502 0.00
ADE 1 429896.281 133.628 0.00
BDE 1 3894.031 1.210 0.27
ABDE 1 6160.500 1.915 0.17
CDE 1 5253.125 1.633 0.20
ACDE 1 20553.781 6.389 0.13
BCDE 1 1140.031 0.354 0.55
ABCDE 1 4140.500 1.287 0.26
Error 96 3217.104 
Total 128  
*Total sum of squares=5188542328.000 
*df=degree of freedom 
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In the next part, a one-half fraction of the 25 

design is examined. The 25-1 design with four 
replications is considered to explore the 
relationship between the effects.  

The 25-1 design is formed by selecting only the 
treatment combinations that have a plus in the 
ABDCE column. In this study, the ABCDE 
interaction factor is taken as generator. The 
fractional factorial experiment is replicated for four 
times. The results of Anova of 25-1 design are 
shown in Table 3. The main effects and third order 
interaction factors such as A, D, E, BDE, BCE, 
ADE, ACD, ABE, and ABC are found significant 
at 95% significance level.  

 
 

Table 3. Anova for 25-1 fractional factorial 
experiment 

Source df Mean Square F-test Sig.
A 1 3452164.000 572.416 0.000 
B 1 650.250 0.108 0.744 
C 1 15939.062 2.643 0.111 
D 1 514089.000 85.243 0.000 
E 1 94240410.063 15626.352 0.000 
CDE 1 2209.000 0.366 0.548 
BDE 1 261376.563 43.340 0.000 
BCE 1 386262.250 64.048 0.000 
BCD 1 10455.063 1.734 0.194 
ADE 1 148803.063 24.674 0.000 
ACE 1 15129.000 2.509 0.120 
ACD 1 61380.063 10.178 0.003 
ABE 1 38122.563 6.321 0.015 
ABD 1 2550.250 0.423 0.519 
ABC 1 115770.063 19.196 0.000 
Error 48 6030.865   
Total 64    

*Total sum of squares= 2590512982.000 
  df=degree of freedom 
 

MARS results for 128 observations are the 
following below: 

20 of 20 terms including constant term, and 
19 of 31 predictors are selected by MARS final 
model. MARS significantly reduced the number of 
predictors. The importance of variables is sorted in 
D, BCD, ABCDE, ACD, C, E, BDE, CDE, B, 
ABD,..., BC, and BCDE (see the details in Table 4) 

The model has a GCV value of 0.12 and R2 is 
obtained as 0.99. Then, 19 basis functions such as 
BF1=pmax(0, A-(-1)), BF2=pmax(0 ,B-(-1)) , 
BF3=pmax(0 , C-(-1)), BF4=pmax(0, D-(-1)), …, , 
BF18= pmax(0,BCDE -(-1)), BF19=pmax(0, 
ABCDE-(-1))  are obtained in MARS analysis and  
low levels of factors for each main effect and each 
interaction effect are determined as significant 
factors as the following: 

 
 

 
Basis functions of F-4 aircrafts consumption data: 

 
response = 5.305297 
 +0.113*pmax(0,A-(-1)) 

- 0.133*pmax(0,B-(-1)) 
+0.459*pmax(0,C-(-1)) 
+0.520*pmax(0,D-(-1)) 
+0.405*pmax(0,E-(-1)) 
- 0.051*pmax(0,AB -(-1)) 
+0.048*pmax(0,BC-(-1)) 
+0.126*pmax(0,ABC-(-1)) 
+0.130*pmax(0,ABD -(-1)) 
- 0.460*pmax(0,ACD -(-1)) 
+0.508*pmax(0,BCD -(-1)) 
+0.080*pmax(0,ABE -(-1)) 
+0.070*pmax(0,ACE -(-1)) 
+0.080*pmax(0,ADE -(-1)) 
- 0.242*pmax(0,BDE -(-1)) 
- 0.224*pmax(0,CDE -(-1)) 
- 0.064*pmax(0,ACDE -(-1)) 
+0.044*pmax(0,BCDE -(-1)) 
- 0.470*pmax(0,ABCDE-(-1))

 
 

Table 4. GCV and RSS scores of each variable in 
each subset 

 Variable Order Subsets GCV RSS 
D 4 19 100.000 100.000
BCD 15 18 85.000 82.387
ABCDE 31 17 69.857 65.611
ACD 14 16 56.314 51.235
C 3 15 42.491 37.453
E 5 14 27.761 23.738
BDE 26 13 15.673 13.047
CDE 28 12 11.436 9.243
B 2 11 7.580 5.971
ABD 12 10 6.318 4.819
ABC 9 9 5.035 3.723
A 1 8 3.730 2.683
ABE 19 7 2.650 1.860
ADE 25 6 2.127 1.445
ACE 21 5 1.560 1.031
ACDE 29 4 1.103 0.710
AB 6 3 0.707 0.445
BC 8 2 0.453 0.275
BCDE 30 1 0.211 0.125

GCV:Generalized Cross Validation 
RSS: Residual Sum of Squares 
 
The results are evaluated for both GCV and 
residual sum of squares (RSS) for each subset in 
Table 4. 
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The rows of the table are given in the 
ascending order respect to their number of subsets 
they include. 

In Table 4, the rows are sorted on the number 
of subsets criterion that means the number of 
subsets that include the variable [16]. Variables that 
are included in more subsets are considered more 
important. However, there are two more criteria 
showing the importance of each factor, namely 
GCV and RSS. A variable's importance is a 
measure of the effect that observed changes to the 
variable have on the observed response. Therefore, 
factor D is the most important variable and then 
third order interaction term BCD comes, and so on. 

 
Figure 1. Plots of each factor from MARS for 25 
design 
 

 
 
 

In Figure 1 it is represented that the factors 
which were selected by the final model of MARS 
are plotted.  

MARS results for the 25-1 design are given 
below:   

12 of 12 terms, and 11 of 31 predictors are 
selected by the MARS final model. According to 
the results, the factors which taken into the model 
are AD, E, D, BCD, A, ABC, BD, CD, C, BC, and 
so on(see Table 5 for details). 

The model has a GCV value of 0.13 and R2 is 
obtained as 0.99. Then, 11 basis functions for 25-1 

design are selected such as BF1f=pmax(0,A-(-1)), 
BF2f=pmax(0,C-(-1)), BF3f=pmax(0,D-(-1)), 
BF4=pmax(0, D-(-1)) ,…, BF10=pmax(0, CD-(-
1)), BF11f=pmax(0,BCD-(-1)) in MARS analysis 
and  low levels of factors for each main and 
interaction effects are determined as significant 
factor. 

 
 
 

Basis functions of F-4 consumption data 
obtained from 25-1 design: 

 
responsef = 5.3586563 

 -0.149  *pmax(0,A-(-1)) 
+0.067 *pmax(0,C-(-1)) 
+0.609 *pmax(0,D-(-1)) 
+0.647 *pmax(0,E-(-1)) 
-0.041  *pmax(0,AB-(-1)) 
-0.049  *pmax(0,BC-(-1)) 
+0.125 *pmax(0,ABC-(-1)) 
-0.655  *pmax(0,AD-(-1)) 
-0.114  *pmax(0,BD-(-1)) 
-0.077  *pmax(0,CD-(-1)) 
+0.517 *pmax(0,BCD-(-1)) 

 
Table 5. GCV and RSS score of each variable in 
each subset for 25-1 design 

 Variable Order Subsets GCV RSS 
AD 10 11 100.000 100.000 
E 5 10 77.042 72.313 
D 4 9 51.501 45.337 
BCD 15 8 25.900 21.438 
A 1 7 5.168 4.213 
ABC 9 6 3.590 2.775 
BD 11 5 2.399 1.766 
CD 13 4 1.291 0.935 
C 3 3 0.795 0.556 
BC 8 2 0.368 0.262 
AB 6 1 0.157 0.109 

 
In Table 5, there are the factors within the 

importance of ascending order obtained by MARS 
analysis. Consequently, AD interaction term is 
observed more than the other factors in 25-1 design.  

 
Figure 2. Plots of each factor from MARS for 25-1 

design 

 
In Figure 2, the factors that are selected in 25-1 

design data by MARS are plotted. 
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Tree models are useful for finding the 

interactions in design of experiments. If we split on 
one variable and then split on another variable 
within the partitions of the first variable, we are 
finding interaction between these two variables.  

 
It is that the first split (node 2 and 3) is on 

factor D. In detail 64 observations of factor D have 
low level (-1) with a mean response value of 5.72. 
On the contrary, factor D has 64 observations with 
high level (+1) with a mean response value of 6.76. 

 
RSS is observed as 197.54 for the root. After 

the first split it is reduced from 197.54 to 76.01 and 
85.97. RSS at the first split is calculated as 161.98. 
Factor D gives a large reduction in RSS.  

 
In the same way, we conclude that the factors 

C and BC are on the second split (node 4, 5, 6, and 
7, respectively).  
 
  1) root 128 197.5383000 6.244375   
   2) D< 0 64  76.9067500 5.723969   
     4) C< 0 32  19.9982400 5.251594   
       8) ABE>=0 16   0.5819624 4.882812  
       9) ABE< 0 16  15.0642900 5.620375 * 
     5) C>=0 32  42.6276700 6.196344   
      10) E< 0 16  18.9144600 5.565812 * 
      11) E>=0 16  10.9909700 6.826875 * 
   3) D>=0 64  85.9662300 6.764781   
     6) BC< 0 32  35.4025700 6.208719   
      12) B>=0 16  12.8299000 5.616375 * 
      13) B< 0 16  11.3448000 6.801062 * 
     7) BC>=0 32  30.7745100 7.320844   
      14) BE>=0 16  22.7795400 6.850062 * 
      15) BE< 0 16   0.9026458 7.791625 * 

 
Although the relevant information can be 

viewed from the text-based output, a graphical 
display is nicer and easier to interpret as in Figure 2 
from MARS for 25-1 design. 

In Figure 3, the depth of the branches is 
proportional to the reduction in error due to the 
split. Figure 3 maps the regression tree of 
relationship among factors [16].  

The display always starts at the root (by 
taking account all of the treatment combinations), 
and reports the splits in the order that they 
occurred. Therefore, after examining all possible 
values of all the variables, recursive partitioning 
finds that the factor D does the best job to split the 
observations into the different nodes.  

 
 
 
 

 
 
 

Figure 3. Tree model of F-4 Aircrafts Fuel 
Consumption for 25 design 
 

 
 
 

As seen, the first split is on AD interaction 
terms different from the first tree model obtained 
by a 25 factorial design. 32 observations of the 
interaction AD term have high level (+1) with a 
mean response value of 5.58. On the other hand, 
the rest of the observations for AD interaction term 
has low level (-1) with a mean response of 6.89.  

 
Then, the total residual sum of squares is  

observed as 99.555 from the root for 25-1 design. 
After the first split it is reduced from 99.555 to 
32.81 and 39.28. The total RSS at the first split is 
calculated as 72.19. The interaction term AD gives 
a large reduction in the RSS.  

 
Another tree model gives the factors for 25-1 

design of F-4 aircraft fuel consumption, as below: 
 
1) root 64 99.554790 6.238688   
  2) AD>=0 32 32.813870 5.583625   
    4) ABC< 0 16  1.217838 4.941875 * 
    5) ABC>=0 16 18.417050 6.225375 * 
  3) AD< 0 32 39.278080 6.893750   
    6) A>=0 16 19.255950 6.135875 * 
    7) A< 0 16  1.642150 7.651625 * 
 
 
In Figure 4, the depth of the branches is 

related to the reduction in error due to the split. 
Figure denotes the regression tree of relationships 
for 25-1 design. 
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Figure 4. Tree model of F-4 Aircrafts Fuel 
Consumption 25-1 design  

  

 
 
Variables actually used in tree construction are  

A, ABC, and AD. 
The pruning part of regression tree analysis 

based on a complexity parameter is shown in Table 
6. 
Table 6. Pruning of regression tree model for F-4 
Aircrafts Fuel Consumption 

 
Here, cross validation error is the smallest cross 

validation error and standard error is the 
corresponding standard error. The relative error is 
1-R2. It is observed from Table 6 that the best tree 
has eight terminal nodes based on cross-validation. 
This table is obtained from the smallest tree to the 
largest one. For any value between 0.175 and 
0.100, the best tree model has one split. For any 
control parameter (as known the ratio of number of 
terminal nodes to the RSS of the root) between 
0.100 and 0.072 the best model is with 2 splits and 
so on. The splitting criterion is the difference 
between the sum of squares for the node 
(SST= 2

i(y y)−∑ ) and the total of the sums of the  
 

squares for the right and left (SSR, SSL), 
respectively. It is identical to the analysis of 
variance to maximize the sum of squares between 
the groups [16].  

 
Table 7. Pruning of regression tree model for F-4 
Aircrafts Fuel Consumption for 25-1 design 

 

 
In Table 7, the values between 0.276 and 0.185, 

the best tree model has one split for 25-2 design. For 
any control parameter between 0.185 and 0.132 the 
best model is with 2 splits and so on. 

 
 Five different factors and their all possible  

interactions examined using factorial experiments, 
one-half fractional factorial experiments, regression 
trees  and MARS for both 25 and 25-1 designs.  

 
As the results of Anova for 25 design, the 

factors A, D and E are found significant whereas 
regression tree finds the factors D, C, E, and B 
important respectively. MARS gives the basis 
functions of 5 main effects.  

 
Among the second order interaction terms AC, 

AD, CD and DE are found significant as a result of 
Anova, whereas BC and BE are found important as 
a result of Regression trees. MARS gives the basis 
functions for AB and AC. Among the third order 
interactions ABC, ACD, ACE and ADE are found 
significant as a result of Anova, and only ABE is 
found important as a result of regression trees. 
MARS gives the basis functions of ABC, ABD, 
ACD, BCD, ABE, ACE, ADE, BDE, and CDE 
among the third order interactions. ACDE is the 
only significant fourth order interaction according 
to Anova results. MARS also gives the basis 
function for the same interaction term and BCDE 
and also ABCDE. 

 
According to the results of 25-1 fractional 

factorial, the factors A, D, and E are found 
significant whereas regression tree explores the 
factors AD, ABC, and A graphically.  MARS gives 
only 4 basis functions of 5 main effects for 25-1 
design.  

 

 Control 
parameter 

Number 
of split 

Relative 
error 

    

Cross         Standard
validation        error
 error 

1 0.175 0 1.000 1.024 0.044 
2 0.100 1 0.825 1.089 0.081 
3 0.072 2 0.724 1.189 0.107 
4 0.064 3 0.652 1.249 0.120 
5 0.057 4 0.588 1.218 0.124 
6 0.036 5 0.531 1.201 0.128 
7 0.022 6 0.495 1.125 0.115 
8 0.010 7 0.473 1.020 0.099 

Control 
parameter

Number 
of split

Relative 
error 

   

Cross         Standard
validation        error
 error 

1 0.276 0 1.000 1.032 0.063 
2 0.185 1 0.724 1.370 0.144 
3 0.132 2 0.540 1.272 0.137 
4 0.010 3 0.407 0.737 0.065 
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The interaction terms BDE, BCE, ADE, ACD, 
and ABC are found statistically important. 
Nevertheless, regression tree explores the ABC 
interaction term. MARS selects both the second  
order interactions such as AB, BC, AD, BD, CD 
and third order interactions;  ABC and BCD as 
basis functions for 25-1 design. 

 
5 Conclusion 
Among four methods, 25 factorial and 25-1 fractional 
factorial experiments are used in order to determine 
the significant factors and their interactions. 
Regression trees is the better way of denoting the 
relationships of factors and their interactions on a 
plot and easily interpreting of those relationships.  
MARS is used to examine the functional 
relationship by a model with splines. The results of 
MARS and 25-1 fractional factorial experiment are 
similar. In this study, all four methods are 
performed in order to see the parallelism of the 
results by combining the results to evaluate the 
findings from different point of views.  
 

Results show that according to all four 
different methods the main factors D and E, in 
other words input flow and air pressure are found 
statistically significant. In case of taking the low 
levels of both factors the fuel consumption of F-4 
aircrafts can be reduced. In other words, input flow 
should be 8000 instead of 18000 and air pressure 
should be 100 instead of 150 in order to reduce the 
fuel consumption. Also, it has been observed that 
after one-half of the treatment combinations is 
removed, the main factor A, compressor input 
temperature (CIT), is occurred significant as it 
should. On the other hand, most of the interaction 
terms which those two terms with the low levels 
interact with the others are also found significant as 
the results of all four methods.  

 
 References: 
 
[1] Morgan J.N. and Sonquist, J.A., Problems in 

the Analysis of Survey Data and a Proposal. 
J. Amer. Statist. Assoc. , 58, 1963, pp. 415–
434. 

 
[2] Loh, W.Y., Regression Trees with Unbiased 

Variable Selection and Interaction Detection. 
Statistica Sinica, Vol.12, 2002, pp.361-386. 

 
[3]  Breiman, L., Friedman, J., Olshen, R., and 

Stone, C., Classification and Regression 
Trees, Belmont, CA: Wadsworth, 1984. 

 
[4] Loh, W.Y., Regression Tree Models for 

Designed Experiments. In Second E. L. 

Lehmann Symposium, J. Rojo, Ed., Institute 
of Mathematical Statistics Lecture Notes-
Monograph Series, Vol. 49, 2006, pp. 210-
228. 

 
[5] Kurematsu M., Hakura J., Fujita H., A 

extraction of emotion in human speech using 
synthesize and each classifier for each 
emotion, Proceedings of the 7th WSEAS 
International Conference on Applied 
Computer Science - Computer Science 
Challenges, ITALY, 2007, pp.385-389. 

 
[6] Enescu D., Coand H.G., Virjoghe E.O., 

Caciula I., Numerical Investigation by means 
of polynomial regression method for 
determining the temperature fields in a 
medium with phase transition, Proceedings of 
the 8th WSEAS International Conference on 
Systems Theory And Scientific Computation 
(Istac'08) - New Aspects of Systems Theory 
And Scientific Computation,  GREECE, 
2008, pp.88-93. 

 
[7] Johanna B.B., Statistical Methods Used for 

Identification of Art Prices Determinants, 
Proceedings of the 10th WSEAS 
International Conference on Mathematics and 
Computers in Business and Economics 
Praque, CZECH REPUBLIC, 2009, pp.36-
41. 

 
[8]  Chaudhuri, P., Huang, M.C., Loh, W.Y., and 

Yao, R. Piecewise-Polynomial Regression 
Trees. Statistica Sinica, Vol.4, 1994, pp.143-
167.  

 
[9] Lewis, P.A.W and Stevens J.G., Nonlinear 

Modeling of Time Series Using MARS, 
Journal of the American Statistical 
Association, Vol.86, No.416, 1991, pp.864- 
877.  

 
[10] Hastie, T., Tibshirani, R., Friedman J., The 

Elements of Statistical Learning-Data 
Mining, Inference, and Prediction, Springer 
Series in Statistics, 2001. 

 
[11] Friedman, H.J, Multivariate Adaptive 

Regression Splines, The Annals of Statistics, 
Vol.19, No.1, 1991, pp.1-67. 

 
[12]  Woods, David C. and Lewis, Susan M., All-

bias designs for polynomial spline regression 
models, Australian and New Zealand Journal 
of Statistics, Vol.48, No.1, 2006, pp.49-58. 

 

WSEAS TRANSACTIONS on MATHEMATICS Betul Kan, Berna Yazici

ISSN: 1109-2769 118 Issue 2, Volume 9, February 2010



 

 
[13]  Grove, D.M., Woods, D.C. and Lewis, S.M. 

Multifactor B-spline mixed models in 
designed experiments for the engine mapping 
problem,J.Qual.Technol.,Vol.36, No.4, 2004, 
pp.380–391. 

 
[14] Montgomery, D.C., Design and Analysis of  

Experiments, 5th.Ed., New York: J. Wiley, 
2001. 

 
[15] Yazıcı, B. and Kasap, Ş., Determining The 

Factors That Affect The Fuel Consumption In 
F-4 Aircrafts By 2k Experiments And Taguchi 
Method, JSM 2009, Washington, DC, pp. 
3105-3116. 

 
[16] Milborrow S, earth: Multivariate Adaptive 

Regression Spline Models, R package 
version: 2.0-2, 2007, URL http://CRAN.R-
project.org/package=earth  

 
[17] Therneau T.M., Atkinson B., rpart: 

Recursive Partitioning and Regression Trees, 
R Package Version: 3.1-46, 2009, URL 
http://CRAN.R-project.org/package=rpart 

 
 
 
 
 
 

WSEAS TRANSACTIONS on MATHEMATICS Betul Kan, Berna Yazici

ISSN: 1109-2769 119 Issue 2, Volume 9, February 2010




