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Abstract: - Circular time-averaging moiré technique is exploited to hide an image in a background moiré 

grating. The secret image can be visualized when the encoded image is oscillated around a pre-defined axial 

point. It is a new visual decoding scheme when the secret image is embedded into a circular moiré grating and 

can be interpreted by a naked eye. The encoded secret image is not shared into components; this is a one image 

method. Computational examples are used to demonstrate the functionality of the method. The property of the 

human visual system to average fast dynamical processes being not able to follow rapid oscillatory motions is 

exploited to decode the secret image. 
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1 Introduction 
Visual cryptography is a cryptographic technique 

which allows visual information (pictures, text, etc.) 

to be encrypted in such a way that the decryption 

can be performed by the human visual system, 

without the aid of computers. Visual cryptography 

was pioneered by Naor and Shamir in 1994 [1]. 

They demonstrated a visual secret sharing scheme, 

where an image was broken up into n shares so that 

only someone with all n shares could decrypt the 

image, while any 1−n  shares revealed no 

information about the original image. Each share 

was printed on a separate transparency, and 

decryption was performed by overlaying the shares. 

When all n shares were overlaid, the original image 

would appear. Since 1994, many advances in visual 
cryptography have been done; few references [2 – 9] 

can illustrate the dynamism of the field.   

     Geometric moiré [10, 11] is a classical in-plane 

whole-field non-destructive optical experimental 

technique based on analysis of visual patterns 

produced by superposition of two regular gratings 

that geometrically interfere. Two basic goals exist in 

moiré pattern research. The first is the analysis of 

moiré patterns. The task is to analyze and 

characterize the distribution of moiré fringes in a 

moiré pattern. Most of the research in moiré pattern 

analysis deals with the interpretation of 
experimentally produced patterns of fringes and 

determination of displacements (or strains) at 

centerlines of appropriate moiré fringes [12]. 

     Another goal is moiré pattern synthesis when the 

generation of a certain predefined moiré pattern is 

required [13, 14]. The synthesis process involves 
production of such two images that the required 

moiré pattern emerges when those images are 

superimposed. Moiré synthesis and analysis are 
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tightly linked and understanding one task gives 

insight into the other. 

     Image hiding method based on time-averaging 

moiré is proposed in [15]. This method is based not 

on static superposition of moiré images, but on 

time-averaging geometric moiré. This method 

generates only one picture; the secret image can be 

interpreted by a naked eye only when the original 

encoded image is harmonically oscillated in a 

predefined direction at strictly defined amplitude of 

oscillation. This method resembles a visual 

cryptography scheme because one needs a computer 

to encode a secret, but one can decode the secret 

without a computing device. Only one picture is 

generated, and the secret is leaked from this picture 

when parameters of the oscillation are appropriately 

tuned. In other words, the secret can be decoded by 

trial and error (if only one knows that he has to 

shake the slide). Therefore, additional image 

security measures are implemented in [15], 

particularly splitting of the encoded image into two 

shares. Oscillation of any of the shares separately 

does not reveal the secret. Two shares must be 

superimposed and then oscillated before the secret 

image can be interpreted. 

     The security of the image encoding is even more 

increased in [16]. A special image encoding method 
is developed which reveals the secret image not only 

at exactly tuned parameters of the oscillation, but 

also requires that the time function determining the 

process of oscillation would comply with specific 

requirements. Moreover, this method does not 

reveal the secret image at any amplitude of 

harmonic oscillations. Instead, the secret should be 

leaked only at carefully chosen parameters of this 

specific time function. 

The object of this paper is to develop a new 

scheme for visualization of secret images. A secret 

image can be interpreted by a naked eye only when 

the original encoded image is harmonically 

oscillated in angular direction around a predefined 

internal point of the image. This visual decoding 

technique requires only one image. Moreover, the 

secret image is visualized only at strictly defined 

amplitude of oscillation. 

This paper is organized as follows. The 

formation of time-averaged moiré fringes is 

discussed in Section 2; encoding of a secret image 

into a circular moiré grating is presented in Section 

3; the principles of visual decoding of the secret 

image are discussed in Section 4 and concluding 

remarks are given in the final Section. 

 

 

 

2 Optical Background 
Moiré grating on the surface of a one-dimensional 

structure in the state of equilibrium can be 

interpreted as a periodic variation of black and white 

colors [17]:  
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where y is the longitudinal coordinate; ( )yM  is 

grayscale level of the surface at point y; λ  is the 

pitch of the grating. Numerical value 0 of the 

function in (eq. (1)) corresponds to black; 1 – to 

white; all intermediate values – to appropriate 

grayscale levels. 

     If the deflection from the state of equilibrium is 

u, then the moiré grating becomes ( )uyM − . But if 

these deflections oscillate in time: 

 

( ) ( ) ( )φω += txatxu sin, ,        (2) 

 

where a is the amplitude of harmonic oscillations; ω 

is the circular frequency; φ is the phase; time 
averaged moiré grating can be described by [18]: 
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where T is the exposure time. But 
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due to the oddness of the sine function. Therefore, 

adding an imaginary term reduces Eq. (3) to the 

following form: 
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where i is the imaginary unit; 0J  is the zero order 

Bessel function of the first kind: 
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Time averaged fringes will form at such x where 

( ) 0
2

0 =
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. Now the relationship between the 

fringe order, the amplitude of oscillations and the 

pitch of the grating takes the following form: 

 

( ) ii rxa =
λ
π2

,           (7) 

 

where ir  denotes i-th root of the zero order Bessel 

function of the first kind; ia  is the amplitude of 

oscillation at the center of the i-th fringe; and the 

fringe order is determined using automatic, 

semiautomatic or even manual fringe counting 

techniques applied to the experimental pattern of 

fringes. 

The envelope function modulating the harmonic 
moiré grating is then expressed in the following 

form: 
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 Computational reconstruction of time-averaged 

fringes can be implemented directly computing the 

limit sum: 
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where Nn∈ . A regular moiré grating in the state of 

equilibrium is shown in Fig. 1A; a statically 

deformed grating is illustrated in Fig. 1B ( xa 1.0= ); 

double exposure (arithmetic average) produced the 

well-known effect of beatings (Fig. 1C); time 

averaged image shows fringes, but the overall image 

looses contrast at increasing amplitudes of 

oscillation (Fig. 1D).  

  

 

 
 

Fig. 1. Computational illustration of time-averaged 

moiré fringes: A – moiré grating in the state of 

equilibrium; B – deformed grating; C – double 

exposure of A and B; D – time-averaged fringes.  

 

 
 

Fig. 2. Illustration of the time-averaged envelope 

function; solid lines denote analytical solution; 

dotted lines denote approximate computational 

solution at n = 30.  

 

The modulating envelope function (Eq. (8)) is 

illustrated in Fig. 2. Intersections between solid 

lines represent roots of the zero order Bessel 
function of the first kind.  

Computationally reconstructed pattern of time 

averaged fringes is presented in Fig. 3. Static moiré 

grating is formed in the interval 50 ≤≤ y  

( 2.0=λ ); white background is assumed elsewhere.  

WSEAS TRANSACTIONS on MATHEMATICS Minvydas Ragulskis, Algiment Aleksa, Jurate Ragulskiene

ISSN: 1109-2769 92 Issue 2, Volume 9, February 2010



It is assumed that ( ) xxa = . Therefore clear moiré 

grating is visible at the left part of the time averaged 

image which gets blurred as the amplitude of 

harmonic oscillations increases. As mentioned 

previously, the decline of contrast of the time 

averaged image is modulated by the zero order 

Bessel function of the first kind (Eq. (8)). It can be 

noted that the frequency of oscillations has no effect 

to the formation of fringes (Eq. (5)). Exposure time 

must be long enough to fit in a large number of 
periods of oscillations (or alternatively must be 

exactly equal to one period of oscillation). 

 

 
 

Fig. 3. Pattern of time averaged fringes at 2.0=λ ; 

( ) xxa = ; A – grayscale time averaged image; B – 

zero order Bessel function of the first kind; dashed 

lines are used to interconnect the centers of time 

averaged fringes and roots of the Bessel function. 

 

3 Encoding an Image into a Circular 

Moiré Grating 
Circular moiré grating is constructed as a set of 

concentric circles around internal image point 

( )00 , yx . It is not necessary that the center of moiré 

grating would be a central point in the encoded 

image. Each concentric circle is created as a set of 

grayscale pixel’s formed according to Eq. (1) where 

the longitudinal coordinate y is replaced by the 

angular coordinate ϕ (unidirectional oscillations 
along the y-axis are replaced by angular oscillations 

around the central point).  

Digital time averaged image is now computed as 

an integral sum in the circular direction analogously 

to Eq. (9). The assumption that the amplitude of 

harmonic angular oscillations a is constant in the 

area of the whole image yields: 
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where n is the number of discrete nodes in a period 

of harmonic angular oscillations, and 0ϕ  is the 

angular coordinate of the current point ( )yx,  in 

respect to the central point of angular oscillations:  
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The process of computation reconstruction of time-

averaged circular fringes is illustrated in Fig. 4 

where additive superposition is used to calculate the 

time average of an arc of a single moiré circle.  
The formation of time-averaged fringes is 

illustrated in Fig. 5. Two circular moiré gratings are 

formed in the upper and the lower parts if the image 

in Fig. 5A. Initially we select such amplitude of 

angular oscillations that the time-average fringe 

would form in the top part of the image (the 

amplitude is determined from Eq. (7) using the first 

root of the Bessel function of the first kind). Then 

the same procedure is repeated for the bottom part 

of the image (Figs. 5B and 5C). Finally, the process 

is repeated at such an amplitude when no time-

averaged fringes are formed (Fig. 5D).  
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Fig. 4. A schematic diagram illustrating the 
computational reconstruction of a time-averaged 

image. 

 

 
 

Fig. 5. Illustration of the formation time-averaged 

fringes: A – static image, the pitch of the moiré 

grating at the upper half of the image is 0.1; the 

pitch at the lower half is 0.18; B – time-averaged 

image at a = 0.0383; C – time-averaged image at  a 

= 0.0689; D – an incorrect amplitude does not 

produce time averaged fringes. 

 

     Though the angular pitch of the circular moiré 

grating is fixed, the physical distance between 

grating lines depends on the distance from the center 

point. That limits the ability to encode larger 

amount of digital information. Therefore we split 

the circular moiré grating into several bands (Fig. 

6). For each band we select different pitches used 

for the secret image (compare to Eq. (7)): 

 
 

Fig. 6. Encryption of the secret text “1234” into the 

moiré grating comprised from four circular bands. 

Pitches of the secret image and the background in 

first band are: 1.01 =λ ; 1266.01 =bλ ; in the second 

band: 0436.02 =λ ; 0552.02 =bλ ; in the third band: 

0278.03 =λ ; 0352.03 =bλ ; and in the fourth band:  

0204.04 =λ ; 0258.04 =bλ .  

 

 

i

i
r

aπ
λ

2
= ; K,2,1=i .                   (12) 

 

     Thus we ensure that time-averaged fringes will 

form in all bands (at appropriate locations), though 

we exploit different roots of the zero order Bessel 

function of the first kind in different bands.  

     Moreover, we use the stochastic phase 
deflection algorithm [15] to increase the 

security of the encryption (this algorithm is of 
course adapted to the circular moiré grating). A 

schematic illustration of this algorithm is shown 
in Fig. 9; the encrypted image – in Fig. 10. The 

phases of adjacent moiré circles at the right 
section of Fig. 9 are selected in random, while 

locations of the secret image (gray zones) are 
not altered.  
 Since the digital image is constructed as a set of 

concentric circles, every single circle corresponds to 

a set of grayscale pixels. Variation of the grayscale 

level in the zone of the background image 

corresponds to the pitch 0λ . Variation of the 

grayscale level in the areas occupied by the 
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encrypted text must correspond to one of the pitches 

calculated from Eq. (12). 

 Moreover, we select appropriate phases of the 

harmonic variation of the grayscale levels in 

different zones of the digital image in order to avoid 

discontinuities (Fig. 7). We illustrate the necessity 

of this phase matching using both a line graph and a 

grayscale level map. The zone of the encrypted text 

is shaded for clarity. One circle of pixels (before and 

after the matching of phases) is shown. Circles are 

placed horizontally in order to minimize the size of 

the figure. 

 Simple embedding of text “1234” in a 

background moiré image would produce an 

unsatisfactory result (Fig. 6) – the “secret” 

information can be easily recognized by a naked 

eye. Therefore we use stochastic phase deflection of 

adjacent circles of pixels. This procedure is 

illustrated in Fig. 8 where two adjacent circles of 

pixels are presented after the initial random phase at 

the left side of the image is already assigned. Gray 

shaded zones in Fig. 8 are plotted different as we 

operate with two different circles of pixels. Phases 

are matched at boundaries of the background and 

the encoded image.  

Such random scrambling of initial phases may 

appear similar to the concept of stochastic geometric 
moiré presented in [19]. In fact, these two concepts 

are completely different – pixels of the background 

image are not shifted from their original locations in 

contrary to the technique exploited in [19]. 

 

 
 

Fig. 7. Matching of phases at boundaries of the 

background image and the encrypted image; 

variations of grayscale levels before the matching 

(A) and after the matching (B) are shown. 

 

 
 
Fig. 8. Illustration of the procedure of stochastic 

deflection of phases for adjacent columns of pixels. 

 

 
 

Fig. 9. A schematic illustration of the stochastic 

phase deflection algorithm applied to adjacent 

concentric moiré circles; white areas represent the 

background; gray zones stand for the secret image.  

 
 

 
 

Fig. 10. The encrypted image; the stochastic phase 

deflection algorithm is applied to the circular moiré 

grating.  

 

 

4 Visual Decoding of the Secret Image 
The functionality of the decoding procedure is 

demonstrated in Fig. 11. The embedded secret text 
“1234” is visible as a pattern of gray time-averaged 

fringes (the amplitude of angular oscillations is pre-

selected according to Eq. (12)), but the moiré 

grating in the background is not transformed into a 

gray zone. Alternatively, the background can be 

transformed into a gray zone at an appropriate 

amplitude (then the secret image would stay 

rippled), but we omit the illustration for the brevity. 

But visualization of the secret text is not possible if 

either the zones corresponding to the secret text or 
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the background are not transformed into a pattern of 

gray time-averaged fringes (Fig. 13). 

 Our proposed method could be considered to be 

somewhat similar to the moiré cryptography method 

proposed by Desmedt and Van Lee [13]. But there is 

a principal difference between optical techniques 

used in [13] and in our approach. Double exposure 

geometric moiré (a superposition of two moiré 

slides) is used in [13]. We use time-averaging 

geometric moiré optical technique. There are no 2 or 

n shares to superpose in our method. We use one 

image only. We oscillate that image in order to 

produce time-averaged moiré fringes. This is in 

contrary to interference between two static moiré 

gratings. The formation of time-averaged fringes is 

governed by different physical processes compared 

to double exposure fringes; motion induced blur is 

exploited to generate time-averaged fringes. Thus, 

the similarity between these two methods is only 

apparent; optical principles used to decode the 

secret are completely different.  

 

 
 

Fig. 11. Computational decryption of the secret 

image at a = 0.0383.  

 

     In order to improve the visibility of the decrypted 

text we will apply contrast enhancement procedure 

[20, 21] to visualize the secret information (Fig. 12). 

 Classical contrast enhancement techniques 

applicable for patterns of time-averaged moire´ 

fringes comprise two basic steps [20]. First, the 

digital image is filtered using grayscale level 

adjustment transformation where levels around 0.5 

are mapped to 0 (middle gray levels are mapped to 
black color); all other grayscale levels are mapped 

to 1 (grayscale levels except middle gray are 

mapped to white color). The second step is 

application of morphological operations to eliminate 

parasitic interference lines generated by high special 

frequency components originating from the initial 

moiré grating. It can be noted that applicability of 

phase-stepping techniques [22] for visualization of 

time average moire´ fringes cannot be used directly, 

because grayscale level at moire´ fringe centerlines 

is 0.5 (not 0 as for time-averaged fringes produced 

by laser holography [23]). 

 

 
 

Fig. 12. Contrast enhancement of the decrypted 

image.  

 

 The mapping function ( )( )yxMF T ,  used for 

contrast enhancement must satisfy several basic 

requirements: 

 

(i)  [ ] [ ]1,01,0: →F ; 

(ii)  ( ) 0=cF ; 

(iii) [ ] [ ]δεε ,0,: →+− ccF  or alternatively, 

  [ ] [ ] [ ]1,11,,0: δεε −→+∪− ccF ; 

(iv) ( ) ( )ξξ −= cFF 2 ; [ ]1,0∈ξ ;     (13) 

 

where ε, δ > 0; 10 << c . The second condition 

requires that the mapped grayscale color at the 

centreline of time-averaged fringe must be black 

( 5.0=c  for time-average geometric moiré). The 

third condition requires that levels in a 2ε bandwidth 

around c are mapped to grayscale levels not higher 

than δ (dark color), or alternatively, the levels 

outside 2ε band around c are mapped to levels not 

lower than δ−1  (bright color). The fourth 

requirement necessitates that the mapping function 
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is symmetric in respect to c (ξ is the grayscale 

level). 

 Many mapping functions satisfy the up-

mentioned requirements; we will mention few 

functions. Step mapping function: 
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Characteristic feature of step mapping function is 

that the continuous grayscale interval is mapped into 

pure black and white colors. This feature can be 

advantageous in certain applications, especially 

when subsequent morphological operations are used 

(it can be easier to manipulate with only black and 

white pixels). The drawback is the problematic 

location of the fringe centers in the mapped image. 

Even very small ε will not eliminate parasitic 

fringes from the mapped image (true fringes will be 

also thin then). Subsequent morphological 

operations can wipeout not only parasitic but also 

true fringes.  

The pencil mapping function: 
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 Pencil mapping functions are advantageous when 

centerlines of time-averaged fringes are to be 
determined. The drawback is associated with 

problematic applicability of morphological opera- 

tions for wiping out parasitic fringes. Potential of 

pencil functions can be fully revealed when step 

functions are used to enhance the time-averaged 

image. Initially, parasitic fringes are wiped out and 
then the produced pattern is used as a mask to 

reconstruct the original grayscale levels (only in the 

regions of mapped black fringes). The pencil 

function then can be effectively used to reconstruct 

fringe centerlines in the region-of-interest portions 

of the original image. 

 Square of the sigmoidal function: 

 

( )( ) ( )( )cyxkMyxMF TT −= ,tanh,
2 .    (16) 

 

  

 

 

Hyperbolic tangent and square of hyperbolic 

tangent are widely used in neural networks and 

image processing [24]. Coefficient k determines the 

sharpness of the mapped fringe [17]. Application of 

this function is advantageous in the sense that the 

mapped image does not have any sharp boundaries 

(square of hyperbolic tangent is a continuous 

function).  

 Nevertheless, the square of the sigmoidal 

function does not eliminate the problem of parasitic 

fringes. Moreover, wiping out of parasitic fringes 

can be even more complex compared to step 

functions. 

 The contrast enhanced decrypted image is 

illustrated in Fig. 12. We use square of the 

sigmoidal mapping function at 5.0=c  and 

05.0=ε . It can be noted that the secret image is 

very well visualized in the time-averaged image. 

Parasitic fringes are visible in the background, but 

we do not use any morphological operations to 

eliminate them since they do not compromise the 

interpretation of the secret image.  

 

 
 

Fig. 13. Decryption is impossible when the 

amplitude of oscillations is not correct; a = 0.0428.  
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Fig. 14. Decryption is impossible when the center 

point of angular oscillations is not correct; a = 

0.0383. 

 

Exact selection of the central point of angular 

oscillations also plays an important role in the 

process of the image decryption. Fig. 14 illustrates 

that the secret image cannot be decrypted even when 

the amplitude of oscillations is correct (but the 

center of angular oscillations is wrong). 

 

 

4 Conclusion 
A new image hiding technique based on time-

averaged moiré is presented in this paper. The 

encoded secret image is not shared into components; 

this is a one image method. The secret image is 

embedded into the background circular moiré 

grating. Stochastic initial phase deflection of 

circular moiré gratings help to construct an encoded 

digital image which cannot be interpreted by a 

naked eye. The decoding is performed by vibrating 

the encoded image in an angular direction around 

predefined axial point. The decoding process 

exploits the property of the human visual system to 

average fast dynamical processes being not able to 

follow rapid oscillatory motions. 
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