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Abstract: In this paper, we consider the existence and uniqueness positive solutions of the following boundary 

Neumann problem in a half space 

,0,)()()( =
∂
∂

∈−=∆−
n

u
Txufxbuxau on ,T∂  

where ),2(},0:),,,({ 21 ≥>== NxxxxxT NN⋯ )(xa and )(xb are continuous functions with )(xb  

non-negative on NR and n  is outward pointing unit normal vector of ,T∂ we show that under rather general 

conditions on )(xa and )(xb for large || x and )(uf behaves like qu , where constant 1>q , the above 

problems possesses a minimal positive solution and a maximal positive solution, respectively, Moreover, we 

establish a relationship between the above problem and the following problem 

,)()()( NRxufxbuxau ∈−=∆−  

We establish a comparison principal which our proof of the existence results rely essentially on and make use 

of a rather intuitive squeezing method to get the existence theorems. Furthermore, by analyzing the behavior of 

the positive solution for the problem in whole space, we show the boundary Neumann problem in half space 

has only one positive solution. Our results improve the previous works. 
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1 Introduction 
In this paper, we are concerned with positive 

solutions of the following boundary Neumann 

problem 
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∂
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n
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RTxufxbuxau N
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        (1) 

where ),2(},0:),,,({ 21 ≥>== NxxxxxT NN⋯  

q is a constant greater than 1, )(xa and )(xb are 

continuous functions with )(xb non-negative on 

NR and n  is outward pointing unit normal vector 

of ,T∂  Equations of this kind in bounded or 

unbounded region with different boundary values 

have attracted extensive study because of its interest 

to mathematical biology, Riemannian geometry and 

generalized reaction-diffusion and in non- 

Newtonian fluid theory. The existence of exact 

solution and the asymptotic and numerical solution 

of problem (1) for different nonlinearities have been 

attracted considerable interest in the last decades. 

We refer to [1,5,6,7,8,10,13,22]and the references 

therein for some of the previous research.  

The Dirichlet problems with different types in the 

upper half space or rough boundary domains, under 

two measures on the boundary, have been 

thoroughly investigated (see [2,3,4,25,26,27,28]). In 

2004, Du and Guo in [17] proved that any boundary 

positive solution of the following Dirichlet 

problem: 
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is unique and is a function of nx only provide that 

f is locally quasi-monotone on ),0( ∞ and satisfies 

(2):  for some 0>a , 

0)( >sf in ),0( a , 0)( <sf in ),( ∞a , 

(3):  for some small 0>d , there exists a constant 

0>δ such that 

ssf d)( >  for all ),0( δ∈s  

We say that )(sf is locally quasi-monotone on 

),0( ∞  if for any bounded interval ),0[],[ 21 ∞⊂ss , 

there exists a continuous increasing function 

)(sL such that )()( sLsf + is non-decreasing in s  

for ],[ 21 sss∈ . 

Clearly, this condition is less restrictive than 

requiring )(sf to be locally Lipschitz continuous on 

),0[ ∞ . 

  In 2005, forα is a positive constant (or ∞ ), 
Dong in [12] showed that the following problem 





∂∈=

∈=∆−

Txu

Txufu

,

),(

α
 

has a unique positive solution if )(sf is locally 

quasi-monotone on ),0( ∞ and satisfies (2). 

In the present paper, we will consider the boundary 

Neumann problem in the upper half space for more 

general nonlinearity. We only consider the existence 

of positive solutions. By a positive solution to (1), 

we mean a function )(2,1 TCWu ∩∈  satisfying 

0>u  in T such that 

)(,),( 0 TTCdxuxgdxDDu
T T

∂∈∀=⋅∫ ∫ ∞
∪ψψψ  

and  

,0=
∂
∂
n

u
on T∂  

where )()()(),( ufxbuxauxg −= . 

Recently, when )(xb  is positive, called logistic 

case, it is shown in [15, 16] that problem (1) has a 

unique positive solution. In this paper, we are 

interested in the more challenge degenerate logistic 

case in unbounded domain, where 

0)(,0)( ≠> xbxb , but the zero set of b is the 

closure of some suitable regular nonempty 

subdomain: 0Ω  

         { }0)(:0 =Ω∈=Ω xbx  

and 

TR N \0 =Ω  

Through out this paper, we always assume that 

for some γ  and ξ  such that 0>γ , there exist 

positive numbers 21 ,αα  and 21 ,ββ  such that 

ξξ

γγ

ββ

αα

||

)(
lim,

||

)(
lim

||

)(
lim,

||

)(
lim

||2||1

||2||1

x

xb

x

xb

x

xa

x

xa

xx

xx

∞→∞→

∞→∞→

==

==

        (4) 

And )(tf satisfies the conditions (5) and (6) listed 

below. 

(5): 0)( ≥tf , ttf /)(  is increasing on ),0( ∞  and 

0/)(lim 0 =→ ttft ; 

(6): ∞<
−∞

∫ dttF
2

1

1
)( , where dssftF

t

∫= 0
)()(  

It is easily shown that under these conditions, 

problem (1) has at least one (weak) positive solution. 

By standard regularity theory of elliptic equations, 

any )(2,1 N
loc RW  solution of (1) belongs to )(1 NRC . 

Let us now describe our results in more details. In 

section 2, we establish a comparison principal 

which our proofs of the existence results rely 

essentially on. We make use of a rather intuitive 

squeezing method as follows to obtain the existence 

theorem as follows. 

Let rB be a ball on NR  with centered at origin 

with radius r , TBrr ∩=Ω , TBr ∩∂=Γ1 and 

rT Ω∂=Γ ∩2 . Then for large 0>r , the following 

problem: 













Γ∈=
∂
∂

Γ∈=

Ω∈−=∆−

2,0

,0

),()()(

x
n

u

xu

xufxbuxau r

 

has a unique positive solution ru . On the other 

hand, the mixed boundary problem 













Γ∈=
∂
∂

Γ∈∞=

∈−=∆−

2

1

,0

,

),()()(

x
n

v

xu

Bxvfxbvxau n

 

has a positive solution rv . When r increases to 

infinity, ru and rv converges to a minimal positive 

solution and a maximal positive solution for (1), 

respectively, namely:  

Theorem 1. If 0),( 01 >Ω αλ ，then, problem (1) 

possesses a minimal positive solution u  and a 

maximal positive solution 
_

u ,  respectively.   

In order to obtain a complete understanding of 

problem (1), in section 3, we need to study the 

following problem: 
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NRxufxbuxau ∈−=∆− ),()()(             (7) 

Under the assumptions on )(),( xbxa  and )(tf , 

furthermore, for some positive constants 21 ,dd and 

1>q , )(tf  satisfies 

 

∞<≤

>≥

∞→

→

2

10

)(
lim

0
)(

lim

d
t

tf

d
t

tf

q
t

qt

.                   (8) 

We obtain the following asymptotic behavior of 

positive solutions for (7) as ∞→|| x first. 

Theorem 2 . Suppose )(1 NRCu∈ is a positive 

solution of (7). If (4) and (8) are satisfied, then for 

some positive constants 1c  and 2c such that 

∞<≤< 210 cc , we have 

              1

1

||
||

)(
lim c

x

xu q

x ≥
−

−

∞→ τγ
        (9) 

and 

             2

1

||

||

)(
lim c

x

xu q

x ≤
−

−

∞→ τγ
        (10) 

Next we combine the squeezing method in [18] 

with the iteration argument motivated by one 

attributed to Safonov (see also [14, 19]) to obtain 

the uniqueness result in whole space. 

Theorem 3. Suppose )(tf  satisfies (8) and 

0),( 01 >Ω αλ . Furthermore, if )(uf  satisfies:   

 















>==

>=<

>=>

→

∞→

0,)(,when

0
)(

lim,when

0
)(

lim,when

2
0

1

CCuuf

k
u

uf

k
u

uf

q

qu

qu

τγ

τγ

τγ

           (11) 

Then problem (7) has a unique positive solution. 

In section 4, we establish a relationship between 

the positive solutions of (1) and ones of (7), and 

utilizing the uniqueness result for problem (7), we 

obtain our main uniqueness result. 

Theorem 4.  Assume that )(tf satisfies (8) and 

(11), moreover 0),( 01 >Ω αλ , then, problem (1) 

has a unique positive solution. 

 

 

2 Existence of Positive Solutions of 

Problem (1) 
In this section, we adapt the comparison principle in 

[18] and modify it, we obtain the following new 

comparison principle. 

Lemma 5. (Comparison principle) Suppose that Ω  
is a bounded domain in NR which Ω∂  splits into 

1Γ and 2Γ . )(xα and )(xβ are continuous 

with 0)( ≥xβ , 0)( ≠xβ on Ω and ∞<
Ω∞ )(L

α . Let 

)(, 1
21 Ω∈Cuu  be positive in Ω and satisfy (in the 

weak sense)  

)()()(

0)()()(

222

111

ufxuxu

ufxuxu

βα

βα

−+∆≤

≤−+∆

in Ω  and  

0)(lim 12)0,( 1
≤−→Γ uuxdist  

2
21 , Γ∈

∂

∂
≥

∂

∂
x

n

u

n

u
. 

where )(uf is a continuous function which for 

every Ω∈x , uuf /)( is strictly increasing for u  in 

the range },{sup},{inf 2121 uuuuu ΩΩ << . Then 

12 uu ≤  in Ω . 
This Lemma can be easily derived from Lemma 

2.1 in [18]. 

Lemma 6. Suppose that Ω  is bounded domain in 
NR  and )(xβ  are continuous with 0)( ≥xβ . If 

0),( 01 >Ω αλ and f satisfies (5)-(6), then, the 

following problems  





Ω∂∈∞=

Ω∈−=∆−

xu

xufxuxu

,

),()()( βα
       (12) 

has at least one positive solution. 

Proof. we first consider the following problem 

ku

xuf
k

xuxu

=

Ω∈∀






 +−=∆−

Ω∂|

,),(
1

)()( βα
    (13) 

Since f  satisfies (6), we can easily obtain 

∞=∞→
t

tf
t

)(
lim . Hence there exists a large 

number kM ≥0 , such that for all 0MM ≥ , 

0),(
1

)()( ≤






 +− Mxg
k

xMx βα . Thus M  is a 

supersolution of (13). Obviously, 0≡v  is a 

subsolution of (13). A standard sub- and 

supersolution argument(see [10,21]) and Lemma 5 

imply that problem (13) has a unique positive 

solution ku and ku  is increasing with k , By 

standard regularity theory in [10,21], )(,1 KCuk
α∈  

for any compact Ω⊂K , and some )1,0(∈α . If 

we can also obtain an upper bound for the sequence 

}{ ku , then }{ ku  converges to a positive solution 

u  of (12) in )(
_

1 ΩC .  
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Next we will look for the upper bound. 

For any compact subset K  of 
_

0\ DΩ , there 

exists an open set 1Ω  such that 

_

01 \ DK Ω⊂⊂Ω⊂ . Since 
_

1,0)( Ω∈∀> xxβ , 

Theorem 1.1 in [17] implies the following boundary 

blow-up problem 

∞=Ω∈∀−=∆− Ω∂

Ω∈Ω∈
1

_

1

_

1

|,),()(inf)(max 1 vxvfxvxv

xx

βα

has a positive solution v . For every positive 

integer k ,  

,),()(inf)(max

)()()(

1
_

1

_

1

Ω∈∀−≤

−=∆−

Ω∈Ω∈

xufxux

ufxuxu

k

x

k

x

kkk

βα

βα
 

and ∞<Ω∂ 1
|ku . Thus by Lemma 5 we obtain 

vuk ≤ . So *Muk ≤  for some 0* >M  and all 

_

0\ DKx Ω⊂∈ . 

If we can also find an upper bound for ku  on a 

small neighborhood of 0D  then we can use the 

monotone method in [10,19] to see kk uu ∞→= lim  

is a positive solution of (12). 

Let ηN  denote the odneighborho−η  of 0D  

such that Ω⊂
_

ηN . By the properties of the first 

eigenvalue(see [11,23]), 0),(1 >αλ ηN ) if η  is 

sufficiently small. By what we have already proved, 

we can find a positive constant 
_

M  such that 
_

Muk ≤  for all 1≥k  and 

2

ηNx ∂∈ . Let φ  be a 

positive eigenfunction corresponding to ),(1 αλ ηN , 

we can find a large positive constant L  such that 
_

ML >φ  for 

2

ηNx ∂∈ . Thus  

2

1 ,0))(,())(()( ηη φαλφαφ NxLNLxL ∈∀>=−∆−

and 

2

,0)()()( ηβα Nxufxuxu kkk ∈∀≤−=−∆− . 

By Corollary 2.4 in [17] and kuL ≥φ  for all 

2

,1 ηNxk ∂∈∀≥ , we obtain φLuk ≤  for all 

_

2

ηNx∈ . So we find an upper bound for the 

sequence }{ ku  on any compact subset Ω⊂K . 

Thus (12) has at least one positive solution.  

Next we will show the existence result Theorem 

1.  

Let rB be a ball on NR with centered at origin 

with radius r , TBrr ∩=Ω , TBr ∩∂=Γ1 and 

rT Ω∂=Γ ∩2 .  

Now we first consider the following problem:  





Ω∂∈=

Ω∈−=∆−

xu

xufxuxu

,0

),()()( βα
          (14) 

Since condition (4) holds, by the properties of the 

first eigenvalue (see [11,21]), there exists a large 

00 >r such that for all 0rr ≥ , 

0

_

0 rΩ⊂Ω 0),( <Ω arλ . Let φ be a positive 

eigenfunction corresponding to ),(1 αλ Ω . Since 

0/)(lim 0 =→ ttft , then for all small positive 

constant ε , it easily checked that εφ  is a 

subsolution of problem (14) with rΩ=Ω . By 

Lemma 6, the problem (12) with rΩ=Ω has a 

unique positive solution 0u . Obviously it is the 

supersolution of (14). A standard sub-and super 

solution argument (see [10,19]) and Lemma 5 imply 

that  problem (14) has a unique positive solution 

v . Next we consider the following problem: 

                                         













Γ∈=
∂
∂

Γ∈=

Ω∈−=∆−

2

1

,0

,0

),()()(

x
n

u

xu

xufxbuxau r

         (15) 

It is very clear v and u is the sub- and 

supersolution of above problem. By standard 

sub-supersolution method for elliptic equation, the 

problem (15) has at least one positive solution ru  

in the order interval ],[ uv . It follows from Lemma 

5 that it has a unique positive solution. 

By standard sub-supersolution method for elliptic 

equation, the problem (15) has at least one positive 

solution ru in the order interval ],[ uv . It follows 

from Lemma 5 that it has a unique positive solution. 

Let us choose an increasing sequence of positive 

real numbers 0rrn > and ∞→nr  as ∞→n . By 

the discussion above, problem (15) with 

nrr Ω=Ω has a unique positive solution nu .It 

follows from Lemma 5 that 1+≤ nn uu . If we can 

find an upper bound for )(xun on any fixed RΩ , 

then by a standard regularity argument, 

)(lim)( xuxu nn ∞→=  is well-defined in T  and it 
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would be a positive solution of problem (1). To find 

such an upper bound, we consider the problem 

∞=Ω∈−=∆− Ω∂ R
vxvfxvxv R |,),()()( βα . 

By Lemma 6, the above problem has a positive 

solution )(xv . Then clearly by the comparison 

principle Lemma 5, we obtain  

Rn xxvxu Ω∈∀≤ ),()( . 

for all large n  such that Rrn > . This is the bound 

we are looking for, and hence the existence of a 

solution for (1) is proved. 

From 1+≤ nn uu we find 

0)()( >≥ xuxu n  

for each n , and hence u  is a positive solution of 

(1). For an arbitrary positive solution u  of (1), we 

can see that u  satisfies 

0|),()()(
1
>−=∆−

Γ
uufxuxu βα . 

By Lemma 5 nuu ≥ on 
rr

Ω for each n , and hence  

nn uuu ∞→=≥ lim  

So u  is the minimal positive solution of (1). 

Next we will show the existence of a maximal 

positive solution of (1). To this end, we choose an 

increasing sequence of real number nr  such that 

∞→nr as ∞→n and denote 
nrnB Ω= .We 

consider the following mixed boundary problem 

 













Γ∈=
∂
∂

Γ∈∞=

∈−=∆−

2

1

,0

,

),()()(

x
n

u

xu

Bxufxbuxau n

         (16) 

Obviously 0=u is a subsolution of problem (16). 

By Lemma 6, the following equation 





∂∈∞=

∈−=∆−

n

n

Bxv

Bxvfxvxv

,

),()()( βα
 

has a positive solution and we denote it as nv . It is 

easy to show 0≥
∂

∂

n

vn  and nv  is a supersolution 

of (16). Thus problem (16) has at least one positive 

solution nu . 

Applying Lemma 5, we see  

nnn Bxuuu ∈>≥ + ,1  for all n . 

So nn uu ∞→= lim  is well-defined on T . 

Furthermore, by standard regularity considerations, 

we know u  satisfies (1) on T  and uu ≥ , so u  

is a positive solution of (1). 

Clearly any positive solutionu of (1) satisfies, for 

each n , 

.0,|

),()()(

1
=

∂
∂

∞<

−=∆−

Γ
n

u
u

ufxbuxau

 

It follows from Lemma 5 that we see  

uun ≥  on nB for all n , 

and hence 

uu nn ≥= ∞→ ωlim  

The proof is now finished. 

 

 

3  The Whole Space Problem 
In this section, we will prove the asymptotic 

behavior of the positive solution of problem (7), and 

then make use of this result to prove the uniqueness 

result in Theorem 3. 

Before we start to prove our uniqueness result 

Theorem 3, we need the following existence

Lemma. 

Lemma 7. If 0),( 01 >Ω αλ  and conditions 

(4)-(6) are satisfied, then problem (7) possesses a 

minimal positive solution and a maximal positive 

solution u .  

Proof. By condition (4), there exists a large 0>r , 

such that rB⊂Ω
_

0 , 0),(1 <aBrλ , and it follows 

from the proof of Theorem 1 that the following 

problem 





∂∈=

∈−=∆−

r

r

Bxu

Bxufxuxu

,0

),()()( βα
 

has a unique positive solution ru . 

Let us choose an increasing sequence of positive 

real numbers nr with rr >1 and ∞→nr as 

∞→n .By the properties of the first eigenvalue in 

[11, 23], and by the proof of Theorem 1, the above 

problem with nrr =  has a unique positive solution 

nu . By the comparison principle Lemma 5, we 

deduce 

1+≤ nn uu . 

If we can find an upper bound for nu on any mixed 

RB , then by a standard regularity argument, 

nn uu ∞→= lim is well-defined in NR  and it would 

be a positive solution of (7).  

To find such an upper bound, we consider the 

problem 





∂∈∞=

∈−=∆−

R

R

Bxu

Bxufxuxu

,

),()()( βα
 

Lemma 6 implies that this problem has a positive 

solution v . Then by Lemma 5,  

Rn Bxxvxu ∈∀≤ ),()(  
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for all large n  such that Rrn > . This is the bound 

we are looking for, and hence the existence of a 

solution for (7) is proved. 

From 1+≤ nn uu  we find 0)( >≥ xuu n for each 

n , and hence u  is a positive solution of (7). For an 

arbitrary positive solution u  of (7), we can see that 

u  satisfies 

)()()( ufxuxu βα −=∆− , 0| >∂
nr

Bu . 

So u  is the minimal positive solution of (7). 

Next we will show the existence of a maximal 

positive solution of (7). To this end, we choose an 

increasing sequence of real number nr such 

that ∞→nr as ∞→n and denote 
nrn BB = .We 

consider the boundary blow-up problem: 

)()()( ωβωαω fxx −=∆−  in nB  ∞=∂ nB
u |  (17) 

It follows from Lemma 6 that (17) has a positive 

solution and we denote it as nω . Applying Lemma 

5, we see 

unn ≥≥ +1ωω , nBx∈ for all n . 

Thus 

nnu ω∞→= lim  

is well-defined on NR . Furthermore, by standard 

regularity considerations, we know u  satisfies (7) 

on NR  and uu ≥ , so u  is a positive solution of 

(7). 

Clearly any positive solution u of (7) satisfies, 

for each n , 

)()()( ufxuxu βα −=∆− , ∞<∂
nr

Bu | . 

It follows from Lemma 5 that we see 

un ≥ω  on nB for all n . 

And hence 

uu nn >= ∞→ ωlim . 

This finishes the proof. 

Next we will show the asymptotic behavior of 

positive solutions for (7) as ∞→|| x  and use the 

result to prove Theorem 3. 

Proof of Theorem 2. Because )(uf  satisfies (8), 

then there exist two positive constant 210 hh ≤<  

such that  

          qq thtfth 21 )( ≤≤              (18) 

By Proposition 3.2 in [10], the following problem: 

      Nq Rxvxbhvxav ∈−=∆− ,)()( 2       (19) 

possesses a minimal positive v . 

By the constructions of the minimal positive 

solutions v , on any fixed RB , we have  

)()()( vfxbvxav −>∆−  

By Lemma 5, we can easily obtain uv ≤ , where u  

is the minimal positive solution of (7). By Lemma 

3.1 in [11], we have 

22

1
1

||
||

)(
lim

β
α

τγ hx

xv q

x ≥
−

−

∞→  

Thus there exists 01 >c  such that 

         1

1

||
||

)(
lim c

x

xu
q

x ≥
−

−

∞→ τγ
             (20) 

By the same method as above, the following 

problem: 

       Nq Rxxbhxav ∈−=∆− ,)()( 1 ωω     (21) 

has a maximal positive solution ω  such that 

ω≤u , where u  is the maximal positive solution 

of (7). By the Lemma 3.1 in [14], we have 

          
11

2
1

||

||

)(
lim

β
αω

τγ hx

xq

x ≤
−

−

∞→         (22) 

Thus  

          
11

2

1

||

||

)(
lim

β
α

τγ hx

xu
q

x ≤
−

−

∞→         (23) 

It follows from (20) and (23) that the Theorem 3 

is complete. 

What remains is to show the uniqueness result for 

problem (7). The following technical lemma is the 

core of our iteration argument to be used in the 

uniqueness proof. 

Lemma 8. Suppose that (4), (5), (6), (8) and (11) 

hold, 21 , uu are positive solutions of (7). Then 

there exists 1>R  large so that, if NRx ∈0  

satisfies, for some 1>≥∗ kk , 

)()(,|| 01020 xukxuRx ∗>> , 

thus we can find NRy ∈0 , and positive 

constants ),(00 kRcc = and ),(00 kRrr = independent 

of 0x  and ∗k  such that  

                       

)()1()(

|||

01002

2/

0000

yukcyu

xrxy

∗

−

+>

=− γ

                 (24) 

Proof.  By (4), (9) and (10), for all large 11 >R  

and 1|| Rx > , we have  

γγ

γγ

ββ

αα

||2)(||)2/1(

||2)(||)2/1(

21

21

xxax

xxax

<<

<<
             (25) 

and, for ,2,1=i  

  )1/()(
2

)1/()(
1 ||)(|| −−−− << q

i
q xxux τγτγ µµ     (26)    

where 

)1/(1

11

2
2

)1/(1

22

1
1 )(2,))(2/1( −− == qq

hh β
α

µ
β
α

µ  
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We now fixed 11 >R large enough so that 

2/1)2/(1 <−− γR and (25), (26) hold for all 

x satisfying 2/|| 1Rx > .Then we define 

)()}()(:{ 0120 xBxukxuRx r
N

∩∗>∈=Ω , 

where 
2/

00 || γ−= xrr , }|:|{)( 00 rxxRxxB N
r <−∈= , 

and )1,0(0 ∈r  is to be determined below. 

Clearly 0Ω∈x implies 

rxxrx +≤≤− |||||| 00 , 

which in turn implies, due to 10 || Rx > , Rx >  

and our choice of 1R , 

       ||)2/3(||||)2/1( 00 xxx <<          (27) 

Using (25)-(27) and the assumption that 

012 >− ∗uku  in 0Ω , we now consider 

)( 12 uku ∗−∆  in 0Ω  in three cases. 

Case 1. τγ > .  

By Theorem 2, if τγ > , then ∞→)(xu  as 

∞→|| x . Then, it follows from (11) that 

1
|| )(

))((
lim k

xu

xuf
qx

=
∞→

 

So for some 0>ε small enough, there exists a 

large 12 RR > such that if 2|| Rx > , 

we have 
qq ukufuk )()()( 11 εε +≤≤−  

and  

0)()( 1

1

1 >+−− −
∗ εε kkk
q

 

Then we deduce, for 0Ω∈x  

))()(( 12 xukxu ∗−∆  

))()(()(

))()((||2

))(

))((())()()((

))(

))((())()()((

))()()(())()()((

1
1

11

122
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12112
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22112

1212

εε

α

ε

ε

ε

ε
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+−−+

−−≥

+−

−+−−≥

+−
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−+−−=

−
∗∗

∗

∗

∗

∗

∗

∗∗

kkkukxb

xukxux

ukk

ukxbxukxuxa

ukk

ukxbxukxuxa

ufkufxbxukxuxa

qq

q

q

q

q

 

))()((||

||
2

1
))()((||

1
1

1
1

)(

1112

εε

β

τγ

τγ

+−−

+−−≥

−
∗

−

−

∗∗∗

kkkx

AxkxukxuxM

qq

q

q
 

σγ ||))()((|| 112 ∗∗∗∗ +−−≥ xkmxukxuxM  

where  

1

)(
),)

2

3
(,)

2

1
max((2 2 −

−
+==

q

q
M

τγ
τσα γγ  

))
2

3
(,)

2

1
min(())(

)((
2

1

1

1
1111

σσε

εβ

+−

−= −
∗

k

kkAm qq

 

Case 2. τγ < .  

By Theorem 2, if τγ < , then ∞→)(xu  as 

∞→|| x . Then, it follows from (11) that    

2
|| )(

))((
lim k

xu

xuf
qx

=
∞→

. 

So for some 0>ε  small enough, there exists a 

large 13 RR >  such that if 3|| Rx > , 

we have 
qq ukufuk )()()( 22 εε +≤≤−  

and  

0)()( 2

1

2 >+−− −
∗ εε kkk
q

. 

Then we deduce, for 0Ω∈x  

))()(( 12 xukxu ∗−∆  

= ))()()(())()()(( 1212 ufkufxbxukxuxa ∗∗ −+−−  

))(
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))((())()()((

12

12212
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22212
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q
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q

ukk
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ε

ε
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∗

∗

∗
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1
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))()((

)())()((||2

2
1

2
1

)(

11

12

2
1

2

1122

εεβ

εε

α

τγ
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+−−
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+−−
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−
∗

−

−

∗∗∗

−
∗

∗∗

kkkxA

xkxukxuxM
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ukxbxukxux

qqq

q

q

q

σγ ||))()((|| 212 ∗∗∗∗ +−−≥ xkmxukxuxM  

where  

1

)(
),)

2

3
(,)

2

1
max((2 2 −

−
+==

q

q
M

τγ
τσα γγ  

))
2

3
(,)
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1
min(())(

)((
2

1

2

1
2112

σσε

εβ

+−

−= −
∗

k

kkAm qq

 

Case3. τγ = .  

It follows from (11) that there exists a large 

14 RR >  such that qCuuf =)( . Then we deduce, 

for 0Ω∈x  

))()(( 12 xukxu ∗−∆  

= ))()()(())()()(( 1212 ufkufxbxukxuxa ∗∗ −+−−  
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)()())()()((

))(())()()((

11212

12212

qqq

qq

ukukCxbxukxuxa

CuCuxbxukxuxa

∗∗∗

∗

−+−−≥

−+−−≥
 

σγ

τ

γ

γ

τλ

β

α

xkmxukxuxM

kkCxAx

xukxuxM

ukukCxbxukxux
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qqq
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*212*

112
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11122
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1
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where 

1

)(
),)

2

3
(,)

2

1
max((2 2 −

−
+==

q

q
M

τγ
τσα γγ  

))
2

3
(,)
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1
min(()(

2

1 1
113

σσβ ∗
−
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Overall, for 

0},,min{},,,,max{ 3214321 >=> mmmmRRRRR , 

we have 

σ

γ

*

12*12 ))()(())()((

xmk

xukxuxMxukxu

∗

∗∗

+

−−≥−∆
 

With these preparations, we now define 

)()2()(
2

0
2

0*
1 xxrxmkNx −−= − δω  

Clearly 0)( >xω  in )( 0xBr  

and  
2

0*

δω xmk−=∆  

It follows that, for 0Ω∈x  

)(

)((

120

12012

ωγ

γ

+−−≥

−−≥−∆

∗

∗∗

ukuxM

ukuxMuku
       (28) 

If we denote by )(1 Ωλ  the first eigenvalue of ∆−  

over Ω under homogeneous Dirichlet boundary 

conditions, we have  

))(())(()( 011
2

001 xBrxBr λλ =≤Ω  

Therefore, by the definition of 0r , we obtain 

10
2

001 )( λλ γ
Xr −≥Ω , 

where ))(( 0111 xBλλ =  is independent of 0x . we 

now choose )1,0(0 ∈r  small enough so that    

Mr >−
1

2
0 λ  

   

And hence  
γλ 001 )( xM≥Ω  

Then by the maximum principle (see [5]), due to 

(28), 

)(max)()()( 1200102 0
ωω +−≤+− ∗Ω∂∗ ukuxxukxu

We observe that the maximum of ω+− ∗ 12 uku  

over 0Ω∂  has to be achieved by some 

)( 00 xBy r∂∈  since any )(\ 000 xBy r∂Ω∂∈  

satisfies, by the definition of 0Ω , )()( 12 yukyu ∗=   

and hence 

)()()(

)()()()()(

00102

012

xxukxu

xyyyukyu

ω

ωωω

+−≥

≤=+−

∗

∗

Thus we can find 00 Ω∂∈y  satisfying 

rxy =− 00  (hence 0)( 0 =yω ) such that  

)1/()(
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0
2
0*

1

2
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1
0

00102

001020102

)2(
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q
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xxukxu
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ω

 

where  

}0))3/2(,)2/1min{(

)2(

)1/()()1/()(

2
0

1

>•

=
−−−−−−

−

qq

mrNd

τγτγ
 

and we have used (27). Making use of (26), we 

finally deduce 

)(

)()(

01
1
21

)1/()(

0*0102

yukc

ydkyukyu
q

∗
−

−−
∗

≥

>−

µ

τγ

 

Therefore we can take 1
20
−= µdc and the proof is 

complete.  

Proof of Theorem 3. By Lemma 7 above and 

Theorem 2, under conditions (4) and (8), problem (1) 

possesses a minimal positive solution 1u  and a 

maximal positive solution 2u  and any positive 

solution of (1) satisfies (9) and (10).  

Let 
1

2
_

1 lim
u

u
k x ∞→= . 

By (4) and (5) we know that 11 ≥k  is finite. If 

11 =k , then for any 0>ε  there exists 

0>τR such that for all  x  satisfying τRx >   

)()1()( 12 xuxu ε+≤  

Since 1)1( uε+  is a supersolution of (7), we apply 

Lemma 5 over τRRBr >=Ω ),0( ,  and deduce 

NRxxuxu ∈+≤ )()1()( 12 ε  

Letting 0→ε we obtain 21 uu ≡ . This complete 

the proof. 

Next we will prove the result is true when 11 >k . 

Therefore there exists a constant ),1( 1kk∈  and a 

sequence }{ nx  such that 

⋯2,1,)(/)(, 12 =>∞→ nkxuxuxn  
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We are now ready to apply Lemma 8. Let 

0, rR and ),(00 kRcc =  be determined by Lemma 8. 

We recall that R  satisfies 2/1)2/(1 <−− γR . We 

first find an integer 1>j  such that 

1

2
0 sup)1(

u

u
kc

Rx

j

>>+  

Since ∞→nx , we can then find 0n  large 

enough such that 

Rkx j
n >)2/1(
0

 

Taking 
00 nxx = and kk =* in Lemma 8, we can 

find 10 yy =  such that 

)()1()(, 11012

2/

0001 yucyuxrxy +>=−
−γ

 

Clearly 

Rx

Rxxrxy

n

n

>>

−≥−≥ −−−

)2/1(

)1(

0

0

)2/(12/

0001
γγ

 

We now take 10 yx = and kck )1( 0* +=  in 

Lemma 8, and we can find 2y  such that 

)()1()(, 21
2

022

2/

1012 ykucyuyryy +>=−
−γ

 

Let us note that 

Rxyy n >≥≥ 2
12 )2/1()2/1(

0
 

We can repeat the above process until we obtain 

jy  which satisfies 

)()1()( 102 j
j

j ykucyu +> , Rxy j
nj >≥ )2/1(
0

 

Therefore 

1

2
0

1

2
sup)1(

)(

)(

u

u
kc

yu

yu
Rx

j

j

j

>>+≥  

This contradiction completes our proof. 

 

 

Remark. If )()( xaxa = and )()( xbxb = , then  

the unique positive solution of (7) must be radially 

symmetric solution, we can use the methods in 

[7,8,22] to obtain the analytic solution. 

 

 

4 Proof of the Main Theorem 
In this section, we will span the positive solution of 

problem (1) to whole space, and use the results in 

section 3 to prove the uniqueness Theorem 4.  

To start, we should prove the following lemma. 

Lemma 9. Assume 1u  to be an arbitrary positive 

solution of problem (1), letting 





∈

∈
=

TRxu

Txu
u

N \,

,

2

1
 

where TRxxxxuu N
N \),,,,( 2112 ∈= ⋯ ,then 

u  is the positive solution of the following problem. 

( ) ( ) ( )∫ ∈−=∆− ., NRxuxbuxau  

Proof.  For any 0>R , we denote  

121 ,, Ω∩=Ω∩=Ω∂∩=Γ RRR BTBTB  

By a simple computation, we can obtain that 2u  is 

a positive solution of  

( ) ( ) ( ) .0,, 2 =
∂
∂

Ω∈−=∆−
n

u
xufxbuxau  

Next we will show that  





Ω∈Ω

Ω∈Ω
=

222

111

|

|

xu

xu
u  

is a positive solution of the following equation  

( ) ( ) ( ) ., RBxufxbuxau ∈−=∆−            (29) 

For )( Rc BC∞∈∀ϕ , since 

( ) ( )
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( ) ( ) ( )[ ]
( ) ( ) ( )( ) ( )R

R

R
R

R
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B
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ufxbuxa
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dx
v
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u
dxu

dxDuDDuD

dx
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dxDuD
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211
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,
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ϕϕϕ

ϕϕ

ϕϕ

ϕ

ϕ

−=

−=

−+

−=

∂

∂
+

∆−+
∂

∂
+∆−=

+=

∂
∂

−=

∆−=

∆−

∫
∫
∫

∫

∫ ∫∫

∫∫

∫ ∫

∫

Ω

Ω

Ω∂

ΩΩ∂Ω

ΩΩ

∂

 

Hence u  is a positive solution of problem (29). 

It follows from the arbitrary of R  that 





∈

∈
=

TRxu

Txu
u

N \2

1
 

is a positive solution of 

( ) .,)()( NRxufxbuxau ∈−=∆−  

The proof is complete. 

Now we are ready to complete the proof of 

Theorem 4. 

Proof of Theorem 4.  Let )(1 xu  and )(1 xv  be 

two arbitrary positive solutions of (1). By Lemma 9, 

letting  





∈

∈
=

TRxu

Txu
u

N \,

,

2

1
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and 





∈

∈
=

TRxv

Txv
v

N \,

,

2

1
 

We know that )(xu and )(xv corresponding to 1u  

and 1v , respectively, is the positive solution of  

.)()( Nq Rxuxbuxau ∈−=∆−  

By Theorem 3 above, the problem in whole space 

has only one positive solution. It follows that 
NRxxvxu ∈= ),()(  

Thus           Txvu ∈= ,11  

This completes our proof. 

 

 

5 Conclusion 
In this paper, under less restricted conditions on 

coefficients )(xa and )(xb , we use the same 

method in [15, 16] to handle with more complicated 

degenerate logistic cases. If the volume of the set 

D={ NRxx ∈: , 0)( =xb } is small enough we 

obtain existence and uniqueness theorem for a class 

of semilinear equations with Neumann boundary 

value in unbounded domain in NR . It improves the 

previous result. 
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