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Abstract: In this paper, we consider the existence and uniqueness positive solutions of the following boundary
Neumann problem in a half space

—Au=a(x)u—b(x)f(u)xeT,g—u=0, on OT,
n

where T ={x=(x;,x,,",xy):xy >0},(N2=2), a(x) and b(x) are continuous functions with b(x)
non-negative on R" and n is outward pointing unit normal vector of 87, we show that under rather general

conditions on a(x)and b(x) for large |x|and f(u)behaves like u?, where constant ¢ >1, the above
problems possesses a minimal positive solution and a maximal positive solution, respectively, Moreover, we
establish a relationship between the above problem and the following problem
—Au=a(x)u—b(x)f(u)xeR",
We establish a comparison principal which our proof of the existence results rely essentially on and make use
of a rather intuitive squeezing method to get the existence theorems. Furthermore, by analyzing the behavior of
the positive solution for the problem in whole space, we show the boundary Neumann problem in half space
has only one positive solution. Our results improve the previous works.

Keyword: Sub-super solution, Neumann problem, Comparison principle, degenerate logistic, positive solutions

1 Introduction generalized  reaction-diffusion and in non-
In this paper, we are concerned with positive Newtonian fluid theory. The existence of exact
solutions of the following boundary Neumann solution and the asymptotic and numerical solution
problem of problem (1) for different nonlinearities have been

attracted considerable interest in the last decades.

— N
~Au=a(u=bx)f W), xeT <R We refer to [1,5,6,7,8,10,13,22]and the references

u _ 0. oneT @) therein for some of the previous research.
on The Dirichlet problems with different types in the
where T = {x = (x;, Xy, +,xy ) 1 Xy > O}, (N 22), upper half space or rough boundary domains, under

two measures on the boundary, have been

qis a constant greater than 1, a(x)and b(x)are thoroughly investigated (see [2,3,4,25,26,27,28]). In

continuous functions with b(x) non-negative on 2004, Du and Guo in [17] proved that any boundary
R"and n is outward pointing unit normal vector positive  solution of the following Dirichlet
of 6T, Equations of this kind in bounded or problem:

unbounded region with different boundary values {— Au=f(u), xeT

have attracted extensive study because of its interest u=0, xedTl

to mathematical biology, Riemannian geometry and

ISSN: 1109-2769 67 Issue 1, Volume 9, January 2010



WSEAS TRANSACTIONS on MATHEMATICS

is unique and is a function ofx,only provide that
£ is locally quasi-monotone on (0, o) and satisfies
(2): forsome a>0,

f(s)>0in(0,a), f(s)<O0in(a,x),
(3): for some small d > 0, there exists a constant
0 > 0 such that

f(s)>ds forall se(0,0)

We say that f(s)is locally quasi-monotone on
(0,0) if for any bounded interval [s,,s,]<[0,0),
there exists a continuous increasing function
L(s)such that f(s)+ L(s)is non-decreasing in s
fors e[s,s,].

Clearly, this condition is less restrictive than
requiring f(s) to be locally Lipschitz continuous on
[0,0).

In 2005, for  is a positive constant (or oo ),
Dong in [12] showed that the following problem

—-Au=f(u), xeT

{ u=a, xeol
has a unique positive solution if f(s)is locally
quasi-monotone on (0, ) and satisfies (2).
In the present paper, we will consider the boundary
Neumann problem in the upper half space for more
general nonlinearity. We only consider the existence
of positive solutions. By a positive solution to (1),
we mean a function ueW”?NCT) satisfying
#>0 in T such that

J-T Du - Dyidx = L g(x,u)pdx,Vy e Cy(TUOT)

and

6_u: 0, on oT
on

where g(x,u)=a(x)u—>b(x)f(u).
Recently, when b(x) is positive, called logistic

case, it is shown in [15, 16] that problem (1) has a
unique positive solution. In this paper, we are
interested in the more challenge degenerate logistic
case in unbounded domain, where
b(x)>0,b(x)#0, but the zero set of b is the

closure of some
subdomain: Q,

0, =fxeQ:b(x)=0}

suitable regular nonempty

and
Q,=R"\T
Through out this paper, we always assume that
for some y and & such that y >0, there exist

positive numbers «,,a, and f,, [, such that
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. a(x) a(x)
o, =lm,, Waaz =amy o W
“4)
. b(x . b(x
B = hm\x\—m (_é)aﬁZ =lim_ (_5)
| x| | x|

And f'(¢) satisfies the conditions (5) and (6) listed
below.
5): f(©)=0, f(¢r)/t is increasing on (0,0) and

lim, ,, f(£)/t=0;

myi?m7m<wﬂmmeFm=ﬁﬂmh

It is easily shown that under these conditions,
problem (1) has at least one (weak) positive solution.
By standard regularity theory of elliptic equations,

W 2(RY) solution of (1) belongs to C'(RY).

loc

any

Let us now describe our results in more details. In
section 2, we establish a comparison principal
which our proofs of the existence results rely
essentially on. We make use of a rather intuitive
squeezing method as follows to obtain the existence
theorem as follows.

Let B.be a ball on R" with centered at origin
with radius » , Q, =B, NT ,I,=0B,NT and
I, =0T Q, . Then for large >0, the following
problem:

—Au=a(x)u—-b(x)f(u), x€Q,

u=0, xel'
0
—u:0, xel,
on

has a unique positive solution u,. On the other
hand, the mixed boundary problem

—Au=a(x)v->b(x)f(v), xeB,
u=o0o, xel

v =0, xel,

on
has a positive solution v,. When r increases to
infinity, u,and v, converges to a minimal positive
solution and a maximal positive solution for (1),
respectively, namely:
Theorem 1. If 4,(Q2,,) >0 , then, problem (1)

possesses a minimal positive solution ¥ and a

maximal positive solution u, respectively.

In order to obtain a complete understanding of
problem (1), in section 3, we need to study the
following problem:
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—Au=a(x)u—b(x)f(u),xeR" @)

Under the assumptions on a(x),b(x) and f£(z),
furthermore, for some positive constants d,,d, and
g>1, f(t) satisfies

Lt—)Oth)Zdl >0

t
—  f@ ®
limi o £ <d, <o

t

We obtain the following asymptotic behavior of
positive solutions for (7) as| x |- oo first.
Theorem 2 . Suppose ucC'(R")is a positive

solution of (7). If (4) and (8) are satisfied, then for
some positive constants ¢, and c, such that

0<¢, <c, <o, we have

q-1
lim,, ., T IV(‘)? >, 9)
and
_ q-1
Timpoe D < (10)

Next we combine the squeezing method in [18]
with the iteration argument motivated by one
attributed to Safonov (see also [14, 19]) to obtain
the uniqueness result in whole space.

Theorem 3. Suppose f(¢) satisfies (8) and

A, (€, ,a) > 0. Furthermore, if f(u) satisfies:

when y > 7, lim f(:{) =k >0
U—>0 u
when y < 7,1imL % — ¢ 5 0 (11)

u—0 oy

when y =7, f(u)=Cu?,C >0

Then problem (7) has a unique positive solution.

In section 4, we establish a relationship between
the positive solutions of (1) and ones of (7), and
utilizing the uniqueness result for problem (7), we
obtain our main uniqueness result.

Theorem 4. Assume that f(¢) satisfies (8) and

(11), moreover A,(Q,,a) > 0, then, problem (1)
has a unique positive solution.

2 Existence of Positive Solutions of
Problem (1)

In this section, we adapt the comparison principle in
[18] and modify it, we obtain the following new
comparison principle.
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Lemma 5. (Comparison principle) Suppose that Q
is a bounded domain in R" which 6Q splits into
I''and T, . a(x) and pB(x) are
with B(x) >0, B(x) #0on Qand |of

continuous

£© <oo. Let

u,,u, € C'(Q) be positive in Qand satisfy (in the
weak sense)
Auy + a(x)uy — B(x) f(u;) <0

<Au, +a(x)u, — f(x) f(u,)
in Q and

lim giss (1, 50y (U, —1,) <0
% > 6& ,xel,.
on

where f(u)is a continuous function which for
everyx € Q, f(u)/uis strictly increasing for u in
the inf,, {uy,u,} <u <supgfu,u,} Then
u, <u, in Q.

range

This Lemma can be easily derived from Lemma
2.1in[18].
Lemma 6. Suppose that Q is bounded domain in
R" and AB(x) are continuous with A(x)>0. If
A,(Q,,a)> 0 and f satisfies (5)-(6), then, the
following problems
{— Au = a(x)u = f(x) f (u),

U = oo,

xeQ)
xeoQ

has at least one positive solution.
Proof. we first consider the following problem

—Au=a(x)u - (ﬂ(x) + %jf(u), VxeQ,

(12)

(13)

uln=k
Since [ satisfies (6), we can easily obtain
lim, f (t):oo . Hence there exists a large

t
number M, >k , such that for all M>M,,
a(x)M—(,H(x)Jr%jg(x,M)SO. Thus M 1is a

supersolution of (13). Obviously, v=0 is a
subsolution of (13). A standard sub- and
supersolution argument(see [10,21]) and Lemma 5
imply that problem (13) has a unique positive
solution u, and u, is increasing with k , By
standard regularity theory in [10,21], u, € C"*(K)
for any compact K< Q, and some «a€(0,1). If

we can also obtain an upper bound for the sequence
{u,}, then {u,} converges to a positive solution

u of (12)in C'(Q).
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Next we will look for the upper bound.

For any compact subset K of Q\D,, there

exists an open set Q, such that

KcQ,ccQ\D, . Since B(x)>0, VxeQ,,
Theorem 1.1 in [17] implies the following boundary
blow-up problem
—Av=maxa(x)v —inf B(x) f(v),Vx €€,V |y =%
xeQ xeQ,
has a positive solution v .
integer £,
~ Ay = a(x)u, ~ PO S (u,)
<max a(x)u, —inf B(x) f(u,), VxeQ,,
xeQ,

For every positive

xeQ,

and u |y <o . Thus by Lemma 5 we obtain

u, <v. So u, <M" for some M >0 and all

xeKcQ\D,.

If we can also find an upper bound for u, ona
small neighborhood of D, then we can use the
monotone method in [10,19] to see u=lim, , u,

is a positive solution of (12).
Let N, denote the 7 —neighborhood of D,

such that ]\7,] c Q. By the properties of the first
eigenvalue(see [11,23]), A4(N,,)>0) if n is

sufficiently small. By what we have already proved,
we can find a positive constant M such that

u, <M for all k>1 and xedN, . Let ¢ be a
2
positive eigenfunction corresponding to 4, (N, , ),

we can find a large positive constant L such that

L¢>M for x€0N, . Thus
2
~ ALY~ a(x)LP) = 4 (N,.a)L$)>0, VxeN,
and 2

—Auy —a(x)u, =—p(x)f(u,)<0, VxeN, .
2
By Corollary 2.4 in [17] and Lé=u, for all

kzl,VxeﬁNq , we obtain u, <Lg for all
2

. So we find an upper bound for the

sequence {u,} on any compact subset K Q.
Thus (12) has at least one positive solution.
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Next we will show the existence result Theorem
1.

Let B be a ball on R" with centered at origin
with radius » , Q, =B, (N7, I, =0B, T and
Ir,=0TNQ,.

Now we first consider the following problem:
{—Au =a(xXu—L(x)f(u),xeQ (14)

u=0,xeoQ

Since condition (4) holds, by the properties of the
first eigenvalue (see [11,21]), there exists a large
ro>0 such  that for all r=p

2

QOCQ,b A€Q,,a)<0 . Let ¢ be a positive
eigenfunction corresponding to A4,(Q,a) . Since
lim, ,, f(#)/t=0, then for all small positive
constant & , it easily checked that &g is a
subsolution of problem (14) with Q=Q . By
Lemma 6, the problem (12) with Q=Q has a
unique positive solution u,. Obviously it is the

supersolution of (14). A standard sub-and super
solution argument (see [10,19]) and Lemma 5 imply
that problem (14) has a unique positive solution
v . Next we consider the following problem:

—Au=a(x)u—-b(x)f(u), xeQ,

u=0, xel (15)
a—”zO, xel,
on

It is very clear v and wu is the sub- and
supersolution of above problem. By standard
sub-supersolution method for elliptic equation, the
problem (15) has at least one positive solution u,
in the order interval [v,u]. It follows from Lemma
5 that it has a unique positive solution.

By standard sub-supersolution method for elliptic
equation, the problem (15) has at least one positive
solution u, in the order interval [v,u]. It follows
from Lemma 5 that it has a unique positive solution.
Let us choose an increasing sequence of positive
real numbers r, >ryand r, >0 as n—>o0. By
the discussion above, problem (15) with
Q, =Q, has a unique positive solution u, .It

follows from Lemma 5 that u, <u,,,. If we can
find an upper bound for u,(x)on any fixed Q,,

then by a standard regularity argument,
u(x)=Ilim, , u,(x) is well-defined in 7" and it
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would be a positive solution of problem (1). To find
such an upper bound, we consider the problem

—Av=a(x)v=LX)f(v),x€Qp, V], =0.
By Lemma 6, the above problem has a positive
solution v(x) . Then clearly by the comparison
principle Lemma 5, we obtain
u,(x)<v(x), VxeQ,.
for all large n such that 7, > R. This is the bound

we are looking for, and hence the existence of a
solution for (1) is proved.
From u, <u,,, we find

n+l
u(x)2u,(x)>0
for each n, and hence u 1is a positive solution of

(1). For an arbitrary positive solution u of (1), we
can see that u satisfies

—Au=a(x)u - B(x) f(w),

By Lemma 5 u2u,on Q, foreach n,and hence

ul >0.
5}

uzu=lim, u,
So u is the minimal positive solution of (1).
Next we will show the existence of a maximal
positive solution of (1). To this end, we choose an

increasing sequence of real number 7, such that
B, =Q, .We

consider the following mixed boundary problem

r, > as n—>o and denote

—Au=a(x)u—->b(x)f(u), xeB,

u=o0o, xel (16)
a—”zo, xel,
on

Obviously u=0is a subsolution of problem (16).
By Lemma 6, the following equation

-Av=a(x)v-Bx)f(v), xeB,
v=0, x€0B,
has a positive solution and we denote it as v, . It is

Ov . .
easy to show 6—”20 and v, is a supersolution
n

of (16). Thus problem (16) has at least one positive
solution u, .
Applying Lemma 5, we see
u,>u,,, >u,xeB, forall n.
So woe U, 18 well-defined
Furthermore, by standard regularity considerations,

u=lim on T
we know u satisfies (1) on T and u>u, so u
is a positive solution of (1).

Clearly any positive solutionu of (1) satisfies, for
each n,
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= Au = a(x)u —b(x) f (u),

It follows from Lemma 5 that we see
u,2u on B, forall n,

and hence

u=lim,  o,2>u

The proof is now finished.

3 The Whole Space Problem

In this section, we will prove the asymptotic
behavior of the positive solution of problem (7), and
then make use of this result to prove the uniqueness
result in Theorem 3.

Before we start to prove our uniqueness result
Theorem 3, we need the following existence
Lemma.

Lemma 7. If 4,(Q,,a)>0

(4)-(6) are satisfied, then problem (7) possesses a
minimal positive solution and a maximal positive

and conditions

solution u.
Proof. By condition (4), there exists a large » >0,

such that Q, c B., A,(B,,a)<0, and it follows

from the proof of Theorem 1 that the following
problem

—Au=a(x)u—-p(x)f(u), xeB,
{ u=0, xe0Bb,
has a unique positive solution u, .

Let us choose an increasing sequence of positive
real numbers r, with 7 >7r and 7, > as
n — o .By the properties of the first eigenvalue in
[11, 23], and by the proof of Theorem 1, the above
problem with7 =7, has a unique positive solution
u,. By the comparison principle Lemma 5, we
deduce

u, <u,, .
If we can find an upper bound foru, on any mixed

B, , then by a standard regularity argument,

u=1lim,  u,is well-defined in R" and it would
be a positive solution of (7).
To find such an upper bound, we consider the

problem
—Au=a(xu—-p(x)f(u), xeB,
u=ow, xeoB,

Lemma 6 implies that this problem has a positive
solution v . Then by Lemma 5,

u,(x)<v(x),Vx € B,
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for all large n such that 7, > R. This is the bound
we are looking for, and hence the existence of a
solution for (7) is proved.

From u, <u,,, we find u>u,(x)>0for each
n,and hence u 1is a positive solution of (7). For an
arbitrary positive solution # of (7), we can see that
u satisfies

—Au=a(x)u—px)fw), uly >0.
So u is the minimal positive solution of (7).

Next we will show the existence of a maximal
positive solution of (7). To this end, we choose an
increasing sequence of real number 7, such

that », >0 as n—oo0 and denote B, =B, .We

consider the boundary blow-up problem:
—Av=a(x)o-p(x)f(®) in B, uly =0 (17)
It follows from Lemma 6 that (17) has a positive
solution and we denote it as @, . Applying Lemma
5, we see
w, 20

n n+l1

>u,

xeB, forall n.
Thus

u=lim, o,

is well-defined on R" . Furthermore, by standard
regularity considerations, we know u satisfies @)
on R" and ;Zg, so u isa positive solution of
(.

Clearly any positive solution uof (7) satisfies,
for each n,

—Au=a(x)u—px)f(u), uly <o.
It follows from Lemma 5 that we see
w,2u on B, forall n.

And hence

u=1lim 10}

n—>0 n

>u.

This finishes the proof.
Next we will show the asymptotic behavior of
positive solutions for (7) as |x|—> o and use the

result to prove Theorem 3.
Proof of Theorem 2. Because f(u) satisfies (8),

then there exist two positive constant 0<#h, <h,
such that
ht? < f(t) < hyt! (18)
By Proposition 3.2 in [10], the following problem:
~Av=a(x)v—h,b(x)v?, xeR" (19)
possesses a minimal positive v .

By the constructions of the minimal positive
solutions v, on any fixed B, we have

—Av>a(x)v—>b(x)f(v)
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By Lemma 5, we can easily obtain v<u, where u
is the minimal positive solution of (7). By Lemma
3.1in[11], we have

@, @

X" p,

Thus there exists ¢, >0 such that

q-1
. u X
hmlew TT;/(T) > o] (20)

By the same method as above, the following
problem:

—Av=a(x)o - hb(x)o!,x e R"

has a maximal positive solution @

(21)
such that

u<w, where u is the maximal positive solution
of (7). By the Lemma 3.1 in [14], we have

-1
o’ (X)S o,
[ x| mpy

(22)

Thus

g
u) @
| x| h py

It follows from (20) and (23) that the Theorem 3
is complete.

What remains is to show the uniqueness result for
problem (7). The following technical lemma is the
core of our iteration argument to be used in the
uniqueness proof.

Lemma 8. Suppose that (4), (5), (6), (8) and (11)
hold, u,,u, are positive solutions of (7). Then

(23)

111’1’1 |x|—o0

there exists R>1 large so that, if x,eR"
satisfies, for some &, >k >1,

| Xo [> R, uy(xg) > kuuy(x0),
thus we can find y,eR" , and positive
constantsc, = ¢, (R, k) andr, = r, (R, k) independent
of x, and k, such that
| yo —Xo =19 ‘xo_y/z
uy (¥9) > (1+co)kuy (o)
Proof. By (4), (9) and (10), for all large R, >1
and |x|>R,, we have

(1/2)e; | x| <a(x)<2a, | x|”

24

(25)
A/2)B [x["<a(x)<2B, | x|
and, for i=1,2,
|70 < () < gy [ x| (26)

where

_ ) \1/(g-1) _ %y \1/(g-1)
wy =(1/2)(—) JHy =2(—)
1 hy 3, Y
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We now fixed R,>1 large enough so that

R <1/2 and (25), (26) hold for all
xsatisfying |x[> R, /2.Then we define
Q,={xeR" 1u,(x)>ku,(x)}NB,(x,),

where

r=rylx, |7, B, (xg)={xeR" | x—x,|<r},
and 7, €(0,1) is to be determined below.

Clearly xeQ,implies

| xg | =7 < x[<] x| +7,

which in turn implies, due to |x,[>R,,

x| >R
and our choice of R,

172) | xo [<Ix[<(3/2)[ x|
Using (25)-(27) the
u, —ku, >0 in we

(27)
that
consider

and
Q, ,
A(u, —k,u;) in €, in three cases.
Casel. y>r.

assumption
now

By Theorem 2, if y>7 , then ux)—c as
| x | oo. Then, it follows from (11) that
o L0
o ()’
So for some ¢ >0 small enough, there exists a
large R, > R, such that if |x[>R,,
we have

1

(ky —eu? < f(u)<(k; +e)u?
and
(k- &)k, =k, +€)>0

Then we deduce, for x e Q,
A, (x) =k, (x))
=—a(x)(uy (x) = kuy (%)) + D)(f (uy) = k. f (uy))
> —a(x)(u, (x) — ko, (x)) + b(x)((k, — &)uyg

—k,(k, +&)ul)
2 —a(x)(u, (x) — k. (x)) + b(x)((ky — &)uy|

—k,(ky + £)uf)
> a0, | x| (uy (x) — ko, ()

+b(x)k,uf (k) — )k —(k; +¢))

1 :
>-M|x, | (uz(x)_k*ul(x))+5k* | x| 4{ By

(y-1)*

x| (k- kS = (ky + &)

>-M | Xy |7 (1/12 (X) - k*ul ()C)) + mlk* | Xy |O'
where

M =2a, max((%y,(%y)’o. —r4 (y-1)q
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m, =%Am ((hy — )k?

—(ky +£) min«%)“ : (%)“)

Case2. y<r.

By Theorem 2, if y <7, then u(x) > as
|x| > . Then, it follows from (11) that
lim L0 _

o gy(x)4

So for some &£ >0 small enough, there exists a
large R, >R, suchthatif |x|>R,,
we have

(ky —&)u? < f(u) < (k, +&)u’
and
(ky =)k, —(k, +£)>0.

Then we deduce, for xeQ,
A, (x) —k,u, (x))
=—a(x)(uy (x) = ku, () +b(X)(f () =k, [ (u,))
2 —a(x)(uy (X) —kouy (X)) +b(x)((ky — )uy;

k. (ky +&)uf)
2 —a(x)(u, (x) = kouy () + b (ky — €)uy,

—k,(ky +&)uil)
> 20, | x| (u,y(x) — ko, (x)) + b(x)k,u

((ky, = &)kI™ = (ky + &)
2 M x| () = ko () + k.

(-0

AL x| T (k= o)KET = (ky + €))
>-M | Xy |}’ (uz(x) - k*ul(x)) + m2k* | Xy |O'
where

M =2a, max((%)”,(%y)’o. —rt (y—1)q

=2 AL (ke = oK
~(ky + epmin(2)7.(2)7)
2 2
Case3. y=r.

It follows from (11) that there exists a large
R, >R, such that f(u)=Cu?. Then we deduce,
for xeQ,

A(u, (x) = ku,(x))
= a0ty (x) — Ky, () + B ()~ K, £ (w,)
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> —a(x)(u, (x) = k,u, (x)) + b(x)(Cu,3 — Cufl)
> —a(x)(u, (x) = ko1, (x)) + b()C(k]uy| —kul)
> 2oty |x|” (uy (x) = kyuy () + b)C(kfuf — kouf)

> —M|x.|” (u, (x) = ko, (x))

LA B N T Ckd k)
> —M|x.|” (uy (x) = kot (%)) + myka x|
where

(y—1)q

M =2a, max((%)y,(%)y),0=r+
1 4 . s 3.,
m3=§ﬂ1A1qC(kf —k*)mln((z) ,(5) )

Overall, for
R>max{R,R,,Ry,R,},m=min{m ,m,,my} >0,
we have

Ay (x) = Kty (0)) 2 =M | (1 (x) = oy ()

+ mk,

X

o

X
With these preparations, we now define

o(x)=Q2N) " mk,
Clearly @(x)>0 in B,(x,)
and

5 2
x0| (r2 —|x—x0| )

52
Aw = —mk. x0|

It follows that, for x e,
A, —ku, 2 —M|x0|7 (uy —kuy)

(28)
> —M|x0|y(u2 —ku, + o)

If we denote by A4,(Q) the first eigenvalue of — A

over QQ under homogeneous Dirichlet boundary
conditions, we have

A(Q0) S (B, (x0)) =4, (B (x0))
Therefore, by the definition of r,, we obtain
4(Q¢) 2 ’”072|X0|7ﬂ*1 >
where A, =4,(B,(x,)) is independent of x,. we
now choose 7, €(0,1) small enough so that
ro A > M

And hence
Ay (€) = Mxo|”
Then by the maximum principle (see [5]), due to
(28),
uy (xg) — kouy (xg) + @(xy) Smax oo (U, —k,uy + @)

We observe that the maximum of u, —k,u, + @
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be
any

over 0€), has to achieved by some
Yo €0B,(xy) Yo €0Q, \ 0B, (x,)

satisfies, by the definition of Q,, u,(y)=k,u,(y)

since

and hence
Uy () = ko, (y) + o(y) = o(y) < o(x, )

2, (X)) = k,uy (xy) + @(xy)
Thus find
|y0 - x0| =r (hence @(y,)=0) such that
Uy (¥o) =kt (yo) =uy(yo) —kauy (yo) + ()
2, (X)) = ki (xy) + @(xy)

> w(xy) = (2N) " mk.

we can Vo €09,  satisfying

)
x0|r

-1 2 (r=0)(g-1)
=(2N) " mk.r; |x0|

-7)/(g-1
> dk, y0|(}/ 7)/(g-1)

where
d=@2N) "'mr;
emin{(1/2) "M (2/3)" =MDy 5 o
and we have used (27). Making use of (26), we
finally deduce
U (y()) - k*ul (y()) > dk*

chﬂglk*”1(yo)
Therefore we can take c, =du; and the proof is
complete.
Proof of Theorem 3. By Lemma 7 above and
Theorem 2, under conditions (4) and (8), problem (1)
possesses a minimal positive solution u, and a

(y=o)/(g-1)
J/o|

maximal positive solution u, and any positive
solution of (1) satisfies (9) and (10).

Let k, = limjyon 2.
U,
By (4) and (5) we know that k, =1 is finite. If

k, =1, then for
R, >Osuch that for all x satisfying |x >R,
1, () < (1+ &)uy (x)

Since (1+ &)u, is a supersolution of (7), we apply
Lemma 5 over Q=B,(0), R>R_,
u,(x)<(1+&u,(x) xeR"

Letting ¢ —»0we obtain u, =u,. This complete

any &>0 there exists

and deduce

the proof.
Next we will prove the result is true when &, >1.

Therefore there exists a constant ke (l,k;) and a
sequence {x,} such that
U, (x)/ uy (x)>k,

x,|— o, n=12---
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We are now ready to apply Lemma 8. Let

R,ryand ¢, =c,(R,k) be determined by Lemma 8.

We recall that R satisfies R™7/? <1/2. We
first find an integer j>1 such that

(I+cy) k> sup,

x‘>R

Since |x,| >, we can then find n, large
enough such that
7k >R

Taking x, =x, and k. =k in Lemma &, we can

find y, =y, such that
-y/2
|J/1_xo|:”0|xo| " uy (y) >+ co)u ()
Clearly

-7/2 ~1-(y/2)
1|2 o] = 7ol 7 2 )

We now take x,=y, and k.=(l+cy)k in
Lemma 8, and we can find y, such that

, ”2()’2)>(1+Co)2ku1(J’2)

|—7/2

|J’2 _)’1| = ’”0|y1
Let us note that
[yl 2 0|(1/2) 2 |x
We can repeat the above process until we obtain
y; which satisfies

uz(yj)>(1+c0)’ku ), ‘> >R
Therefore
u,(y, ,
n0) (1+¢o) k> sup
u (¥;) U
This contradiction completes our proof.
Remark. If a(x)= a(| ), then

the unique positive solution of (7) must be radially
symmetric solution, we can use the methods in
[7,8,22] to obtain the analytic solution.

4 Proof of the Main Theorem

In this section, we will span the positive solution of
problem (1) to whole space, and use the results in
section 3 to prove the uniqueness Theorem 4.

To start, we should prove the following lemma.
Lemma 9. Assume u, to be an arbitrary positive

solution of problem (1), letting

u,xeT
u= v
u,,xeR"\T

ISSN: 1109-2769

75

Wei Dong, Tieguo Ji

Xy), XE€ RY\T then
u is the positive solution of the following problem.
— Au=a(x)u - b(x)j(u),x eR".

Proof. Forany R >0, we denote

I'=B,noT, Q, =B, T, Q,=B, "Q,
By a simple computation, we can obtain that u, is
a positive solution of

—Au=a(xhu—b(x)f(u)xe Qz,% =0.
n
Next we will show that
oy |, xeQ,
B u, |1Q, xeQ,
is a positive solution of the following equation
- Au= a(x)u - b(x)f(u), xeB,
For VpeC(B;), since
(_ A“a(P)Lz(BR)
:J‘ g1 — Augpdx

where u, =u,(x;,x,, ",

(29)

pr DuDgdx — I (pdx

:J‘ o, DuDg + I 0, DuD(,/)dx
Ou,
:J- o, _Aul(ﬂdx"“" o E(de"'jgz
Ou,

+ _[ o, 5" @dx
[ o b ),
+ _[ Q, [a(x)u, — b(x)f (e, )i

= [ Tl —b(x) o i
= (a(xhe = b(x)/ (). @) s,

Hence u is a positive solution of problem (29).
It follows from the arbitrary of R that

xeT

xeRV\T

—Au, pdx

is a positive solution of
—Au=a(x)u —b(x)f(u), xeR".
The proof is complete.

Now we are ready to complete the proof of
Theorem 4.

Proof of Theorem 4. Let u,(x) and v,(x) be
two arbitrary positive solutions of (1). By Lemma 9,

letting
{ul ,xeT
u=

u,,xeR"\T
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and

v, xeT
V= v
V,,xeR"\T

We know that u(x)and v(x)corresponding to u,
and v,, respectively, is the positive solution of
—Au=a(x)u—-b(x)u? xeR".

By Theorem 3 above, the problem in whole space
has only one positive solution. It follows that

u(x)=v(x),xe R"

Thus u,=v,xeT

This completes our proof.

S Conclusion
In this paper, under less restricted conditions on
coefficients a(x) and b(x) , we use the same

method in [15, 16] to handle with more complicated
degenerate logistic cases. If the volume of the set

D={ x:xeR", b(x)=0} is small enough we
obtain existence and uniqueness theorem for a class
of semilinear equations with Neumann boundary

value in unbounded domain in R" . It improves the
previous result.
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