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Abstract: In this paper we develop descriptor techniques for modeling swirling hydrodynamic structures. 

Using the descriptor notation we obtain the generalized eigenvalue formulation for differential-algebraic 

equations describing the spatial stability of the fluid flow. We describe the general framework for spatial 

stability investigation of vortex structures in both viscous and inviscid cases. The dispersion relation is 

analytically investigated and the polynomial eigenvalue problem describing the viscous spatial stability is 

reduced to a generalized eigenvalue problem in operator formulation using the companion vector technique. A 

different approach is assessed for spatial inviscid study when the stability model is obtained by means of a 

class of shifted orthogonal basis and a spectral differentiation matrix is derived to approximate the discrete 

spatial derivatives. Both schemes applied to a swirling fluid profile provide good results. 

 

Key-Words: Hydrodynamic stability, Swirling flow, Descriptor operators, Spectral collocation. 

 

1   Introduction 
The role of the hydrodynamic stability theory in 

fluid mechanics reaches a special attention, 

especially when reaserchers deal with problem of 

minimum consumption of energy. This theory 

deserves special mention in many engineering fields, 

such as the aerodynamics of profiles in supersonic 

regime, the construction of automation elements by 

fluid jets and the technique of emulsions.   
     The main interest in recent decades is to use the 

theory of hydrodynamic stability in predicting 

transitions between laminar and turbulent 

configurations for a given flow field. R.E. Langer 

[1] proposed a theoretical model for transition based 

on supercritical branching of the solutions of the 

Navier-Stokes equations. This model was 

substantiated mathematically by E. Hopf [2] for 

systems of nonlinear equations close to Navier-

Stokes equations. C.C. Lin, a famous specialist in 

hydrodynamic stability theory, published his first 

paper on stability of fluid systems in which the 

mathematical formulation of the problems was 

essentially diferent from the conservative treatment 

[3]. The intermittent character of the transition of 

motions in pipes was identified for the first time by 

J.C. Rotta [4]. J.T. Stuart in [5] developed an 

energetic method frequently used in the 

investigation of transition, method that was 
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undertaken by D.D. Joseph whose intensive activity 

has lead to the theory of the global stability of fluid 

flows [6]. The Nobel laureate Chandrasekhar [7] 

presents in his study considerations of typical 

problems in hydrodynamic and hydromagnetic 

stability as a branch of experimental physics. 

Among the treated subjects are thermal instability of 

a layer of fluid heated from below, the Benard 

problem, stability of Couette flow, and the Kelvin-

Helmholtz instability.  

     Many publications in the field of hydrodynamics 

are focused on vortex motion as one of the basic 

states of a flowing continuum and effects that vortex 

can produce. Such problems may be of interest in 

the field of aerodynamics, where vortices trail on the 

tip of each wing of the airplane and stability 

analyses are needed. Mayer [8] and Khorrami [9] 

have mapped out the stability of Q-vortices, 

identifying both inviscid and viscous modes of 

instability. The mathematical description of the 

dynamics of swirling flows is hindered by the 

requirement to consider three-dimensional and 

nonlinear effects, singularity and various 

instabilities as in [10, 11, 12].  

     The numerical simulation is the main instrument 

to investigate this type of three dimensional 

unsteady flows. However, the simulation 

requirements are very expensive even with very 

powerful computer resources.  In these conditions, 

stability analyses of vortex motions that can help to 

better understand the dynamical behavior of the flow 

by offering a significant insight for the physical 

mechanics of the observed dynamics become very 

important in flow control problems. 
     The objective of this paper is to present new 

instruments that can provide relevant conclusions on 

the stability of swirling flows, assessing both an  

analytical methodology and numerical methods. The 

study involves new mathematical models and 

simulation algorithms that translate equations into 

computer code instructions immediately following 

problem formulations. Classical vortex problems 

were chosen to validate the code with the existing 

results in the literature. The paper is outlined as 

follows: Section 1 gives a brief motivation for the 

study of hydrodynamic stability using computer 

aided techniques. The dispersion equation governing 

the linear stability analysis for swirling flows against 

normal mode perturbations is derived in Section 2. 

The analytical investigation of the dispersion 

relationship is included in Section 3. In Section 4 a 

nodal collocation method is proposed for viscous 

stability investigations and in Section 5 a modal 

collocation method is developed, based on shifted 

orthogonal expansions, assessing different boundary 

conditions. In Section 6 the hydrodynamic models 

are applied upon the velocity profile of a Q-vortex. 

Section 7 concludes the paper. 

 

2   Problem Formulation 
Hydrodynamic stability theory is concerned with the 

response of a laminar flow to a disturbance of small 

or moderate amplitude. If the flow returns to its 

original laminar state one defines the flow as stable, 

whereas if the disturbance grows and causes the 

laminar flow to change into a different state, one 

defines the flow as unstable. Instabilities often result 

in turbulent fluid motion, but thev may also take the 

flow into a different laminar, usually more 

complicated state. Stability theory deals with the 

mathematical analysis of the evolution of 

disturbances superposed on a laminar base flow. In 

many cases one assumes the disturbances to be 

small so that further simplifications can be justified. 

In particular, a linear equation governing the 

evolution of disturbances is desirable. As the 

disturbance velocities grow above a few percent of 

the base flow, nonlinear effects become important 

and the linear equations no longer accurately predict 

the disturbance evolution. Although the linear 

equations have a limited region ol validity they are 

important in detecting physical growth mechanisms 

and identifying dominant disturbance types.       
     The equations governing the general evolution 
of fluid flow describing the conservation of mass 

and momentum are known as the Navier-Stokes 

equations [13]. They describe the conservation of 

mass and momentum. For an incompressible fluid, 

using Cylindrical coordinates ( ), ,z r θ , the equations 

read 

( )1 1
0,z

r

u u
ru

r r r z

∂ ∂∂
+ + =

∂ ∂ ∂
θ

θ
              (1) 

1
,

Re

z z z z
r z z

uu u u u p
u u u

t r r z z

∂ ∂ ∂ ∂ ∂
+ + + = − + ∆

∂ ∂ ∂ ∂ ∂
θ

θ
(2) 

   
2

r r r r
r z

u uu u u u
u u

t r r z r

∂ ∂ ∂ ∂
+ + + − =

∂ ∂ ∂ ∂
θ θ
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2 2
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r
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u

r r r
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θ

θ
          (3) 

   r
r z
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∂ ∂ ∂ ∂
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,
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where ( ), ,z ru u uθ  are the velocity components, 

2 2 2

2 2 2 2

1 1

r r r r z

∂ ∂ ∂ ∂
∆ = + + +

∂ ∂ ∂ ∂θ
 is the Laplacian, p  

is the pressure and the radial and axial coordinates 
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for these equation were considered normalized by a 

reference dimension.  

     The evolution equations for the disturbance can 

be derived by considering the basic state 

( ){ }, , ,z rU u u u p= θ  and a perturbed state 

( ){ }, , ,z rV v v v= θ π , with the disturbance being of 

order 0 1≺ ≺≺δ  

( ) ( ) ( ),0, ,U U r W r P r V=   +  δ              (5) 

     Consistent with the parallel mean flow 

assumption is that the functional form for the mean 

part of the velocity components only involves the 

cross-stream coordinate and also zero mean radial 

velocity. The linearized equations are obtained after 
substituting the expressions for the components of 

the velocity and pressure field into the Navier 

Stokes equations and only considering contributions 

of first order in delta. For high Reynolds numbers a 

restrictive hypothesis to neglect viscosity can be 

imposed in some problems. The linearized equations 
in descriptor formulation are 

( )0,
T

r zL S S v v v⋅ = = θ π             (6) 

and the elements of matrix L  being 

11 2

1 1

Re Re
t z

W
L U

r r
= ∂ + ∂ + ∂ − ∆ −θ  

12 2

2 2

Re

W
L

r r
= − + ∂θ , 13 0L = , 14 rL = ∂ , 

21 2

2
'

Re

W
L W

r r
= + − ∂θ , 

22 2

1 1

Re Re
t z

W
L U

r r
= ∂ + ∂ + ∂ − ∆ +θ , 23 0L = , 

24

1
L

r
= ∂θ , 31 'L U= , 

32 0L = , 33

1

Re
t z

W
L U

r
= ∂ + ∂ + ∂ − ∆θ ,  

34 zL = ∂ , 41

1
rL

r
= ∂ + , 

42

1
L

r
= ∂θ , 43 zL = ∂ , 44 0L = , 

where { }, , ,t z r
∂ θ  denote the partial derivative operators 

and primes denote derivative with respect to radial 

coordinate. In linear stability analysis the 

disturbance components of velocity are shaped into 

normal mode form, given here 

{ } ( ) ( ) ( ) ( ){ } ( ), , , , , , , ,z rv v v F r iG r H r P r E t z=θ π θ (7) 

where ( ) ( )
, ,

i kz m t
E t z e

+ −≡ θ ωθ , , , ,F G H P  represent 

the complex amplitudes of the perturbations, k  is 

the complex  axial wavenumber, m  is the tangential 

integer wavenumber and ω  represents the complex 

frequency. The hydrodynamic equation of 

dispersion is obtained, where we have explicitly 

decomposed into operators that multiply ω  and the 

different powers of k  

( ) ( )2

2 0
T

k k
M M kM k M F G H P+ + + ⋅ =ωω .(8)  

The matrices are given explicitly by 

1 0 0 0

0 0 0
,

0 0 0

0 0 0 0

i
M
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 − =
 −
 
 

ω
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0 0 0
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0 0
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k
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 =
 
 
 

 

2

/ Re 0 0 0

0 / Re 0 0
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k
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and the elements of matrix M  are 

( )2

11 2

1

Re Re Re
rr r

i mmW i i
M d d

r r r

+
= − − − + , 

12 2

2 2

Re

W im
M

r r
= − + , 13 0M = , 14 rM d= , 

21 2

2
'

Re

iW m
M iW

r r
= + + ,  

2

22 2

1 1

Re Re Re
rr r

imW m
M d d

r r r
= − − + , 23 0M = , 

24

im
M

r
= , 31 'M iW= , 32 0M = , 

2

33 2

1 1

Re Re Re
rr r

imW m
M d d

r r r
= − − + , 

34 0M = , 41 r

i
M id

r
= + , 42

im
M

r
= ,

43 44 0M M= = , 

where prime denotes differentiation with respect to 

the radius and rd  and rrd  mean the differentiation  

operators of first and second order, respectively. 

 

3 The Analytical Investigation of the 

Dispersion Relationship 
The nature of the instability of the basic flow has 

been widely investigated either analytically, 

numerically or experimentally.  

     Depending on whether the frequency is real and 

the wavenumber is complex or viceversa, the 

stability investigations are classified as temporal or 

spatial stability, respectively. In this way, a temporal 

stability analysis of normal modes imply that the ω -

roots r ii= + ⋅ω ω ω , Re( )r =ω ω , Im( )i =ω ω , of the 

dispersion relation ( ) 0D =ω  are obtained as 

functions of the real values of k . In this conditions, 
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a characterization of the stability of the basic flow is: 

the basic flow is unstable if, for some real k , the 

growth rate, ( )Imi =ω ω  is positive. If the growth 

rate is negative for all real k  then the basic flow is 

stable. 

     Conversely, solving the dispersion relation for the 

complex wavenumber, r ik k i k= + ⋅ , rk = Re( )k , 

Im( )ik k= , when ω  is given real leads to the spatial 

branches ( , )k ϒω  where by ϒ  we denoted the set of 

all other physical parameters involved. The growth 

of the wave solution in spatial case depends on the 

imaginary part of the axial wavenumber, as 

described in the next formula 

( ) ( )
( ) ( )

cos sin
,

sin cos

i
r r i rk z

r r i r

F k z F k z
e

i F k z F k z

−
 + Θ − +Θ +  
 
 + Θ + +Θ    

 

.m tΘ ≡ −θ ω                          (9) 

When temporal stability analysis is assessed for a 

given axial wavenumber, the dispersion relation is 

translated into an operator eigenvalue problem of 

form 

Sv Pv= ω                              (10) 

where 

0

2
0

0

' 0

r

r

r

m
k d

r

m W
W kU d
r r

S
W m m

dW W kU
r r r

mW
U k

r

 
 
 
 − − − 

= 
 + +
 
 
 
 

, 

F

G
v

H

P

 
 
 =
 
 
 

,        

0 0 0 0

0 1 0 0

0 0 1 0

1 0 0 0

P

 
 − =
 
 
 

. 

     In almost all studies one of this type of instability 

or both are investigated. However, in certain cases, 

these classifications can become arbitrary without a 

careful examination on the propagative character of 

the instability waves. This examination is related 

with the measure of the group velocity of the 

wavepackets [14], i.e. a further characterization of 

the impulse response of the system is necessary at 

the local level of description. Therefore the concepts 

of local convective and absolute instability provide a 

rigorous justification of selecting spatial or temporal 

stability [14]. The existence of spatially localized 

linear disturbances covering the entire flow with 

time and infinitely grow at all points of the flow 

defines an absolutely unstable state. Conversely, 

localized disturbances reaching a maximum value 

growing downstream and leaving a stabilizing flow 

behind them characterize the term of convective 

instability. An occurrence of a saddle point in the 

wavenumber values space may be related with the 

process of transition between the convective to 

absolute instability. In this case, temporal  stability 

calculations are required [14]. Chomaz [15] 

emphasized that a transition between the convective 

and absolute instability of the trivial steady state take 

place at the point where a front between the rest state 

and the nontrivial steady state is stationary in a frame 

moving with the groups velocity.   

     Linear criteria of absolute instability can be 

established for the case of branching dispersion 

relationship within the case of supercritical 

bifurcations, yet for the case of subcritical 

bifurcations these criteria cease to hold [16]. The 

disturbances can only be amplified in a convectively 

unstable system, whereas absolutely unstable 

systems can generate them. 

 

4 Nodal Collocation Approach For 

Spatial Stability Including Viscosity 
When viscosity is included as parameter of spatial 

stability analysis, a given  ω   leads to a polynomial 

eigenvalue problem of form  

( )( )2

2

0 0,
T

k k
M kM k M F G H P+ + =  

0 .M M M≡ +ωω                          (11) 

     In general, the direct solution of the polynomial 

eigenvalue problems can be heavy. For this case, we 

can transform the polynomial eigenvalue problem 

into a generalized eigenvalue problem, using the 

companion vector method, assessed also in [11]. We 

augment the system with the variable  

� ( ) ɵ ( ),
T T

kF kG kH S F G H PΨ ≡ ≡ (12) 

     The eigenvalue problem describing the spatial 

hydrodynamic stability for a viscous fluid system 

reads now 

ɵ

�

ɵ

�

20 0
0

0 0

k k
S SM M M

k
I I

      
   + =      −   Ψ Ψ   

   (13) 

where the first row is the polynomial eigenvalue 

problem (11) and the second row enforces the 

definition of �Ψ .  

     The collocation method is associated with a grid 

of clustered nodes jx  and weights jw  ( )0,...,j N= . 

The collocation nodes must cluster near the 

boundaries to diminish the negative effects of the 

Runge phenomenon [17]. Another aspect is that the 

convergence of the interpolation function on the 

clustered grid towards unknown solution is 
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extremely fast. We recall that the nodes 0x  and Nx  

coincide with the endpoints of the interval [ ],a b , 

and that the quadrature formula is exact for all 

polynomials of degree 2 1N≤ − , i. e., 

( ) ( ) ( )
0

bN

j j

j a

v x w v x w x dx
=

=∑ ∫ ,              (14) 

for all v  from the space of test functions. 

     Let { }
0..N=

Φ
ℓ ℓ

 a finite basis of polynomials 

relative to the given set of nodes, not necessary 

being orthogonal. If we choose a basis of non-

orthogonal polynomials we refer to it as a nodal 

basis, Lagrange polynomials for example.   In nodal 

approach, each function of the nodal basis is 

responsible for reproducing the value of the 

polynomial at one particular node in the interval. 

When doing simulations and solving PDEs, a major 

problem is one of representing a deriving functions 

on a computer, which deals only with finite integers. 

In order to compute the radial and pressure 

derivatives that appear in our mathematical model, 

the derivatives are approximated by differentiating a 

global interpolative function built trough the 

collocation points. We choose { }
0..i i N=

Φ  given by 

Lagrange’s formula 

( ) ( )
( )( )

N

i

N i i

r
r

r r r
Φ =

′ −

ω

ω
, where ( ) ( )

1

N

mN r
m

r r
=

= −∏ω . 

     We used for this approach the interpolative 

spectral differentiation matrix ( ) ( )1 1N N+ × +∆ , having 

the entries  
2

00

2 1

6

N +
∆ = ,

22 1

6
NN

N +
∆ = − ,  

22(1 )

j

jj

j

−
∆ =

−

ξ

ξ
, 1, , 1j N= −… , 

( )1
( )

i j

i
ij

j i j

+
−

∆ =
−

λ
λ ξ ξ

, i j≠ , , 1, , 1i j N= −… ,  

2 0,

1
i

if i N

otherwise

=
= 


λ . 

derived in [17]. 

We made use of the conformal transformation 

( )
( ) max1 exp 1

21
1 exp

2

b a r
r

b a

 + −  −  =   −   + −    

ξ
ξ

ξ
          (15) 

that maps the standard interval [ ]1,1∈ −ξ  onto the 

physical range of our problem [ ]max0,r r∈ .   

Because large matrices are involved, we numerically 

solved the eigenvalue problem using the Arnoldi 

type algorithm [17], which provides entire 

eigenvalue and eigenvector spectrum  (Figure 1). 

a  

b  

 

Fig.1 The „Y” shape of the eigenvalue spectra, in 

temporal stability analysis of a Q-vortex:  

a) Stable fluid system in non-axisymmetrical case 

2m = , Re 8000= , 3.5k = .   

b) Unstable fluid system in axisymmetrical case 

0m = , Re 8000= , 3.5k = . 

 

5  Modal Collocation With Orthogonal 

Basis For Inviscid Stability Analysis 
The collocation method became a widely used 

technique in many applications of systems control. 

The efficiency of the collocation based algorithms 

was exposed in [20], for solving the Hartree-Fock 

equations of the self-consistent field in large atomic 

and molecular systems. 

     The collocation method that we present in this 

section has the peculiar feature that can approximate 

the perturbation field for all types of boundary 

conditions, especially when the boundary limits are 

described by sophisticated expressions. We consider 

the mathematical model of an inviscid columnar 
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vortex derived in [18] whose velocity profile is 

written as ( ) ( ) ( ),0,V r U r W r=    .  

' 0
G mH

G kF
r r

+ + + = ,                                (16) 

2
' 0

mW WH
kU G P

r r

 − − − + = 
 
ω ,              (17)     

 ' 0
mW W mP

kU H W G
r r r

   − + + + + + =   
   

ω ,(18) 

' 0
mW

kU F U G kP
r

 − + + + + = 
 

ω .             (19) 

     We assume for this model that the radial 

amplitude of the velocity perturbation at the wall is 

negligible, i.e. ( ) 0wallG r = , for a truncated radius 

distance wallr  selected large enough such that the 

numerical results do not depend on that truncation of 

infinity. We have at  0r =  

( )| | 1 , 0m F G H P> = = = = ,                       (20) 

( )0 , 0, , ,m G H F P finite= = =                     (21) 

( )1 , 0, 0m H G F P= ± ± = = = .                    (22) 

and at wallr r=  

( )| | 1 , 0m F G H P> = = = = ,                       (23) 

     ( ) 2
0 , ' 0, 0,wall

wall

W H
m P G

r
= − = =  

0, 0wall wallHkU H FkU F kP− = − + =ω ω , (24)  

     ( ) 2
1 , ' 0, 0,wall

wall

W H
m P G

r
= ± − = =  

         ( ) 0 0,wall wall wallr H kU HW P− ± ± = =ω  

( ) 0wall wall wall wallr F kU FW kr P− ± + =ω ,    (25) 

where wallU  and wallW  are the axial and the 

tangential velocity respectively, calculated at 

domain limit wallr .  
     A different approach is obtained by taking as 

basis functions simple linear combinations of 

orthogonal polynomials. These are called bases of 

modal type, i. e., such that each basis function 

provides one particular pattern of oscillation of 

lower and higher frequency. We approximate the 

perturbation amplitudes as a truncated series of 

shifted Chebyshev polynomials  

( ) ( ) *

1

, , , , , ,
N

k k k k k

k

F G H P f g h p T
=

= ⋅∑ ,          (26) 

where *

kT  are shifted Chebyshev polynomials on the 

physical domain [ ]0, wallr .  

     The Chebyshev polynomial ( )nT ξ  of the first 

kind is a polynomial in ξ  of degree n , defined by 

the relation 
( ) cosnT n=ξ θ ,  cos=ξ θ .            (27) 

If the range of the variable ξ  is the interval [ ]1,1− , 

the the range of the corresponding variable θ  can be 

taken as [ ]0,π . These ranges are traversed in 

opposite directions since 1x = −  corresponds to 

=θ π  and 1x =  corresponds to 0=θ . Since the 

range [ ]0, wallr  is more convenient to use than the 

range [ ]1,1−  to discretize our hydrodynamic 

stability problem, we map the independent variable 

r  in [ ]0, wallr  to the variable ξ  in [ ]1,1−  by the 

linear transformation 

2
1

2 2

wall wall

wall

r rr
r

r
= − ⇔ = +ξ ξ .       (28) 

The shifted Chebyshev polynomial of the first kind 

( )*

nT r  of degree 1n −  in r  on [ ]max0, r  are given by
 

( ) ( )* 2
1n n n

wall

r
T r T T

r

 
= = − 

 
ξ .            (29)                         

     The shifted Chebyshev polynomials defined as 

described above meet the relations 

( ) ( ) 1* 0 1
n

nT
+

= − ,    ( )* 1n wallT r = ,        (30) 

relations that we will frequently use in our future 

calculations and let 

( )
0

,
wallr

w
f g w f g dr= ∫                   (31) 

be the inner product in the Hilbert space ( )2 0,w wallL r , 

( )

1
2

2
1 1

wall

r
w r

r

−
   = − −    

. Then we have the next 

properties 

( )* *, 0n m w
T T =   , n m≠ ,    , 1..n m N= ,    (32) 

( )* *,
2

n n wallw
T T r=

π
  , 1n = ,                       (33) 

( )* *,
4

n n wallw
T T r=

π
  , 2..n N= .                 (34) 

The clustered Chebyshev Gauss grid ( )
1j j N≤ ≤

Ξ = ξ  

in [ ]1,1−  is defined by relation 

1

( 1)
cos ,

1
j

j N

N
+

+ −
=

−
π

ξ  

[ ]1 1,1 , 0 .. 1j j N+ ∈ − = −ξ .               (35)   

     This formula has the advantage that in floating-

point arithmetic it yields nodes that are perfectly 
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symmetric about the origin, being clustered near the 

boundaries and diminishing the negative effects of 

the Runge phenomena [17, 19]. This collocation 

nodes are the roots of Chebyshev polynomials and 

distribute the error evenly and exhibit rapid 

convergence rates with increasing numbers of terms.      
     In order to approximate the derivatives of the 

unknown functions, we express the derivative of the 

shifted Chebyshev polynomial *

nT  as a difference 

between the previous and the following term 

( ) ( )
( )

( ) ( )* * *

1 1

1
, 2

4

wall
n n n

wall

nr
T r T r T r n

r r r
− +

−′  = − ≥ −
. 

(36) 
Let us consider 

( ) ( ) ( )* *

1 1

2

N

k k

k

F r f T r f T r
=

= +∑ .              (37) 

By differentiating (37) results 

( ) ( ) ( )* *

1 1

2

N

k k

k

F r f T r f T r
=

′ ′′ = +∑ .            (38) 

But ( )*

1 0T r′ =  and involving relation (36) leads to 

( ) ( )
( )

( ) ( )* *

1 1

2

1

4

N
wall

k k k

k wall

kr
F r f T r T r

r r r
− +

=

−
′  = − −∑ . 

(39) 
     The interpolative differentiation matrix D that 

approximates the discrete derivatives has the 

elements   
( ), , 2.. 1, 2.. 1m n n mD E r m N n N= = − = − ,     (40) 

where for 2.. 1k N= −  

( )
( )

( ) ( )* *

1 1

1
( )k k k

wall

k
E r T r T r

r r r
− +

−
 = − −

.     (41) 

     The eigenvalue problem governing the inviscid 

stability analysis appears now as a system of 4N  

equations, with the boundary conditions included as 

equations of the system. A special situation occur 

for the cases 1m = ± , when only seven relations 

define the boundary conditions. To regain the eightth 
equation we choose the third relation from the 

mathematical model and we compute it in the 

extreme node wallr r= . 
     We have chosen this relation for several reasons.  

We observed that the equations that not contain the 

axial perturbation F  are the second and the third. 

The second equation contains the derivative of the 

pressure perturbation that cannot be computed in 

extreme nodes because the interpolative derivative 

matrix may produce singularities as a result of 

expression of ( )kE r . The remain possibility is 

actually the third equation symmetrized.  
     The hydrodynamic model reads, for 2.. 1j N= −  

( ) ( )* *

1 1

1
'

N N

k k j k k j

k kj j

m
G g T r h T r

r r= =

+ + +∑ ∑     

( )*

1

0,
N

k k j

k

k f T r
=

+ =∑                                        (42) 

( )*

1

N

k k j

kj

mW
kU g T r

r =

 
− − − 

  
∑ω  

( )*

1

2
' 0,

N

k k j

kj

W
h T r P

r =

− + =∑                             (43) 

  ( )*

1

N

k k j

kj

mW
kU h T r

r =

 
− + + + 
  

∑ω    

( ) ( )* *

1 1

' 0,
N N

k k j k k j

k kj j

W m
W g T r p T r

r r= =

 
+ + + = 
  

∑ ∑ (44) 

  ( )*

1

N

k k j

kj

mW
kU f T r

r =

 
− + + + 
  

∑ω  

( ) ( )* *

1 1

' 0,
N N

k k j k k j

k k

U g T r k p T r
= =

+ + =∑ ∑            (45) 

  ( )
1 1

N N

wall wall k wall wall k

k k

kr U h mW r h
= =

+ − +∑ ∑ω  

( )
1 1

0
N N

wall wall wall k k

k k

W r W g m p
= =

′+ + + =∑ ∑ ,      (46) 

( ) ( )1 1

1 1

1 1 0
N N

k k

k kg h
+ +

− ± − =∑ ∑ ,                          (47)                                              

( ) ( )1 1

1 1

1 1 0
N N

k k

k kf p
+ +

− = − =∑ ∑ ,                         (48)                                  

  
2

2

1 3 1

2 2 2( 1)
2

k odd k even

N N
wall

k k

r kwall wall wall

W k
h p p

r r r = −

 −  − − −
 
 

∑ ∑ ∑  

2

4 1

2( 1)
2 1 0

k even k odd

N

k

r kwall

k
p

r = −

 −  − + =
 
 

∑ ∑ ,                    (49) 

1

0
N

kg =∑ ,                                                             (50)                           

( )
1 1

N N

wall wall k wall wall kkU r h W r h+ ± − ±∑ ∑ω  

1

0
N

kp± =∑ ,                                                  (51) 

1 1

N N

wall wall k wall kk U r f r p
 

+ + 
 

∑ ∑  

( )
1

0
N

wall wall kW r f+ ± − =∑ω .                       (52) 

Let us denote by [ ] ( )ir diag r= , 
1

(1/ )idiag r
r

  =  
, 
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[ ] 2 1,
1

( )ij i N
j N

≤ ≤ −
≤ ≤

=η η , *( )ij j iT r=η , [ ] ( ( ))iU diag U r=  

[ ] ( ( ))iW diag W r= , 2 1i N≤ ≤ − . Written in matrix 

formulation, the hydrodynamic model reads 

( )0 0k mkM M mM M s+ + + =ωω , 

( )1 1 1 1,..., , ,..., , ,..., , ,...,
T

N N N Ns f f g g h h p p= ,    (53) 

where kM , Mω , mM  and 0M  are square matrices 

of dimension 4N  and the elements being matrix 

blocks  

�
k

k

M
M

boundary conditions blocks

 
=   
 

, 

 

�M
M

boundary conditions blocks

 
=   
 

ω
ω , 

 

�
m

m

M
M

boundary conditions blocks

 
=   
 

, 

 

�
0

0

M
M

boundary conditions blocks

 
=   
 

, 

 

�

[ ] [ ]
[ ] [ ]

[ ] [ ]
[ ] [ ] [ ]

0 0 0

0 0 0

0 0 0

0 0

k

r

U
M

rU

U

 
 
 =  
  
 

η
η

η
η η

 

�
[ ]

[ ] [ ]
[ ]

0 0 0 0

0 0 0

0 0 0

0 0 0

M
r

 
 − =
 −
  − 

ω

η
η

η

, 

 

�

[ ]

[ ]

[ ] [ ] [ ]

[ ]

0 0 0

0 0 0

0 0

0 0 0

m

W

r
M

W

W

r

 
 

  
   =  

 
       

η

η

η η

η

 

�

[ ] [ ]

[ ]

[ ] [ ] [ ] [ ]
[ ] [ ]

0

0 0 0

0 0 2

0 ' 0 0

0 ' 0 0

r D

W
D

M r

W rW

U

 +
 

  −  =  
 

+ 
 
 

η

η

η η
η

 

where D  represents the interpolative derivative 

matrix.  

 

6 Model Validation On a Q-Vortex 

Profile 
Swirling flows models have been assessed in 

literature with applications to various optimization 

and fluid motion control problems. The 

hydrodynamics of rotating machines where confined 

vortices are developed due to the turbine rotation 

have been investigated in various surveys [21-24]. 

An experimental investigation of the suction side 

boundary layer of a large scale turbine cascade has 

been performed in [22] to study the effect of 

Reynolds number on the boundary layer transition 

process at large and moderate Reynolds numbers. 

The boundary element approach is assessed in [23 ] 

for the problem of the compressible fluid flow 

around obstacles. The system is analyzed with 

respect to different operating conditions, for 

understanding its behavior. In [24] oscillations and 

rotations of a liquid droplet are simulated 

numerically using the level set method, and the 

combined effects of oscillation amplitude and 

rotation rate on the drop-shape oscillation is studied. 

     In this section we assume the velocity profile of 

Q-Vortex, written in form  

( )
2rU r a e−= + ,  ( ) ( )2

1 rq
W r e

r

−= − ,        (54) 

where q  represents the swirl number and a  

provides a measure of free-stream axial velocity. We 

perform a spatial stability analysis using the 

collocation method described above. The spectra of 
the eigenvalue problem governing the spatial 

stability is depicted in Figure 2. 

 
Fig.2 Spectra of the hydrodynamic eigenvalue 

problem computed at 0.01=ω , 3m = − , 0a = , 

0.1q = , for 100N =  collocation nodes. 
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     It is noticeable that the eigenvalue with the 

largest imaginary part defines the most unstable 

mode. In Table 1 we have compared the results 

obtained by this method with those of Olendraru et 

al. [25], in the non axisymmetrical case 1m > . 

 

Table 1. Comparative results of the most amplified 

k-spatial wave at 0a = , 0.1q = , 0.01=ω  for the 

case of the counter-rotating mode 3m = − : 

eigenvalue with largest imaginary part ( ),cr r ik k k=  

and critical distance of the most amplified 

perturbation cr . 

 

Shooting method [25] 

( )0.506, 0.139crk = −             1.0005cr =  

Collocation method           

( )0.50819, 0.14192crk = −      0.971cr =  

Error    0.79%                                   2.94%  

 

a  

b  

Fig.3 Plot of the most unstable eigenfunctions for 

case 0.01=ω , 3m = − , 0a = , 0.1q = , 100N = , 

considering the critical eigenvalue with the largest 

imaginary part  0.50819 0.14192crk i= − , without 

stabilization (a) and with Lanczos stabilization (b). 

 

     Radial distribution of the velocity perturbation 

mode is depicted in Figure 3. Figure 3a shows the 

profiles without a stabilization and the Gibbs 

phenomenon occurs. In Figure 3b a smoothing 

procedure was applied by multiplication with a 

Lanczos σ  factor [19] 

( ) ( ) *

1

, , , , , ,
N

k k k k k k

k

F G H P f g h p T
=

= ⋅ ⋅∑σ , 

 
2

sin
2

k

N k

k N
=

π
σ

π
, 1 k N≤ ≤ .           (55) 

     Performing a closer analysis, we observed the 

behavior of the growth rate ik−  and the axial 

wavenumber rk  as functions of real frequency. We 

denote by the critical frequency crω , the temporal 

frequency corresponding to maximum ik−   for a 

given omega. Figure 4 presents the results obtained 

by collocation method for axisymmetrical  mode 

0m = . 

a  

b  

Fig.4 Results for axisymmetrical mode 0m = :  

a) Plot of spatial growth rate as a function of real 

frequency. 

b) Plot of the axial wavenumber as a function of real 
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frequency. 

 

7   Conclusions 
In this paper we developed hydrodynamic models 

using spectral differential operators to investigate 

the spatial stability of swirling fluid systems, using 

two different methods.  

     When viscosity is considered as a valid 

parameter of the fluid, the hydrodynamic model is 

implemented using a nodal Lagrangean basis and the 

eigenvalue problem describing the viscous spatial 

stability is solved using the companion vector 

method. The second model for inviscid study is 

assessed for the construction of a certain class of 

shifted orthogonal expansion functions. The choice 

of the grid and of the trial basis eliminates the 

singularities and the spectral differentiation matrix 

was derived to approximate the discrete derivatives. 

The models were applied to a Q-vortex structure, the 

scheme based on shifted Chebyshev polynomials 

providing good results. 
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