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Abstract:The likelihood functions from independent studies can be easily combined, and the combined likelihood
function serves as a meaningful indication of the support the observed data give to the various parameter values.
This fact has led many scientists to suggest using the likelihood function as a summary of post-data uncertainty
concerning the parameter. Indeed, likelihood functions have several desired properties . They are objective, in that
they depend only on the agreed-upon model and the data. They are also flexible, allowing us to combine informa-
tion about competing models across studies. However, a serious difficulty arises because likelihood functions may
not be expressible in a compact, easily-understood mathematical form suitable for communication or publication.
For example, likelihood functions in mixture models may only be computable for individual values of the param-
eters and otherwise cannot be given in ”closed form”. To overcome this difficulty, we propose to approximate log-
likelihood functions by using piecewise polynomials governed by a minimal number of parameters
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1 Introduction

In parametric statistical inference, the goal is to make
inference about the unknown value of a parameterθ.
Suppose the observed datay = (y1, y2, . . . , yn) can
be modeled as independent observed values of a ran-
dom variableY distributed according to the density
f (y; θ), θ ∈ Ω. The likelihood function ofθ based on
the datay is given by;

L (θ) =
n∏

i=1

f (yi; θ) . (1)

If θ1 andθ2 are two possible values ofθ and such that
L (θ1) > L (θ2), then the probability of observing
the datay is greater when the true parameter value
is θ1 than when the true parameter value isθ2.
The maximum likelihood estimator(MLE) is the
parameter value for which the data are most likely.
Intuitively, the MLE is a reasonable choice for an
estimator. Under certain regularity conditions MLE
have several important properties when the sample
size is large:

1. Consistency: As the sample size increases, the
MLE converges in probability to the true parameter

value, e.g.,̂θ → θ. (Wald,1949).

2. Invariance: If g(θ) is any function of the
unknown parameters of the distribution, then the
MLE of g(θ) is g

(
θ̂
)
.

3. Asymptotic normality and efficiency: As
the sample size increases, the sampling distribution
of the MLE converges to a normal distribution with
meanθ and variance equal to 1

nI(θ) where I (θ) is
Fisher’s information for one observation. A proof of
the asymptotic normality of the maximum likelihood
estimator is given in Cramer (1946). The result
that MLE’s have the minimum possible asymptotic
variance has been studied by Kalianpur and Rao
(1955) and Bahadur (1964). The choice between
using the observed and expected information for
estimating Fisher’s information of the maximum
likelihood estimate has been considered in Efron and
Hinkley (1978).

Because the MLE has many desirable properties
as mentioned above, it is a reasonable choice for
a point estimator of the parameterθ. Finding the
MLE is relatively straightforward in one parameter
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models; one can use calculus or simply plot the
likelihood function. In large samples, central limit
and saddle-point approximation theory suggest that
spline functions having just two or three knots may be
used to approximate the log- likelihood function for a
single parameter, with the approximating polynomial
being quadratic inside and linear outside of the knots.
Natural cubic splines, which are piecewise cubic
inside of the extreme knots and linear outside of
these knots, are frequently used in non-parametric
regression and data mining. These two facts suggest
the use of natural cubic splines to approximate the
log-likelihood functions.

A non-trivial problem is how to extend this theory
to approximate the log-likelihood for two or more
parameters. Of course, if one of the two parameters
is viewed as a “nuisance parameter” of little interest,
we can reduce to the one- parameter model after the
elimination of that nuisance parameter by a variety of
methods proposed in the literature. If we include both
parameters in the likelihood to be approximated, the
approximation becomes more complicated. In order
to draw inferences regarding the parameter of interest
in such a two-parameter model, we must deal with
the nuisance parameter. General likelihood-based
methods have been proposed for the elimination
of a nuisance parameter to focus on the structural
parameter only. Some of these methods are: profile
likelihood, marginal likelihood, conditional likeli-
hood and integrated likelihood. Before discussing the
relationships among these methods, we will introduce
each method briefly.

1.1 Profile Likelihood

The simplest likelihood approach to eliminating
nuisance parameters is to replace them with their
maximum likelihood estimates, leading to profile
likelihood. Suppose that the model can be identified
by parameters(θ, λ), where θ is a parameter of
interest andλ is a nuisance parameter. To eliminate
λ from the likelihood, it is replaced by the maximum
likelihood estimator ofλ, keeping θ fixed. The
resulting likelihood function;Lp (θ) = supλ L (θ, λ)
is called the profile likelihood function andlog Lp (θ)
is called the profile log-likelihood function.

Lp (θ) can be used as if it were an ordinary like-
lihood to produce asymptotically correct inference
aboutθ. It is the simplest method, but it does not take
into account the uncertainty due to lack of knowledge
of the nuisance parameter and can be misleading
in both precision and location (Severini,1998b). In

large samples, replacingλ by its maximum likelihood
estimate has relatively minor effect on inferences
regardingθ. However in small samples, replacing
λ by the maximum likelihood estimator may have a
large effect on inference, particularly when there are
several nuisance parameters in the model.

1.2 Integrated likelihood

The integrated likelihood is obtained for each fixed
value of the parameter of interest by integrating out
the nuisance parameter with respect to a weighting
function. Letπ (λ) denote a weighting function de-
fined onΛ, the space of possible valuesλ. Then the
integrated likelihood function forθ is given by;

L (θ; π) =

∫

Λ
L (θ; λ) π (λ) dλ (2)

Inference aboutθ will be based onL (θ; π),
or equivalently on the logarithm of the integrated
log-likelihood function logL (θ; π). In this study,
we will consider the use of a uniform weighting
function π (λ)=1; the resulting integrated likelihood
function will be denoted L(θ; U) to emphasize that
the uniform weight function applies toλ. A compre-
hensive discussion of the use of integrated likelihood
methods in the Bayesian approach is given by Berger,
Liseo and Wolpert (1998). Integrated likelihood
functions have the advantage that, unlike conditional
or marginal likelihoods, they are generally available
and, in principle, are relatively easy to determine,
although sophisticated computational methods may
be needed to evaluate the integrals that arise.

In the Bayesian literature, the noninformative
prior plays an important role. When we apply the
Bayesian approach, we may not have any prior
information about the parameter. In this situation,
the statistician tries to find a prior that provides as
little information about the parameter of interest as
possible. One of the most important noninformative
priors is the Jeffreys’ prior which is equal to the
square root of the Fisher informationI (θ)( Jeffreys
1939).

Sweeting (1995) has shown that one-parameter
methods which operate solely on the likelihood L(θ)
can also be used with an integrated likelihood. Exam-
ples of such methods are:(i) using the modêθ of the
likelihood as the estimate ofθ, and(ii) using,
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C =
{
θ : −2log

(
L

(
θ̂
)

/L (θ)
)

< X2
p (1 − α)

}

(3)

as an approximate 100(1 − α) confidence set forθ,
where X2

p (1 − α) is the (1 − α)th quantile of the
chi-squared distribution withp degrees of freedom
(for a scalarθ, p=1). By using these facts, we will
be able to compare the accuracy of inference about
θ based on the integrated likelihood with that based
on other modified likelihoods (profile likelihood and
conditional likelihood) by comparing the coverage
probabilities of confidence intervals of the form (2.3)
based on such modified likelihoods.

1.3 Marginal Likelihood

Another way to eliminate a nuisance parameter is to
construct a likelihood function based on a statisticT
having the property that the distribution ofT depends
only on θ. Then we may form a genuine likelihood
function forθ based on the density function ofT; such
a likelihood function is called a marginal likelihood
function, since it is based on the marginal distribu-
tion of T. Marginal likelihoods were considered in
detail by Kalbfleisch and Sprott (1970). The main
drawback of this approach is that we may not be us-
ing all of the available information aboutθ in the data.

Suppose that there exists a statisticT= T(y) such
that the density of the dataY may be written

P (y; θ, λ) = P (t; θ)P (y|t; θ, λ) . (4)

In (2.4), the marginal likelihood function based on t is
given by

L (θ; t) = P (t; θ) , (5)

Whereas the joint likelihood function for(θ, λ) is
given by P(y; θ, λ).

1.4 Conditional Likelihood

Another approach to eliminating nuisance parameters
can be applied whenever there exists a statisticS = S
(y) such that the conditional distribution of the datay
given S=s depends only onθ. In this case, we may
form a genuine likelihood function forθ based on the
conditional density ofy given S=s ; this is called a
conditional likelihood function. Suppose that the data
can be transformed to the vector (t, s) such that;

P (t, s : θ, λ) = P (t|s; θ)P (s; θ, λ) . (6)

The statisticS is a sufficient statistic forθ in
the model withλ held fixed. A likelihood function
for θ may be based on P(t|s;θ) which does not de-
pend onλ; the resulting conditional likelihood func-
tion for θ is a genuine likelihood function. The use
of conditional likelihood inference in models with
many nuisance parameters was discussed by Ander-
son (1970), Kalbfleisch and Sprott (1970) and van der
Vaart (1988).

2 Polynomial Splines

We may have models with more than one parameter
where various components of the parameter vector
have different levels of interest. Consider a model
parameterized by a two-dimensional vector of pa-
rameters(θ, λ), whereθ is the parameter of interest
(called a structural parameter) andλ is a nuisance
parameter. For models with only one parameter,θ,
inference may be based on the likelihood function
L(θ). However, when a nuisance parameter is present,
it is not possible to use the likelihood function to
directly compare different values ofθ. Indeed, the
greater the dimension of the nuisance parameter,
the greater its potential effect on the conclusions
regarding the parameter of interest (Berger, Liseo and
Wolpert, 1998).
Polynomials have played an important role in approx-
imation theory for many years. The main drawback
of polynomials for approximation purposes is that
the class is relatively inflexible. Polynomials work
well on sufficiently small intervals, but when we go
to larger intervals, severe oscillations often appear. In
order to achieve a class of approximating functions
with greater flexibility, we can divide up the interval
of interest into smaller pieces. In this chapter we will
justify use of the cubic spline approximation for one
parameter models.

Polynomial splines are piecewise polynomials of
some degreed. The breakpoints marking a transition
from one polynomial to the next are referred to as
“knots”. A piecewise polynomial functionf (y) is
obtained by dividing the domain ofY into contiguous
intervals andf can be separated by a polynomial in
each interval. In the literature on approximation the-
ory, the term ”linear spline” is applied to a continuous
piecewise linear function.

Similarly, the term ”cubic spline” is reserved
for piecewise cubic functions having two continuous
derivatives, allowing jumps in the third derivative at

WSEAS TRANSACTIONS on MATHEMATICS Ahmet Sezer

ISSN: 1109-2769 3 Issue 1, Volume 9, January 2010



the knots. It is common in statistics to require a sim-
ple approximation for a smooth relationship between
response and predictor variable. Such relationship
may be known but complicated or unknown. The
cubic spline functions are very popular in data mining
to serve for this job.

Given a maximum polynomial degreed and a
knot vector t, the collection of polynomial splines
having s continuous derivatives form a linear space.
For example the collection of linear splines with knot
sequence(t1, ..., tk) is spanned by the functions

1, y, (y − t1)+ , . . . , (y − tk)+ . (7)

where(.)+ = max(., 0 ). This set is called the truncated
power basis of the space. Classical cubic spline have
d=3 and s=2 so that the basis has elements

1, y, y2, (y − t1)
3
+ , . . . , (y − tk)

3
+ (8)

However the truncated power functions (3.1) and
(3.2) are known to have rather poor numerical prop-
erties. In linear regression problems, for example, the
condition number of the design matrix deteriorates
rapidly as the number of knots increases (Hansen and
Kooperberg,2002).

Extended linear models (ELMs) were defined
as a theoretical tool to understand the properties of
spline-based procedures in a large class of estimation
problems (Hansen,1994; Huang 2001). This class
contains all of the standard generalized linear models
as well as density and conditional density estimation,
hazard regression, censored regression and spectral
density estimation.

Friedman (1991) introduced multivariate adaptive
regression splines (MARS), which is a polynomial
spline methodology for estimating regression func-
tions. Multivariate adaptive regression splines
(MARS) is a method for flexible modeling of high di-
mensional data. The MARS method has become very
popular in data mining because it does not assume or
require any particular type of relationship between
predictor variables and response variable. However, it
has more power and flexibility to model relationships
that are nearly additive. The multivariate adaptive
regression splines (MARS) model can be written as

f (y; β) =
J∑

j=1

βjBj (y) (9)

for a given set of basis functionsB1 (y) ..........BJ (y).
The unknown parametersβ1 · · ·βJ

in MARS are estimated using least squares.

In functional ANOVA, spline basis elements
and their tensor products are used to construct the
main effects and interactions. Stone (1994) gave the
first theoretical treatment of convergence of spline
estimation with functional ANOVA decompositions.

Most of the early applications of splines were
focused mainly on curve estimation. These tools
also have proved effective for multivariate problems.
In the context of density estimation, the log-spline
procedure of Kooperberg and Stone (1991) shows
excellent spatial adaptation, capturing the full height
of spikes without overfitting smoother regions. Note
that approximation of densities by log-spline is
similar to approximation of log-likelihoods in the
sense that the argumenty of the density plays the
same role as the value of the chosen parameter values
θ in log- likelihood estimation.

Kooperberg and Stone (1991,1992) modeled
the log-density as a natural cubic spline. Like the
log-spline in density estimation, log-likelihood can
be modeled as a natural cubic spline. Indeed in large
samples, central limit and saddle-point approximation
theory suggest that cubic splines may be used to
approximate the log-likelihood functions.

Natural cubic splines are twice continuously
differentiable, piecewise polynomials defined relative
to a knot sequencet = (t1, .......tk). Within each
interval [t1, t2], ......[tK−1, tK ], natural cubic splines
are cubic polynomials, but on(L, t1 ] and [tK , U)
(beyond the first and last knots) they are forced to be
linear. We assume that log-likelihood can be written
in the form:

logL (y; β) =
J∑

j=1

βjBj (yj) (10)

whereJ is the number of basis functions. The basis
of natural cubic spline withK knots isB1 (y) = 1,
B2 (y) = y, Bk+2 (y) = dk (y) − dK−1 (y),
k = 1, ..., K − 2, where

dk (y) =
(y − tk)

3
+ − (y − tK)3+
tK − tk

. (11)

Another basis representation of the natural cubic
splines is the B-spline basis
(De Boor,1978). B-splines are constructed from
polynomial pieces joined at certain values ofy. Once
the knots are given, it is easy to compute the B-splines
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recursively, for any desired degree of the polynomial.

An important question in spline modeling is to
decide number of knots in the model. The choice of
knots has been a subject of much research; too many
knots lead to overfitting of the data, too few knots
lead to underfitting. Some authors have proposed
automatic schemes for optimizing the number and the
position of knots (Friedman and Silverman, 1989 ;
Kooperberg and Stone 1991). Kooperberg and Stone
(1991) found that it matters less where the knots
are placed than how many knots are chosen. Fortu-
nately, equally spaced fixed knots ensure that there
are enough data within each region to get sensible
fits. This choice also guards against outliers overly
influencing the fitted curve. In this study we will de-
termine the appropriate numbers of knots by the AIC
method and will assume that knots are equally spaced.

The knot selection methodology in log-spline
density estimation involves initial knot placement,
stepwise knot addition, stepwise knot deletion and
final model selection based on the Akaike informa-
tion criteria (AIC). Log-spline density estimation is
discussed by Stone (1990), who used a basis of the
form 1, B1 (y, ) , .......BJ (y, ) of natural cubic spline
functions, wherej = k − 1, t = (t1, ....., tk). Let t
be fixed andG denote the J-dimensional span of the
functionsB1, ......BJ , so that anyg ∈ G is of the
form;

g (y, β, t) = β1B1 (y, t) + ......... + βJBJ (y, t) .
(12)

Then, density functions on(L, U) of the form

f (y : β, t) = exp[g (y : β, t) − C (β, t)] (13)

= exp (β1B1 (y, t) + ......... + βjBj (y, t) − C (β, t))
(14)

(called a log-Spline Model) are used to approximate
a member of exponential family density functions of
interest. Given a random sampleY1, ......Yn of size
n from a distribution on(L, U) having an unknown
density function in an exponential family, the log-
likelihood function corresponding to the log-spline
model is given by

L (β, t) =
∑

i

∑

j

βiBj(Yi, t) − nC(β, t) (15)

Then, the maximum likelihood estimate ofβ is
calculated by arg maxL(β, t). The MLE’s of β and
fixed choice of knotst can be found efficiently in
reasonably-sized problems through simple Newton-
Raphson iteration.

2.1 MODEL SELECTION CRITERION IN
POLYNOMIAL SPLINE

To approximate the log-likelihood functions, first
we will sample n values of the parameter vector
uniformly from a chosen compact convex region
in the parameter space. Next, the log-likelihood
for each choice of parameter vector is calculated.
Then the log-likelihood is taken to be the response
and the elements ofθ to be the predictors, and in a
regression model we will fit by natural cubic splines.
However before going through this process, we
should determine the optimum number of knots that
we include in the models. Clearly the number of
knots will determine the complexity of the model.

In this chapter we describe and illustrate the
methods that we used to select the number of knots
in spline models. We assume that we have the
target variableY (log-likelihood), a vector of inputs
x(parameter vector) and the prediction modelf̂ (x).
The loss function for measuring errors betweenY and
f̂ (x) is denoted byL

(
Y, f̂ (x)

)
and is the squared

error loss function.

L
(
Y, f̂ (x)

)
=

(
Y − f̂ (x)

)2
(16)

The test error(Err) is the expected prediction error
over an independent test sample.

Err = E[L
(
Y, f̂ (x)

)
] (17)

We estimate the test error from the training error and
training error as the average loss over the training
sample:

err =
1

N

N∑

i=1

L
(
Y, f̂ (xi)

)
(18)

Training error decreases as model complexity
increases, finally dropping to zero if we increase
the model complexity enough. For this reason,
training error is not a good estimate of the test error.
Fortunately, there is an optimal model complexity
that gives the minimum test error. Indeed Akaike
and Bayesian information criterion trade between
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bias and variance to get optimum level of the test error.

2.2 Akaike Information Criterion

Akaike information criterion(AIC) is one of the most
popular methods to determine the optimum number
of variables in the ideal model. Assume that we have
the linear model,Y = f (x) + ǫ whereE (ǫ) = 0 and
V ar (ǫ) = σ2

ǫ . We can derive an expression for the
expected prediction error of a regression fitf̂ (x) at
an input pointX = x0 using squared error loss

Err (x0) = E[(Y − f̂ (x0))
2|X = x0] (19)

= σ2
ǫ + [Ef̂ (x0) − f (x0)]

2 + E[f̂ (x0) − Ef̂ (x0)]
2

(20)

= σ2
ǫ + Bias2

(
f̂ (x0)

)
+ V ar

(
f̂ (x0)

)
(21)

= IrreducibleError + Bias2 + variance. (22)

For a linear model fitf̂p (x) = β̂T X, where the
parameter vectorβ with p components is fit by least
squares,

Err (x0) = σ2
ǫ +[f̂ (x0)−Ef̂p (x0)]

2 +‖h (x0) ‖
2σ2

ǫ
(23)

h (x0) is the N-vector of linear weights that produce

the fit f̂p (x0) = XT
o

(
XT X

)
−1

XT Y , and hence

V ar[f̂p (x0)] = ‖h (x0) ‖
2σ2

ǫ . (24)

This variance changes withx0 and its average(over the
sample valuesxi) is p

N σ2
ǫ andthe in-sample error is

1

N

N∑

i=1

Err (xi) = σ2
ǫ +

1

N

N∑

i=1

[f (xi)−Ef̂ (xi)]
2+

p

N
σ2

ǫ .

(25)

Here the model complexity is directly related to the
number of parameters p. We define optimism as the
expected difference betweenErrin and the training
error ¯err. Let Y new indicates that we observeN
new response values at each of the training pointsxi,

i = 1, ..., N

Errin =
1

N

N∑

i=1

EyEY newL
(
Y new

i , f̂ (xi)
)

. (26)

optimism = Errin − Ey (err) . (27)

For a squared error loss function, we can show that,

optimism =
2

N

N∑

i=1

Cov (ŷi, yi) (28)

where Cov indicates covariance. Then we have the
important relation

Errin = Ey (err) +
2

N

N∑

i=1

Cov (ŷi, yi) (29)

for the additive error modely = f (x) + ǫ,

Errin = Ey (err) + 2
d

N
σ2

ǫ (30)

Simply, the AIC is an estimate ofErrin when a log-
likelihood loss function is used.

AIC = −2loglik + 2
d

N
σ2

ǫ (31)

To use AIC for model selection in spline modeling,
we choose the model giving smallest AIC over the set
of models. Letfα (x) be the set of models indexed by
a tuning parameterα and denote byerr (α) andd (α)
the number of parameters for each model, then we can
define

AIC (α) = err (α) + 2
d (α)

N
σ̂2

ǫ (32)

The function AIC(α) provides an estimate of
the test error and we choose the tuning parameter
α̂ that minimizes the test error. Typically, with the
spline models the tuning parameter is the number
of knots in the spline model. The number of knots
controls the complexity of the spline model and we
want to find the number of knots that minimizes the
test error. In this study, before approximating the
log-likelihoods by cubic splines, first we determine
the appropriate number of knots by AIC and then we
will equally space the knots to obtain the cubic spline
approximation of log-likelihoods.
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2.3 The Bayesian Information Criterion

The Bayesian information criterion (BIC) is applica-
ble where the fitting is carried out by maximization
of log-likelihood. The form of Bayesian information
criterion (BIC) is

BIC = −2loglik + (logN) d (33)

Under the Gaussian model, assuming the varianceσ2
ǫ

is known, we can write BIC as,

BIC =
N

σ2
ǫ

[err + (logN)
d

N
] (34)

BIC tends to penalize complex models more
heavily than Akaike information criterion, giving
preference to simpler models in selection. Our sim-
ulation results indicate that to approximate the log-
likelihood of the exponential distribution both AIC
and BIC agreed on 1, as the appropriate number of
knots for the natural cubic spline model.

3 ASSESSING THE QUALITY OF
THE APPROXIMATION

One of the most important tasks for us is to assess the
quality of the approximation. We have determined
three criteria to manage this job. In this chapter we
are using one parameter distribution (exponential
distribution) to show how to assess the approximation.

1) Coverage probability of the highest density
region of the approximated
log-likelihood function.

2) Mean squared error (MSE) of the estimator
obtained as the maximum over the parameter of the
approximation of the log-likelihood

3) Average interval length of the highest density
region.

Before presenting our results, first we will show
how to find the region from which we select parame-
ter values, and then we will introduce the algorithms
that we used to find the coverage probability from the
highest density region (HDR) and mean squared error
(MSE) of the approximated log-likelihood functions.

To find the region for the parameter of interest we
have the following algorithm. Recall that in chapter

2, we have the equation (2.3):

C =
{
θ : −2log

(
L

(
θ̂
)

/L (θ)
)

< X2
p (1 − α)

}

(35)

1) First find the maximum likelihood estimator
of the parameter.

2) Plug in the maximum likelihood value in (2.3)
for θ̂

3) Solve (2.3) to find the lower and upper limit
of the interval of parameter of interest.

4) Finally, parameter values are sampled uni-
formly from the interval between the lower and upper
limits found in step(3).

3.1 Highest Density Region of the Approxi-
mated Log-likelihood Function

Statistical methods summarize a probability distribu-
tion by a region of the sample space covering a speci-
fied probability. One method of selecting such a re-
gion is to contain points of relatively high density.
Hyndman (1996) proposed a simple method for com-
puting a highest density region. If we have a distribu-
tion f (y), we would like to find the regionR (y) that
satisfies

(i)

∫

R(y)
f (y) dy = 1 − α (36)

(ii)SizeR (y) ≤ SizeR
′

(y) (37)

for any regionR′ (y) which satisfies
∫
R′(y) f (y) ≥

1 − α such a region is called the highest density
region (HDR) of the distributionf (y).

It follows from the definition that the HDR has
the smallest possible volume in the sample space of
y. One of the most important advantages of using
HDR is that the mode is contained in every HDR.

For normal distributions, the high density region
(HDR) coincides with the usual probability region
symmetric about the mean and this is also true for
all unimodal and symmetric distributions. Another
characteristic of HDR is that it can contain disjoint
intervals when the underlying distribution is multi-
modal.
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There have been several suggestions for con-
structing the HDR from a general bounded and
continuous univariate densityf (y). Wright (1986)
proposed an algorithm which includes numerical
integration off (y). Hyndman (1996) developed a
density quantile approach that computes the HDR.
In this study we adapted Hyndman’s idea to find
the highest density region of the approximated log-
likelihood function. We use the following algorithm
to find the HDR of the approximated log-likelihoods;

1) Use (2.3) to sample the parameter values from
the interval of parameter of interest.

2) Determine the appropriate number of knots for
the log-likelihood function.

3) Approximate the log-likelihood function by
a spline model by treating the likelihood values
as response and parameter values as independent
variable(s).

4) Find the fitted values of the approximated
spline model for chosenθ values.

5) Treat those fitted values as the height and find
the total area under the approximated function by
summing those heights.

6) Divide each height by the total area to make
the total area 1 under the spline function.

7) Next step is finding the biggest height(mode)
and add the next biggest height and continue this until
we reach the given confidence level.

8) Finally, claim the corresponding minimum and
maximum parameter values as the lower and upper
bound of the highest density region of approximated
log-likelihood.

Assume that we want to approximate the log-
likelihood of the exponential distribution:

f (y; θ) =
1

θ
exp

−y

θ
(38)

It is easy to show that the maximum likelihood esti-
mator ofθ is 1/y. We plug in1/y for θ̂ in (2.3). Then
we solve (2.3) to find the lower and upper limits of
the interval. Finally, we sample the parameter values
uniformly from this region.

Table 1 shows 90%coverage probabilities from
the HDR of natural cubic spline and B-spline approx-
imations of the log-likelihood of the exponential dis-

tribution. The first value is the coverage probabil-
ity calculated from natural cubic spline approxima-
tion and number in bold is the coverage probability
from B-spline approximation. Both methods produce
very similar results and those results are reasonably
close to the asserted confidence level(α=90) of the in-
terval. Standard deviation of coverage probabilities is
around .003. The result of this simulation study indi-
cates that both the natural cubic spline and B-spline
approximation provide excellent coverage probabili-
ties except when the sample size is 10.

Table 1: 90% coverage probabilities from the
Highest Density Region(HDR) of approximated log-
likelihood of the exponential distribution withθ=2

SAMPLE SIZE θ = 2 θ = 5 θ = 10

n=10 0.8752 0.8851 0.8677
0.8773 0.8844 0.8703

n=20 0.8900 0.9053 0.9079
0.8904 0.9056 0.9075

n=30 0.9061 0.8992 0.9075
0.9061 0.8991 0.9074

n=50 0.8953 0.9027 0.9052
0.8952 0.9028 0.9052

3.2 The Mean Squared Error Of The Ap-
proximated Log-likelihood Function

In sufficiently large samples, the log-likelihood
function is known to be approximately a quadratic
form in a neighborhood of the MLE ofθ. In the
tails (outside of a region around the MLE ofθ), the
likelihood function is approximately linear in eitherθ
or in the natural parameter of an exponential family
saddlepoint approximation. Saddlepoint approxima-
tions have been used successfully to approximate
the tails of distributions; discussion of many such
applications are given by Reid (1988), Goutis and
Casella (1999), and Huzurbazar (1999).

By approximating the log-likelihood function
using regression methodology, we have the advantage
that an estimate of the mean squared error(MSE) of
the structural parameter can be reported along with
the approximation. The mean squared error (MSE) of
an estimatorW of a parameterθ is the function ofθ
defined byEθ (W − θ)2. MSE measures the average
squared difference between the estimatorW and the
parameterθ.

MSE incorporates two components, one measur-
ing the variability of the
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estimator(precision) and the other measuring its
bias(accuracy).

Eθ (W − θ)2 = V ARθW + (BIASθW )2 (39)

To find an estimator with good MSE properties, we
need to find estimators that control both variance and
bias. It is obvious that unbiased estimators do the
best job of controlling bias and the MSE is equal to
the variance when the estimator is unbiased. Since
we approximate the log-likelihood function from
the density distribution with known parameter, we
can calculate the exact mean square error of the
maximum likelihood estimator. We will compare
the exact MSE, with the empirical MSE from the
approximated log-likelihood. To find the estimated
MSE from the approximated log-likelihood function,
we have the following algorithm:

1) Use (2.3) to select parameter values from the
interval of parameter of interest.

2) Calculate the log-likelihood values for chosen
parameter values from step 1.

3) Treat the log-likelihood values as response and
parameter values as independent variable and find the
appropriate number of knots.

4) Approximate the log-likelihood by the cubic
spline function with appropriate number of knot(s).

5) Find the fitted values corresponding to the
chosen parameter values.

6) Find the biggest fitted value (mode) and claim
the correspondingθ value as the ”MLE” estimator of
the unknown true parameter.

7) Repeat 1-6 to find the empirical MSE by using;

MSE =
1

N

N∑

i=1

(
θ − θ̂i

)2
(40)

where θ̂i is the estimation of the mle from the ith
simulation,θ is known true parameter and N is the
simulation size.

In our simulation, we generated 10,000 samples
from an exponential distribution for each sample
size and parameter value. Selecting such a large
simulation size(10,000) will allow us to obtain

small binomial standard deviations of the param-
eter estimates. Table 2 shows the empirical MSE
of the maximum likelihood estimator (mle) from
the cubic spline approximations. The first value
is MSE of natural cubic spline approximation and
the number in bold is MSE of B-spline approximation.

Table 3 presents the exact MSE of the mle from
the exponential distribution. As it is expected, the
MSE of the approximations results are getting closer
to the expected MSE as the sample size increases.

Since we generate data from the exponential dis-
tribution with known parameter, we can calculate the
exact MSE of the maximum likelihood estimator. It is
easy to show that for the exponential distribution1/y
is themle ofθ. Furthermore it can be shown that

E[1/y] =
nθ

n − 1
(41)

E[(1/y)2] =
n2θ2

(n − 1)(n − 2)
(42)

From(3.14) we can write MSE of the mle;

MSE(1/y) = E[(1/y)2]−(E[1/y])2+(E[1/y]−θ)2

(43)

MSE(1/y) =
n2θ2

(n − 1)(n − 2)
−

n2θ2

(n − 1)2
+(

nθ

(n − 1)2
−θ)2

(44)

After some simplifications;

MSE(1/y) =
(n + 2)θ2

(n − 1)(n − 2)
(45)

Now we can calculate the exact MSE of the
maximum likelihood estimator of the exponential
distribution. Table 3 gives the exact MSE’s of the
maximum likelihood estimator of the exponential
distributions for different sample sizes and parameter
values.

The result of the simulation study reveal that both
the natural cubic spline approximation and cubic B-
spline approximation provide an accurate point esti-
mates of the known true parameter. Estimated MSE
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results are consistent with the coverage probability re-
sultsin the sense that for large sample sizes difference
between exact MSE and estimated MSE’s are getting
smaller and smaller.

Table 2: Empirical MSE’s of approximated log-
likelihoods of the exponential distribution

SAMPLE SIZE θ = 2 θ = 5 θ = 10

n=10 0.572 4.371 14.79
0.577 4.412 15.18

n=20 0.234 1.63 6.98
0.232 1.667 6.93

n=30 0.169 1.007 4.29
0.174 1.014 4.27

n=50 0.093 0.537 2.152
0.094 0.538 2.153

Table 3: Exact MSE’s of maximum likelihood estima-
tor of the exponential distribution

SAMPLE SIZE θ = 2 θ = 5 θ = 10

n=10 0.667 4.17 16.67
n=20 0.257 1.608 6.43
n=30 0.157 0.985 3.94
n=50 0.088 0.552 2.21

4 Discussion and Comparison

The simplest approach to eliminating nuisance
parameters is to replace them with their maximum
likelihood estimates, leading to the profile likelihood.
Many examples of misleading behavior of the pro-
file likelihood have been given, leading to various
corrections of the profile likelihood. Among the
proposed corrections are modified profile likelihood
(Barndroff-Nielsen, 1983) and the conditional profile
likelihood (Cox and Reid, 1987).

The profile likelihood and integrated likelihood
are not genuine likelihood functions. That is, an
integrated likelihood function or a profile likelihood
function do not, in general, correspond to a likelihood
function arising from an observed statistic. However,
integrated likelihood is closely related to the profile
likelihood function in the sense that the first order
approximations of procedures based on the uniform
integrated likelihood function are the same as the
first-order approximations of procedures based on the
profile likelihood function.

Severini (1998b) has shown that the profile
likelihood function can be viewed as an estimate of
the genuine likelihood function. Indeed the profile
likelihood can be used as if it were an ordinary like-
lihood to produce asymptotically(n → ∞) correct
inferences about a structural parameter. Severini
(1998b) has also shown that the modified profile
likelihood can be derived as an approximation to
either the conditional or marginal likelihood when
either of the latter likelihoods exist.

In large samples, there are unlikely to be large
differences between the results based on these mod-
ified likelihood methods. However for a given small
sample size, the results may differ. Our goal is to
compare the validity of each likelihood method in
terms of the coverage probabilities of confidence
regions derived from them, using a region of the form
(2.3), when the sample size is small. In this study,
we will apply profile, conditional and integrated
likelihood methods to the two-parameter gamma
distribution for the situation where the shape(θ) and
scale(λ)parameters are regarded as the structural and
nuisance parameters respectively. The probability
density of the two-parameter Gamma distribution is
given by;

f (y; θ, λ) =
1

Γ(θ)λθ
y(θ−1) exp(−y/λ) y > 0, (46)

for parametersθ, λ > 0. We proceeded as follows:
First, we eliminated the nuisance parameter(λ)
from the two-parameter gamma distribution by
the integrated, conditional and profile likelihood
methods. Then we generated 10,000 replications of
various sample sizes from the two-parameter gamma
distribution with known parameter valuesθ=2 and
λ=3. Generating the data from the density with
known parameters allows us to determine coverage
probabilities for confidence intervals of the form
(2.3) obtained from each of the modified likelihood
methods for different sample sizes. The results are
shown in Table 1. Binomial standard deviations
belong to each coverage probability are shown in bold
numbers.

As it is expected for small sample
sizes(n=7,n=15, n=20), profile likelihood is not
as accurate as integrated likelihood and conditional
likelihood. However the integrated likelihood pro-
duces coverage probabilities very close to the nominal
level (0.95) for all sample sizes.

WSEAS TRANSACTIONS on MATHEMATICS Ahmet Sezer

ISSN: 1109-2769 10 Issue 1, Volume 9, January 2010



Table 4: 95% coverage probabilities from the modi-
fied likelihoods of the gamma density

SAMPLE SIZE INT LIK. COND LIK. PROFLIK.
n=7 0.9476 0.9422 0.9223
n=15 0.9478 0.9442 0.9285
n=20 0.9495 0.9461 0.9326
n=30 0.9518 0.9481 0.9364
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