
Implementation of MPI environment for solving large systems of ODEs

using block method

1Z. A. MAJID, 2 S. MEHRKANOON, 3K. I. OTHMAN, 4M. SULEIMAN

4,2,1 Mathematics Department, Faculty of Science

Universiti Putra Malaysia

43400 UPM Serdang, Selangor

MALAYSIA

4,3,1 Institute Mathematical Research

Universiti Putra Malaysia

43400 UPM Serdang, Selangor

MALAYSIA

3Mathematics Department, Faculty of Information Technology and Science Quantitative

Universiti Technology MARA

40450 Shah Alam, Selangor

MALAYSIA

zanariah@math.upm.edu.my http://profile.upm.edu.my/am_zana/en/profail.html

Abstract: - Parallel 2-point and 3-point block method will simultaneously compute the numerical solutions at

two and three points respectively are suitable for solving large system of first order ordinary differential

equations (ODEs) using variable step size. The Gauss Seidel iteration will be implemented for the block

methods. The parallelism across the system is considered for the parallelization of the proposed methods using

the Message Passing Interface (MPI) communication environment which runs on High Performance Computing

(HPC). Numerical examples are given to illustrate the efficiency of the parallel implementation of the proposed

method using 2, 4 and 6 processors with respect to the sequential one.

Key-Words: - 2-point block, 3-point block, ODEs, parallel method, block method, parallelism

1 Introduction
The parallel solution of ODEs has received interest

from many researchers due to the possibility of

using parallel computing platforms. This paper is

concerned with development of parallel block code

for solving system of non-stiff first order ODEs of

the form

bxaYaYYxFY ≤≤== ,)(),,(' 0 (1)

where a and b are finite and

[]
[] ,,,,

,,,,

21

21

T
n

T
n

yyyY

yyyY

…

…

=

′′′=′

 [] .,,, 21
T

nfffF …=

 Block methods for numerical solution of first

order ODEs have been proposed by several authors

such as in [1], [2],[5] and [6]. There exist many

parallel approaches in solving real world problem

such as in [3], [4], [5], [7], [8], [9], [11], [12], [13]

and [14]. The parallel block code for solving first

and higher order ODEs using variable step size and

order has been developed in [14]. Alternating group

method was proposed in [8] to solve fourth order

parabolic equation in parallel environment. The

parallel fifth order diagonally Runge-Kutta method

mentioned in [11] was implemented by constant

step size to solve ordinary differential equations

using three processors. Reference in [13] have

proposed three point block methods for solving

large system of ODEs and Jacobi iteration was used

for the implementation of the block method. These
codes utilized the same approach as in [14] for

parallelization i.e parallelism across the method.

 The aim of this paper is to introduce the parallel

two point and three point block methods for solving

large system of ODEs and the Gauss Seidel iteration

WSEAS TRANSACTIONS on MATHEMATICS Z. A. Majid, S. Mehrkanoon, K. I. Othman, M. Suleiman

ISSN: 1109-2769 801 Issue 10, Volume 9, October 2010

is considered for the implementation of the methods.

The parallelism across the system is applied to the

proposed codes.

2 Formulation of the block methods

2.1 Derivation of 2-point block method

In Fig. 1, the solutions of 1+ny and 2+ny with step

size h at the points 1+nx and 2+nx respectively were

approximated simultaneously using three back

values at the points 1, −nn xx and 2−nx of the previous

two steps with step size rh. The method computes

two points concurrently using two earlier steps. The

interpolation points involved for obtaining the

corrector formulae are () (){ }2222 ,,,, ++−− nnnn fxfx … .

The two values of { }2
1=+ jjny can be derived by

integrating (1) over the interval []1, +nn xx and

[]21 , ++ nn xx . After simplifying using

MATHEMATICA one can obtain the following

corrector formulae in terms of r:

1 st point:

() () hxyxy nn +=+1

()
()() 2

2

21240

20153
+++

++
nf

rr

rr

()
()() 1

2

12160

807518
+++

++
nf

rr

rr ()
nf

r

rr
2

2

240

100457 ++
+

()
1

)2)(1(60

307
−++

+
− nf

rr

r ()
() 22)12(1240

157
−++

+
+ nf

rrr

r
 .

(2)

2 nd point:

() () hxyxy nn += ++ 12

()
()() 2

2

21240

100255147
+++

++
nf

rr

rr
+

()
()() 1

2

11260

8016578
+++

++
nf

rr

rr
+
()

nf
r

rr
2

2

240

204523 ++

()
()() 12 2160

3023
−++

+
+ nf

rrr

r ()
()() 22 112240

1523
−++

+
− nf

rrr

r

(3)

 The predictor formulae were derived similarly as

above and the order is one less than the corrector.

2.2 Derivation of 3-point block method

In Fig. 2, the solutions of 1+ny , 2+ny and 3+ny with

step size h at the points 1+nx , 2+nx and 3+nx

respectively were approximated simultaneously

using four back values at the points 1, −nn xx , 2−nx and

3−nx of the previous three steps with step size rh.

The interpolation points involved for obtaining the

corrector formulae are () (){ }3333 ,,,, ++−− nnnn fxfx … .

The three values of { }3
1=+ jjny can be derived by

integrating (1) over the interval []1, +nn xx ,

[]21 , ++ nn xx and []32 , ++ nn xx . After simplifying using

MATHEMATICA one can obtain the following

corrector formulae in terms of r:

1 st point:

 (4)

2 nd point:

WSEAS TRANSACTIONS on MATHEMATICS Z. A. Majid, S. Mehrkanoon, K. I. Othman, M. Suleiman

ISSN: 1109-2769 802 Issue 10, Volume 9, October 2010

(5)

3 rd point:

 (6)

 The order of the predictor formulae were one less

than the corrector.

3 Implementation
 During the implementation of the method, the

choice for next step size will be limited to half,

double or the same as the current step size. In the

developed code, when the next step size is double,

the ratio r is 0.5 and q can be 0.5 or 0.25, but if the

next step sizes remain constant, r is 1 and q can be

1, 2 or 0.5. In case of step size failure, r is 2, and q is

2. In order to reduce the computational cost, all the

coefficients of the formula are stored in the

developed code.

 The method are implemented in mCEPE)(mode

where P stands for an application of the predictor, E

stands for an evaluation of the function F, and C

stands for an application of the corrector. During the

implementation, the iteration will involve the Gauss

Seidel style.

The error calculated are defined as

()
() ()()

()()
ti

titi

ti
xyBA

xyy
e

+

−
=

where ,)(ty is the t
th
 component of the approximate

y. A = 1, B = 0 corresponds to the absolute error

test, A = 0, B = 1 corresponds to the relative error

test and finally A = 1, B = 1 corresponds to the

mixed error test. The mixed error test is used for all

tested problems.

 The maximum error is defined as follow:

MAXE = ()

≤≤≤≤ ti
NiSSTEPi
e

11
maxmax

where N is the number of equation in the system.

 In the code, we iterate the corrector to

convergence using the convergence criteria:

in
t

in
t

yy ++
+ −1 < 0.1 × Tolerance

where 3,2=i and t is the number of iteration.

4 Stability region
 The absolute stability of the above methods is

obtained using a linear first order test problem
yfy λ==′ (7)

 The stability region is plotted when the step size

ratio is constant, doubled and halved for the method.

The test equation (7) is substituted into the corrector

formula of the above methods. Setting the

determinant of the corrector formula written in

matrix form to zero will give the stability

polynomial corresponding to each method.

 The stability polynomials of 2p1b method at r = 1,

2 and 0.5 are as follow,

For 1=r we have,

()

.0
2160

1

720

59

360

49

720

559

180

191
1

2160

413

360

289
1

222

2324
1

=+

−−

+

−−−+

+−=

thhht

hhthhthQ

For 2=r we have,

()

.0
86400

1

86400

1237

4800

133

540

289

4800

5291
1

2700

623

100

87
1

222

2324
1

=+

−−

+

−−−+

+−=

thhht

hhthhthQ

Finally, for 5.0=r we have,

WSEAS TRANSACTIONS on MATHEMATICS Z. A. Majid, S. Mehrkanoon, K. I. Othman, M. Suleiman

ISSN: 1109-2769 803 Issue 10, Volume 9, October 2010

()

.0
675

8

1350

589

75

44

1080

1493

600

407
1

5400

847

200

147
1

222

2324
1

=+

−−

+

−−−+

+−=

thhht

hhthhthQ

where λhh = and the stability region is shown in

Fig. 2.

Fig. 2: Stability region for two block method

 The stability polynomials of 3p1b method at r =

1, 2 and 0.5 are as follow,

For 1=r we have,

()

0
6048000

1

756000

593

75600

101

63000

7879

403200

13063

2016

559

756000

796417

25200

24337

315

659
1

6048000

547411

120960

63859

10080

11947
1

23323

324

325

326
1

=−

+

+

++

+

−−−−

+

−+−=

thhht

hhht

hhht

hhhthQ

For 2=r we have,

()

0
01422489600

1

01896652800

8848213

474163200

5809

50803200

523433

13547520

455029

94080

3133

7408800

4281161

604800

706621

94080

1633693
1

55566000

7024939

37044

23795

392

507
1

23

323

324

325

326
2

=+

−

+

++

+

−−−−

+

−+−=

th

hht

hhht

hhht

hhhthQ

Finally, for 5.0=r we have,

()

0
3472875

512

231525

15412

231525

21248

158760

252761

1323

3685

1470

3011

3704400

9633853

264600

306023

11760

46723
1

55566000

3545993

185220

79099

784

843
1

23323

324

325

326
1

=−

+

+

++

+

−+−−

+

−+−=

thhht

hhht

hhht

hhhthQ

where λhh = and the stability region is shown in

Fig. 3.

 Fig. 3: Stability region for three point block

 The stability regions of 2p1b and 3p1b methods at

r = 1, 2 and 0.5 are plotted in Fig. 2 and Fig. 3

respectively. The stability region is inside the

boundary of the dotted points. In Fig. 2 and 3, the

stability region is larger when the step size is half (r

= 2) compare to the step size being double (r = 0.5)

or constant (r = 1). This is expected since the region

should get larger with smaller step size. The

stability region for 2p1b is larger compared to the

stability region of 3p1b.

4 Parallel techniques using MPI
 There are several approaches to parallelizing the

proposed sequential programs. In this paper, it is

done by distributing the equations among the

processors (parallelism across the system). Each

processor runs essentially the same program on its

share of the equations. Let N be the number of

equations in system (1), and P is the number of

processors. Therefore, the share of equations for the

i
th
 processor is from LiLi *)1()(++∗ , where

P

N
L = .

 The parallel algorithm of the proposed 2p1b

method is discussed in Table 1 and the same

implementation will be applied in 3p1b method. All

WSEAS TRANSACTIONS on MATHEMATICS Z. A. Majid, S. Mehrkanoon, K. I. Othman, M. Suleiman

ISSN: 1109-2769 804 Issue 10, Volume 9, October 2010

the processors have to exchange their required

computed values at Step 1 before calling the

evaluation function. In the code, we avoid to

exchange unnecessary computed values in order to

reach a peak speed-up of the parallel code.

Table 1: The parallel algorithm based on the

propose method

Step

1

for k=1 to 2 do

Processor 0: Prediction { }L
jjkny 1, =+

Processor 1: Prediction { } L

Ljjkny
2

1, +=+

⋮

Processor P-1: Prediction

 { } LP

LPjjkny
∗

+∗−=+ 1))1((,

Exchanging of computed values

between processors

Processor 0: Evaluation { }L
jjknf 1, =+

Processor 1: Evaluation { } L

Ljjknf
2

1, +=+

⋮

Processor P-1: Evaluation

 { } LP

LPjjknf
∗

+∗−=+ 1))1((,

end for

Step

2

for k=1 to 2 do

Processor 0: Correction { }L
j

c
jkny 1, =+

Processor 1: Correction { } L

Lj

c
jkny
2

1, +=+

⋮

Processor P-1: Correction

 { } LP

LPj

c
jkny

∗

+∗−=+ 1))1((,

Exchanging of computed values

between processors

Processor 0: Evaluation { }L
jjknf 1, =+

Processor 1: Evaluation { } L

Ljjknf
2

1, +=+

⋮

Processor P-1: Evaluation

 { } LP

LPjjknf
∗

+∗−=+ 1))1((,

end for

Convergent test: if yes then

Each processor calculates its own local

truncation error (LTE)

The maximum LTE will be sent to

processor 0

go to Step 3

else

go to Step 2

end if

Step

3

Processor 0 computes the next step size

Send this value to all processors in

communicator

At Step 2, the procedure is executed until

convergence. Each processor does the

convergent test on its computed values. All

stages at Step 1 and 2 are done simultaneously.

 At Step 3, the processor 0 will receive the

necessary data from the rest of the processors at

the same time to calculate the next step size. By

sending this computed value to all processors

they will be ready to commence integrating

their equations for the next block.

 The parallelism is achieved from the

beginning of the code. The message passing

calls between processors are made through

Message Passing Interface (MPI).

4 Numerical results
 In order to show the efficiency of the presented

method, we present some numerical experiments for

two given problems. The following notations are

used in the tables:

TOL Tolerance

MTD Method employed

TS Total successful steps

FS Total failure steps

Maxe Absolute value of the maximum error of the

computed solution

FN Total function calls

S2p1b Sequential implementation of 2-point block

method using one processor

P2p1b Parallel implementation of the 2-point block

method

S3p1b Sequential implementation of 3-point block

method using one processor

P3p1b Parallel implementation of the 3-point block

method

N Number of equations in system (1)

P Number of processors used

 Speed-up and efficiency are the measures of

relative benefit of parallelizing a given application

over sequential implementation. The speed-up

WSEAS TRANSACTIONS on MATHEMATICS Z. A. Majid, S. Mehrkanoon, K. I. Othman, M. Suleiman

ISSN: 1109-2769 805 Issue 10, Volume 9, October 2010

)(nS p and efficiency)(nE p on P processors that we

used are defined as:

P

nS
nE

nT

nT
nS

p

p

p

s
p

)(
)(

,
)(

)(
)(

=

=

where)(nTs is equal to execution time of the code

on a single processor for a given problem with size

n;)(nTp is the execution time on P processors for

solving the problem with size n.

 The speed-up shows the speed gain of parallel

method developed. In an ideal parallel system,

speed-up is equal to the number of processor used

and efficiency is equal to 100%. In practice, speed-

up is less than P and efficiency is between 0% and

100%.

Problem 1: A radioactive decay chain.

=

′

⋅

⋅

⋅

′

′

Ny

y

y

2

1

−

−

−

−

−

010...0

011....

.01.0..

..0..0.

....110

....011

0....01

,

2

1

⋅

⋅

⋅

Ny

y

y

()

⋅

⋅

⋅
=

0

0

1

0y

=N Number of equations, bx ≤≤0 , =b end of the

interval.

Source: [10]

Problem 2: A parabolic partial differential

equations. (The Heat Equation)

=

′

⋅

⋅

⋅

′

′

Ny

y

y

2

1

−

−

−

−

−

−

210...0

1210...

012...

.0..10.

...1210

...0121

0...012

,

2

1

⋅

⋅

⋅

Ny

y

y

()

⋅

⋅

⋅
=

0

0

1

0y

=N Number of equations, bx ≤≤0 , =b end of

the interval.

Source: [10]

 Problem 1 and 2 are solved without exact

reference solution. To measure the accuracy of the

codes, the solutions obtained by the methods are

compared with the true solutions which are

estimated by solving the problems using very small

tolerance (1410−). This has been done in separate

program. The performance of the code was

measured by implementation both sequential and

parallel versions in C.

 The parallel implementation is supported by

Message Passing Interface (MPI) which is a

message passing standard library and is widely used

to write message passing programs on high

performance computing (HPC) platforms. Both

sequential and parallel algorithms were carried out

on Sunfire V1280 with eight homogeneous

processors located at Institute of Mathematical

Research (INSPEM), University Putra Malaysia.

 The numerical results in term of total step, failure

step, function calls and maximum error are tabulated

in Table 2 – 5. The performance of the sequential

and parallel execution times for each problem is

shown in Table 6 – 9 while Table 10 – 17show the

speed-up and efficiency performance for the 2p1b

and 3p1b methods.

Table 2: Results of 2p1b solving Problem 1

TOL TS FS FN Maxe
210− 2p1b 19 0 133 5.58e-4

410− 2p1b 33 0 213 2.34e-6

610− 2p1b 68 0 421 1.91e-8

810− 2p1b 151 0 909 2.42e-10

1010− 2p1b 356 0 2111 1.97e-12

Table 3: Results of 3p1b for solving Problem 1

TOL TS FS FN Maxe
210− 3p1b 20 0 185 2.03e-4

410− 3p1b 24 0 239 1.97e-6

610− 3p1b 38 0 356 1.37e-8

810− 3p1b 60 0 566 1.46e-10

1010− 3p1b 99 0 947 1.34e-12

Table 4: Results of 2p1b for solving Problem 2

TOL TS FS FN Maxe
210− 2p1b 17 0 121 3.07e-4

410− 2p1b 29 0 183 1.13e-6

610− 2p1b 56 0 349 1.30e-8

810− 2p1b 123 0 739 1.45e-10

1010− 2p1b 285 0 1693 1.32e-12

Table 5: Results of 3p1b for solving Problem 2

TOL TS FS FN Maxe
210− 3p1b 19 0 167 2.07e-4

410− 3p1b 22 0 218 1.29e-6

610− 3p1b 32 0 311 7.49e-9

810− 3p1b 52 0 488 7.02e-11

1010− 3p1b 85 0 806 6.78e-13

WSEAS TRANSACTIONS on MATHEMATICS Z. A. Majid, S. Mehrkanoon, K. I. Othman, M. Suleiman

ISSN: 1109-2769 806 Issue 10, Volume 9, October 2010

 The reported results in Table 2 – 3 were obtained

when N=6000 and for each different N we will get

the same numerical results. The maximum errors for

solving the two tested problems are within the given

tolerances for both methods.

 In Table 6 - 9, the parallel execution times are

faster compared to the sequential timing,

particularly for large ODEs systems and the number

of processors employed for the parallel algorithm.

The execution times are larger at smaller tolerance

because at this stage the workload increases.

We also could observed that the 3p1b managed to

solve faster compared to the 2p1b method. For

example in Problem 1, 3p1b and 2p1b need 2.19 and

4.96 seconds respectively to solve 30000 equations

at TOL=
1010− .

Table 6: Execution times (seconds) of 2p1b for

solving Problem 1 for interval [0, 10]

 TOL

N P MTD 210− 410− 610− 810− 1010−

6000 1 S2p1b 0.25 0.37 0.83 1.95 4.68

 2 P2p1b 0.15 0.23 0.54 1.35 3.34

 4 P2p1b 0.07 0.11 0.32 0.86 2.20

 6 P2p1b 0.05 0.08 0.25 0.71 1.85

18000 1 S2p1b 0.91 1.41 2.89 6.44 15.18

 2 P2p1b 0.47 0.71 1.52 3.45 8.29

 4 P2p1b 0.24 0.36 0.80 1.88 4.57

 6 P2p1b 0.17 0.26 0.56 1.39 3.42

30000 1 S2p1b 1.47 2.29 4.62 10.17 23.83

 2 P2p1b 0.74 1.15 2.37 5.30 12.53

 4 P2p1b 0.38 0.58 1.23 2.83 6.79

 6 P2p1b 0.27 0.41 0.87 2.04 4.95

Table 7: Execution times (seconds) of 3p1b for

solving Problem 1 for interval [0, 10]

 TOL

N P MTD 210− 410− 610− 810− 1010−

6000 1 S3p1b 0.37 0.47 0.75 1.25 2.17

 2 P3p1b 0.23 0.27 0.47 1.82 1.48

 4 P3p1b 0.11 0.13 0.27 0.51 0.97

 6 P3p1b 0.08 0.09 0.20 0.41 0.80

18000 1 S3p1b 1.37 1.67 2.53 4.03 6.80

 2 P3p1b 0.71 0.86 1.34 2.21 3.73

 4 P3p1b 0.36 0.42 0.68 1.16 2.04

 6 P3p1b 0.24 0.29 0.48 0.84 1.52

30000 1 S3p1b 2.31 2.82 4.21 6.66 11.13

 2 P3p1b 1.16 1.41 2.12 3.35 5.66

 4 P3p1b 0.59 0.71 1.07 1.76 3.03

 6 P3p1b 0.40 0.48 0.74 1.24 2.19

Table 8: Execution times (seconds) of 2p1b for

solving Problem 2 for interval [0, 5]

 TOL

N P MTD 210− 410− 610− 810− 1010−

6000 1 S2p1b 0.22 0.33 0.69 1.60 3.81

 2 P2p1b 0.14 0.21 0.46 1.13 2.75

 4 P2p1b 0.07 0.10 0.27 0.72 1.81

 6 P2p1b 0.05 0.07 0.22 0.60 1.54

18000 1 S2p1b 0.85 1.25 2.47 5.38 12.50

 2 P2p1b 0.44 0.64 1.26 2.78 6.48

 4 P2p1b 0.23 0.32 0.68 1.58 3.79

 6 P2p1b 0.16 0.23 0.49 1.18 2.86

30000 1 S2p1b 1.38 2.05 3.95 8.52 19.68

 2 P2p1b 0.70 1.03 2.00 4.39 10.25

 4 P2p1b 0.37 0.52 1.05 2.38 5.59

 6 P2p1b 0.25 0.36 0.74 1.71 4.09

Table 9: Execution times (seconds) of 3p1b for

solving Problem 2 for interval [0, 5]

 TOL

N P MTD 210− 410− 610− 810− 1010−
6000 1 S2p1b 0.35 0.44 0.67 1.10 1.88

 2 P2p1b 0.21 0.26 0.42 0.73 1.29

 4 P2p1b 0.11 0.13 0.24 0.45 0.83

 6 P2p1b 0.08 0.10 0.19 0.37 0.70

18000 1 S2p1b 1.28 1.58 2.27 3.58 5.94

 2 P2p1b 0.65 0.80 1.16 1.88 3.15

 4 P2p1b 0.33 0.40 0.62 1.03 1.78

 6 P2p1b 0.24 0.29 0.44 0.77 1.34

30000 1 S2p1b 2.14 2.66 3.78 5.93 9.75

 2 P2p1b 1.08 1.34 1.90 3.00 4.95

 4 P2p1b 0.54 0.67 0.97 1.57 2.65

 6 P2p1b 0.38 0.45 0.68 1.12 1.92

Table 10: Speed-up of 2p1b for solving Problem 1
 TOL

N P 210− 410− 610− 810− 1010−

6000 2 1.66 1.60 1.54 1.44 1.40

 4 3.51 3.36 2.59 2.27 2.13

 6 5.00 4.62 3.32 2.75 2.53

18000 2 1.93 1.99 1.90 1.87 1.83

 4 3.79 3.92 3.61 3.43 3.32

 6 5.35 5.42 5.16 4.63 4.44

30000 2 1.99 1.99 1.94 1.92 1.90

 4 3.87 3.95 3.76 3.59 3.51

 6 5.44 5.59 5.31 4.99 4.81

It is noted in Table 10 – 15 that the speed-up and

efficiency by using two, four and six processors

have improved as the number of equations

increased.

Fig. 4 – 5 shown that the speed-up improved as the

number of equations increased.

WSEAS TRANSACTIONS on MATHEMATICS Z. A. Majid, S. Mehrkanoon, K. I. Othman, M. Suleiman

ISSN: 1109-2769 807 Issue 10, Volume 9, October 2010

Fig. 4 Speed-up of 2p1b at TOL=
1010−

for solving Problem 1

Fig. 4 Speed-up of 3p1b at TOL=
1010−

for solving Problem 1

Table 11: Speed-up of 3p1b for solving Problem 1
 TOL

N P 210− 410− 610− 810− 1010−

6000 2 1.60 1.74 1.59 1.52 1.46

 4 3.36 3.61 2.77 2.45 2.23

 6 4.62 5.22 3.75 3.04 2.71

18000 2 1.92 1.94 1.88 1.82 1.82

 4 3.80 3.97 3.72 3.47 3.33

 6 5.70 5.75 5.27 4.79 4.47

30000 2 1.99 1.98 1.98 1.98 1.96

 4 3.91 3.97 3.93 3.78 3.67

 6 5.77 5.87 5.68 5.37 5.08

In general, the speed-up varying for 2p1b from 1.39

to 1.99 when using two processors, 2.10 to 3.95

when using four processors and while using six

processors the speed-up varying from 2.47 to 5.69

for solving Problem 1 and 2. For example, in

solving Problem 1 the maximum speed-up and

efficiency gained by the parallel performance of the

P2p1b using 6 processors is 2.75 [46%], 4.63 [77%]

and 4.99 [83%] respectively at TOL =
810− when

N=6000, 18000 and 30000.

Table 12: Speed-up of 2p1b for solving Problem 2
 TOL

N P 210− 410− 610− 810− 1010−

6000 2 1.57 1.57 1.50 1.41 1.39

 4 3.14 3.30 2.56 2.22 2.10

 6 4.44 4.71 3.14 2.67 2.47

18000 2 1.93 1.95 1.96 1.94 1.93

 4 3.70 3.90 3.63 3.41 3.30

 6 5.31 5.43 5.04 4.56 4.37

30000 2 1.97 1.99 1.98 1.94 1.92

 4 3.73 3.94 3.76 3.58 3.52

 6 5.52 5.69 5.34 4.98 4.81

Table 13: Speed-up of 3p1b for solving Problem 2
 TOL

N P 210− 410− 610− 810− 1010−

6000 2 1.66 1.69 1.59 1.50 1.45

 4 3.18 3.38 2.79 2.44 2.26

 6 4.37 4.40 3.52 2.97 2.68

18000 2 1.96 1.97 1.95 1.90 1.88

 4 3.87 3.95 3.66 3.47 3.33

 6 5.33 5.44 5.15 4.64 4.43

30000 2 1.98 1.98 1.98 1.97 1.96

 4 3.96 3.97 3.89 3.77 3.67

 6 5.63 5.91 5.55 5.29 5.07

 In 3p1b, the speed-up varying from 1.45 to 1.98

when using two processors, 2.23 to 3.97 when using

four processors and while using six processors the

speed-up varying from 2.47 to 5.91 for solving

Problem 1 and 2.

 Better speed-up and efficiency can be achieved by

increasing the dimensions of ODEs.

Table 14: Efficiency (%) of 2p1b for

solving Problem 1

 TOL

N P 210− 410− 610− 810− 1010−

6000 2 94 80 77 72 70

 4 100 84 65 57 53

 6 93 77 55 46 42

18000 2 97 99 95 94 92

 4 95 98 90 86 83

 6 89 90 86 77 74

30000 2 99 99 97 96 95

 4 97 99 94 90 88

 6 91 93 89 83 80

WSEAS TRANSACTIONS on MATHEMATICS Z. A. Majid, S. Mehrkanoon, K. I. Othman, M. Suleiman

ISSN: 1109-2769 808 Issue 10, Volume 9, October 2010

Table 15: Efficiency (%) of 3p1b for

solving Problem 1

 TOL

N P 210− 410− 610− 810− 1010−

6000 2 80 87 79 76 73

 4 84 90 69 61 55

 6 77 87 62 50 45

18000 2 96 97 94 91 91

 4 95 99 93 86 83

 6 95 96 87 79 74

30000 2 99 100 99 99 98

 4 97 99 98 94 91

 6 96 98 94 89 84

Table 16: Efficiency (%) of 2p1b for solving

Problem 2

 TOL

N P 210− 410− 610− 810− 1010−

6000 2 79 79 75 71 70

 4 79 83 64 56 53

 6 74 79 52 45 41

18000 2 97 98 98 97 97

 4 93 98 91 85 83

 6 89 91 84 76 73

30000 2 99 99 99 97 96

 4 94 99 94 90 88

 6 92 95 89 83 80

Table 17: Efficiency (%) of 3p1b for

solving Problem 2

 TOL

N P 210− 410− 610− 810− 1010−

6000 2 83 84 79 75 72

 4 79 84 69 61 56

 6 72 73 58 49 44

18000 2 98 98 97 95 94

 4 96 98 91 86 83

 6 88 90 85 77 73

30000 2 99 99 99 98 98

 4 99 99 97 94 91

 6 93 98 92 88 84

In Table 14 – 17, the results show that the

performance of the parallel system improved when

solving large systems of ODEs.

 We also could observe that as the number of

processors increased for solving the same number of

equations, the efficiency has slightly decreased. This

is expected since the communication among the

processors has increased and this has affected the

parallel performance. The parallel performance

improved as the workload increases.

5 Conclusion
 In this paper we have proposed a parallel

algorithm for solving large system of ODEs based

on 2-point and 3-point block method. The code has

shown the superiority of the parallelism across the

system when using large-scale problems. The

numerical results show that the speed-up improves

as the problem size increases.

References:

[1] J.B. Rosser, A Runge-Kutta for all

seasons,SIAM Rev. vol , 1967, pp. 417-452.

[2] K. Burrage, Efficient Block Predictor-Corrector

Methods with a Small Number of Corrections,

J. of Comp. and App. Math, vol 45, 1993, pp.

139-150.

[3] K. Burrage and H. Suhartanto, Parallel iterated

methods based on multistep Runge-kutta

methods of Radau type, Adv. Comput. Math,

vol 7, 1997, pp. 37-57.

[4] K. Burrage and H. Suhartanto, Parallel iterated

methods based on variable step-size multistep

Runge-kutta methods of Radau type for stiff

problems, Adv. Comput. Math, vol 13, 2000,

pp. 257-270.

[5] N. H. Cong, K. Strehmel, R. Weiner and H.

Podhaisky,Runge-Kutta Nystrom-type block

predictor corrector methods, Adv. In Comput.

Math, vol 10, 1999, pp. 115–133.

[6] P.J. Houwen, P.B. Sommeijer, Block Runge-

Kutta methods on parallel computers, Report

NM-R8906, Center for Mathematics and

Computer Science, Amsterdam, 1989.

[7] Q. Feng. And B. Zheng, Parallel alternating

group explicit iterative method for convection-

diffusion equation, Proceeding of the 8
th

WSEAS International Conference on a Applied

Computer and Applied Computational

Sciences, 2009, pp 383-387.

[8] Q. Feng. And B. Zheng, A parallel finite

difference for fourth order parabolic equation

Proceeding of the 8
th
 WSEAS International

Conference on a Applied Computer and

Applied Computational Sciences, 2009, pp

411-387.pp 411-416.

[9] Q. Feng. And B. Zheng, A class of parallel

difference method for solving convection-

diffusion equation with variable coefficient.

Proceeding of the 8
th
 WSEAS International

Conference on a Applied Computer and

Applied Computational Sciences, 2009, pp

379-382

[10] T.E. Hull, W.E. Enright, B.M. Fellel and A.E.

Sedgwick, Comparing numerical methods for

WSEAS TRANSACTIONS on MATHEMATICS Z. A. Majid, S. Mehrkanoon, K. I. Othman, M. Suleiman

ISSN: 1109-2769 809 Issue 10, Volume 9, October 2010

ordinary differential equations, SIAM J. Num.

Anal, vol 9, no. 4, 1972, pp. 603-637.

[11] U.K.S Din, F.Ismail,M.Suleiman, M. Othman

and Z.A.Majid. The parallel three-processor

fifth order diagonally implicit Runge-Kutta

methods for solving ordinary differential

equations. Proceeding of the The 12th WSEAS

International Conference on Applied

Mathematics, 2007, pp 184-188.

[12] W.L. Miranker and W.M. Liniger, Parallel

methods for the numerical integration of

ordinary differential equations, Math. Comp,

vol 21, no. 99, 1967, pp. 303-320.

[13] Z.A. Majid and M.B. Suleiman,

Implementation of parallel three-point block

codes for solving large system of ordinary

differential equations, International Journal of

Computer Mathematics. Vol 87, no. 6, 2010,

pp. 1-15.87:6, 1415 – 1429.

[14] Z. Omar, Developing parallel block methods

for solving higher order ODEs directly, Ph.D.

dissertation, University Putra Malaysia,

Malaysia, 1999.

WSEAS TRANSACTIONS on MATHEMATICS Z. A. Majid, S. Mehrkanoon, K. I. Othman, M. Suleiman

ISSN: 1109-2769 810 Issue 10, Volume 9, October 2010

