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Abstract: - Parallel 2-point and 3-point block method will simultaneously compute the numerical solutions at 

two and three points respectively are suitable for solving large system of first order ordinary differential 

equations (ODEs) using variable step size. The Gauss Seidel iteration will be implemented for the block 

methods. The parallelism across the system is considered for the parallelization of the proposed methods using 

the Message Passing Interface (MPI) communication environment which runs on High Performance Computing 

(HPC). Numerical examples are given to illustrate the efficiency of the parallel implementation of the proposed 

method using 2, 4 and 6 processors with respect to the sequential one. 
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1 Introduction 
The parallel solution of ODEs has received interest 

from many researchers due to the possibility of 

using parallel computing platforms. This paper is 

concerned with development of parallel block code 

for solving system of non-stiff first order ODEs of 

the form 

bxaYaYYxFY ≤≤== ,)(),,(' 0  (1) 

where a and b are finite and  
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   Block methods for numerical solution of first 

order ODEs have been proposed by several authors 

such as in [1], [2],[5] and [6]. There exist many 

parallel approaches in solving real world problem 

such as in [3], [4], [5], [7], [8], [9], [11], [12], [13] 

and [14]. The parallel block code for solving first 

and higher order ODEs using variable step size and 

order has been developed in [14]. Alternating group 

method was proposed in [8] to solve fourth order 

parabolic equation in parallel environment. The 

parallel fifth order diagonally Runge-Kutta method 

mentioned in [11] was implemented by constant 

step size to solve ordinary differential equations 

using three processors. Reference in [13] have 

proposed three point block methods for solving 

large system of ODEs and Jacobi iteration was used 

for the implementation of the block method. These 
codes utilized the same approach as in [14] for 

parallelization i.e parallelism across the method. 

   The aim of this paper is to introduce the parallel 

two point and three point block methods for solving 

large system of ODEs and the Gauss Seidel iteration 
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is considered for the implementation of the methods. 

The parallelism across the system is applied to the 

proposed codes. 

 

 

2 Formulation of the block methods 
 

 

2.1 Derivation of 2-point block method 

 

 
In Fig. 1, the solutions of 1+ny  and 2+ny  with step 

size h at the points 1+nx and 2+nx respectively were 

approximated simultaneously using three back 

values at the points 1, −nn xx  and 2−nx of the previous 

two steps with step size rh. The method computes 

two points concurrently using two earlier steps. The 

interpolation points involved for obtaining the 

corrector formulae are ( ) ( ){ }2222 ,,,, ++−− nnnn fxfx … . 

The two values of { }2
1=+ jjny  can be derived by 

integrating (1) over the interval [ ]1, +nn xx  and 

[ ]21 , ++ nn xx . After simplifying using 

MATHEMATICA one can obtain the following 

corrector formulae in terms of r: 
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2 nd point: 
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(3) 

 

    The predictor formulae were derived similarly as 

above and the order is one less than the corrector. 

 

2.2 Derivation of 3-point block method 

 
In Fig. 2, the solutions of 1+ny , 2+ny  and 3+ny with 

step size h at the points 1+nx , 2+nx and 3+nx  

respectively were approximated simultaneously 

using four back values at the points 1, −nn xx , 2−nx and 

3−nx of the previous three steps with step size rh. 

The interpolation points involved for obtaining the 

corrector formulae are ( ) ( ){ }3333 ,,,, ++−− nnnn fxfx … . 

The three values of { }3
1=+ jjny  can be derived by 

integrating (1) over the interval [ ]1, +nn xx , 

[ ]21 , ++ nn xx  and [ ]32 , ++ nn xx .  After simplifying using 

MATHEMATICA one can obtain the following 

corrector formulae in terms of r: 

 

1 st point: 

 

 

                (4) 

 
2 nd point: 

WSEAS TRANSACTIONS on MATHEMATICS Z. A. Majid, S. Mehrkanoon, K. I. Othman, M. Suleiman

ISSN: 1109-2769 802 Issue 10, Volume 9, October 2010



 

               
(5) 

3 rd point: 

 

             (6) 

 
    The order of the predictor formulae were one less 

than the corrector. 

 
 

3 Implementation 
   During the implementation of the method, the 

choice for next step size will be limited to half, 

double or the same as the current step size. In the 

developed code, when the next step size is double, 

the ratio r is 0.5 and q can be 0.5 or 0.25, but if the 

next step sizes remain constant, r is 1 and q can be 

1, 2 or 0.5. In case of step size failure, r is 2, and q is 

2. In order to reduce the computational cost, all the 

coefficients of the formula are stored in the 

developed code.  

    The method are implemented in mCEPE )( mode 

where P stands for an application of the predictor, E 

stands for an evaluation of the function F, and C 

stands for an application of the corrector. During the 

implementation, the iteration will involve the Gauss 

Seidel style. 

The error calculated are defined as 
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where ,)( ty is the t
th
 component of the approximate 

y. A = 1, B = 0 corresponds to the absolute error 

test, A = 0, B = 1 corresponds to the relative error 

test and finally A = 1, B = 1 corresponds to the 

mixed error test. The mixed error test is used for all 

tested problems.  

   The maximum error is defined as follow: 

MAXE = ( ) 






≤≤≤≤ ti
NiSSTEPi
e

11
maxmax  

 

where N is the number of equation in the system.  

   In the code, we iterate the corrector to 

convergence using the convergence criteria: 

 

in
t

in
t

yy ++
+ −1 < 0.1 ×  Tolerance 

where 3,2=i and t is the number of iteration. 

 

 

4 Stability region 
   The absolute stability of the above methods is 

obtained using a linear first order test problem 
yfy λ==′     (7) 

    The stability region is plotted when the step size 

ratio is constant, doubled and halved for the method. 

The test equation (7) is substituted into the corrector 

formula of the above methods. Setting the 

determinant of the corrector formula written in 

matrix form to zero will give the stability 

polynomial corresponding to each method.  

   The stability polynomials of 2p1b method at r = 1, 

2 and 0.5 are as follow, 

 

For 1=r  we have, 
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For 2=r  we have, 
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Finally, for 5.0=r  we have, 
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where λhh =  and the stability region is shown in 

Fig. 2.  

     

 
Fig. 2: Stability region for two block method 

     

    The stability polynomials of 3p1b method at r = 

1, 2 and 0.5 are as follow, 

 

For 1=r  we have, 
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For 2=r  we have, 
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Finally, for 5.0=r  we have, 
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where λhh =  and the stability region is shown in 

Fig. 3.  

 

 
    Fig. 3: Stability region for three point block 

 

   The stability regions of 2p1b and 3p1b methods at 

r = 1, 2 and 0.5 are plotted in Fig. 2 and Fig. 3 

respectively. The stability region is inside the 

boundary of the dotted points. In Fig. 2 and 3, the 

stability region is larger when the step size is half (r 

= 2) compare to the step size being double (r = 0.5) 

or constant (r = 1). This is expected since the region 

should get larger with smaller step size. The 

stability region for 2p1b is larger compared to the 

stability region of 3p1b. 

 

 

4 Parallel techniques using MPI 
   There are several approaches to parallelizing the 

proposed sequential programs. In this paper, it is 

done by distributing the equations among the 

processors (parallelism across the system). Each 

processor runs essentially the same program on its 

share of the equations. Let N be the number of 

equations in system (1), and P is the number of 

processors. Therefore, the share of equations for the 

i
th
 processor is from LiLi *)1()( ++∗ , where 

P

N
L = .  

   The parallel algorithm of the proposed 2p1b 

method is discussed in Table 1 and the same 

implementation will be applied in 3p1b method. All 
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the processors have to exchange their required 

computed values at Step 1 before calling the 

evaluation function. In the code, we avoid to 

exchange unnecessary computed values in order to 

reach a peak speed-up of the parallel code. 

    

Table 1: The parallel algorithm based on the 

propose method 

 

Step 

1 

 

for k=1 to 2 do 

Processor 0: Prediction { }L
jjkny 1, =+  

Processor 1: Prediction { } L

Ljjkny
2

1, +=+  

⋮  

Processor P-1: Prediction 

                        { } LP

LPjjkny
∗

+∗−=+ 1))1((,  

Exchanging of computed values 

between processors 

Processor 0: Evaluation { }L
jjknf 1, =+  

Processor 1: Evaluation { } L

Ljjknf
2

1, +=+  

⋮  

Processor P-1: Evaluation 

                       { } LP

LPjjknf
∗

+∗−=+ 1))1((,  

end for 

 

Step 

2 

 

for k=1 to 2 do 

Processor 0: Correction { }L
j

c
jkny 1, =+  

Processor 1: Correction { } L

Lj

c
jkny
2

1, +=+  

⋮  

Processor P-1: Correction  

                       { } LP

LPj

c
jkny

∗

+∗−=+ 1))1((,  

Exchanging of computed values 

between processors 

Processor 0: Evaluation { }L
jjknf 1, =+  

Processor 1: Evaluation { } L

Ljjknf
2

1, +=+  

⋮  

Processor P-1: Evaluation  

                       { } LP

LPjjknf
∗

+∗−=+ 1))1((,  

end for 

Convergent test: if yes then 

Each processor calculates its own local 

truncation error (LTE) 

The maximum LTE will be sent to 

processor 0 

go to Step 3 

else 

go to Step 2 

end if 

 

Step 

3 

 

Processor 0 computes the next step size 

Send this value to all processors in 

communicator 
 

At Step 2, the procedure is executed until 

convergence. Each processor does the 

convergent test on its computed values. All 

stages at Step 1 and 2 are done simultaneously. 

   At Step 3, the processor 0 will receive the 

necessary data from the rest of the processors at 

the same time to calculate the next step size. By 

sending this computed value to all processors 

they will be ready to commence integrating 

their equations for the next block.  

   The parallelism is achieved from the 

beginning of the code. The message passing 

calls between processors are made through 

Message Passing Interface (MPI). 
 

 

4 Numerical results 
    In order to show the efficiency of the presented 

method, we present some numerical experiments for 

two given problems. The following notations are 

used in the tables: 

 

TOL  Tolerance 

MTD  Method employed 

TS  Total successful steps 

FS Total failure steps 

Maxe    Absolute value of the maximum error of the 

computed solution 

FN  Total function calls 

S2p1b   Sequential implementation of 2-point block 

method using one processor 

P2p1b  Parallel implementation of the 2-point block 

method 

S3p1b   Sequential implementation of 3-point block 

method using one processor 

P3p1b  Parallel implementation of the 3-point block 

method 

N  Number of equations in system (1) 

P  Number of processors used 

 

    Speed-up and efficiency are the measures of 

relative benefit of parallelizing a given application 

over sequential implementation. The speed-up 
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)(nS p and efficiency )(nE p on P processors that we 

used are defined as: 

P
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where )(nTs  is equal to execution time of the code 

on a single processor for a given problem with size 

n; )(nTp is the execution time on P processors for 

solving the problem with size n.  

   The speed-up shows the speed gain of parallel 

method developed. In an ideal parallel system, 

speed-up is equal to the number of processor used 

and efficiency is equal to 100%. In practice, speed-

up is less than P and efficiency is between 0% and 

100%. 

 

Problem 1: A radioactive decay chain. 
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=N Number of equations, bx ≤≤0 , =b end of the 

interval. 

Source: [10] 

 

Problem 2: A parabolic partial differential 

equations. (The Heat Equation) 
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=N Number of equations, bx ≤≤0 , =b end of 

the interval. 

Source: [10] 

 

    Problem 1 and 2 are solved without exact 

reference solution. To measure the accuracy of the 

codes, the solutions obtained by the methods are 

compared with the true solutions which are 

estimated by solving the problems using very small 

tolerance ( 1410− ). This has been done in separate 

program. The performance of the code was 

measured by implementation both sequential and 

parallel versions in C.  

   The parallel implementation is supported by 

Message Passing Interface (MPI) which is a 

message passing standard library and is widely used 

to write message passing programs on high 

performance computing (HPC) platforms. Both 

sequential and parallel algorithms were carried out 

on Sunfire V1280 with eight homogeneous 

processors located at Institute of Mathematical 

Research (INSPEM), University Putra Malaysia. 

    The numerical results in term of total step, failure 

step, function calls and maximum error are tabulated 

in Table 2 – 5. The performance of the sequential 

and parallel execution times for each problem is 

shown in Table 6 – 9 while Table 10 –  17show the 

speed-up and efficiency performance for the 2p1b 

and 3p1b methods.  

 

Table 2: Results of 2p1b solving Problem 1 

TOL  TS FS FN Maxe 
210−  2p1b 19 0 133 5.58e-4 

410−  2p1b 33 0 213 2.34e-6 

610−  2p1b 68 0 421 1.91e-8 

810−  2p1b 151 0 909 2.42e-10 

1010−  2p1b 356 0 2111 1.97e-12 

 

Table 3: Results of 3p1b for solving Problem 1 

TOL  TS FS FN Maxe 
210−  3p1b 20 0 185 2.03e-4 

410−  3p1b 24 0 239 1.97e-6 

610−  3p1b 38 0 356 1.37e-8 

810−  3p1b 60 0 566 1.46e-10 

1010−  3p1b 99 0 947 1.34e-12 

 

Table 4: Results of 2p1b for solving Problem 2 

TOL  TS FS FN Maxe 
210−  2p1b 17 0 121 3.07e-4 

410−  2p1b 29 0 183 1.13e-6 

610−  2p1b 56 0 349 1.30e-8 

810−  2p1b 123 0 739 1.45e-10 

1010−  2p1b 285 0 1693 1.32e-12 

 

Table 5: Results of 3p1b for solving Problem 2 

TOL  TS FS FN Maxe 
210−  3p1b 19 0 167 2.07e-4 

410−  3p1b 22 0 218 1.29e-6 

610−  3p1b 32 0 311 7.49e-9 

810−  3p1b 52 0 488 7.02e-11 

1010−  3p1b 85 0 806 6.78e-13 
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    The reported results in Table 2 – 3 were obtained 

when N=6000 and for each different N we will get 

the same numerical results. The maximum errors for 

solving the two tested problems are within the given 

tolerances for both methods. 

    In Table 6 - 9, the parallel execution times are 

faster compared to the sequential timing, 

particularly for large ODEs systems and the number 

of processors employed for the parallel algorithm.  

The execution times are larger at smaller tolerance 

because at this stage the workload increases. 

We also could observed that the 3p1b managed to 

solve faster compared to the 2p1b method. For 

example in Problem 1, 3p1b and 2p1b need 2.19 and 

4.96 seconds respectively to solve 30000 equations 

at TOL= 
1010− . 

 

Table 6: Execution times (seconds) of 2p1b for 

solving Problem 1 for interval [0, 10] 

   TOL 

N P MTD 210−  410−  610−  810−  1010−

 
6000 1 S2p1b 0.25 0.37 0.83 1.95 4.68 

 2 P2p1b 0.15 0.23 0.54 1.35 3.34 

 4 P2p1b 0.07 0.11 0.32 0.86 2.20 

 6 P2p1b 0.05 0.08 0.25 0.71 1.85 

18000 1 S2p1b 0.91 1.41 2.89 6.44 15.18 

 2 P2p1b 0.47 0.71 1.52 3.45 8.29 

 4 P2p1b 0.24 0.36 0.80 1.88 4.57 

 6 P2p1b 0.17 0.26 0.56 1.39 3.42 

30000 1 S2p1b 1.47 2.29 4.62 10.17 23.83 

 2 P2p1b 0.74 1.15 2.37 5.30 12.53 

 4 P2p1b 0.38 0.58 1.23 2.83 6.79 

 6 P2p1b 0.27 0.41 0.87 2.04 4.95 

     

 

Table 7: Execution times (seconds) of 3p1b for 

solving Problem 1 for interval [0, 10] 

   TOL 

N P MTD 210−  410−  610−  810−  1010−

 
6000 1 S3p1b 0.37 0.47 0.75 1.25 2.17 

 2 P3p1b 0.23 0.27 0.47 1.82 1.48 

 4 P3p1b 0.11 0.13 0.27 0.51 0.97 

 6 P3p1b 0.08 0.09 0.20 0.41 0.80 

18000 1 S3p1b 1.37 1.67 2.53 4.03 6.80 

 2 P3p1b 0.71 0.86 1.34 2.21 3.73 

 4 P3p1b 0.36 0.42 0.68 1.16 2.04 

 6 P3p1b 0.24 0.29 0.48 0.84 1.52 

30000 1 S3p1b 2.31 2.82 4.21 6.66 11.13 

 2 P3p1b 1.16 1.41 2.12 3.35 5.66 

 4 P3p1b 0.59 0.71 1.07 1.76 3.03 

 6 P3p1b 0.40 0.48 0.74 1.24 2.19 

 

    

 

Table 8: Execution times (seconds) of 2p1b for 

solving Problem 2 for interval [0, 5] 

   TOL 

N P MTD 210−  410−  610−  810−  1010−  

6000 1 S2p1b 0.22 0.33 0.69 1.60 3.81 

 2 P2p1b 0.14 0.21 0.46 1.13 2.75 

 4 P2p1b 0.07 0.10 0.27 0.72 1.81 

 6 P2p1b 0.05 0.07 0.22 0.60 1.54 

18000 1 S2p1b 0.85 1.25 2.47 5.38 12.50 

 2 P2p1b 0.44 0.64 1.26 2.78 6.48 

 4 P2p1b 0.23 0.32 0.68 1.58 3.79 

 6 P2p1b 0.16 0.23 0.49 1.18 2.86 

30000 1 S2p1b 1.38 2.05 3.95 8.52 19.68 

 2 P2p1b 0.70 1.03 2.00 4.39 10.25 

 4 P2p1b 0.37 0.52 1.05 2.38 5.59 

 6 P2p1b 0.25 0.36 0.74 1.71 4.09 

 

 

Table 9: Execution times (seconds) of 3p1b for 

solving Problem 2 for interval [0, 5] 

   TOL 

N P MTD 210−  410−  610−  810−  1010−  
6000 1 S2p1b 0.35 0.44 0.67 1.10 1.88 

 2 P2p1b 0.21 0.26 0.42 0.73 1.29 

 4 P2p1b 0.11 0.13 0.24 0.45 0.83 

 6 P2p1b 0.08 0.10 0.19 0.37 0.70 

18000 1 S2p1b 1.28 1.58 2.27 3.58 5.94 

 2 P2p1b 0.65 0.80 1.16 1.88 3.15 

 4 P2p1b 0.33 0.40 0.62 1.03 1.78 

 6 P2p1b 0.24 0.29 0.44 0.77 1.34 

30000 1 S2p1b 2.14 2.66 3.78 5.93 9.75 

 2 P2p1b 1.08 1.34 1.90 3.00 4.95 

 4 P2p1b 0.54 0.67 0.97 1.57 2.65 

 6 P2p1b 0.38 0.45 0.68 1.12 1.92 

    

 

Table 10: Speed-up of 2p1b for solving Problem 1 
  TOL 

N P 210−  410−  610−  810−  1010−  

6000 2 1.66 1.60 1.54 1.44 1.40 

 4 3.51 3.36 2.59 2.27 2.13 

 6 5.00 4.62 3.32 2.75 2.53 

18000 2 1.93 1.99 1.90 1.87 1.83 

 4 3.79 3.92 3.61 3.43 3.32 

 6 5.35 5.42 5.16 4.63 4.44 

30000 2 1.99 1.99 1.94 1.92 1.90 

 4 3.87 3.95 3.76 3.59 3.51 

 6 5.44 5.59 5.31 4.99 4.81 

 

It is noted in Table 10 – 15 that the speed-up and 

efficiency by using two, four and six processors 

have improved as the number of equations 

increased.  

Fig. 4 – 5 shown that the speed-up improved as the 

number of equations increased. 
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Fig. 4 Speed-up of 2p1b at TOL=
1010−  

for solving Problem 1 

 

 

Fig. 4 Speed-up of 3p1b at TOL=
1010−  

for solving Problem 1 

 

Table 11: Speed-up of 3p1b for solving Problem 1 
  TOL 

N P 210−  410−  610−  810−  1010−  

6000 2 1.60 1.74 1.59 1.52 1.46 

 4 3.36 3.61 2.77 2.45 2.23 

 6 4.62 5.22 3.75 3.04 2.71 

18000 2 1.92 1.94 1.88 1.82 1.82 

 4 3.80 3.97 3.72 3.47 3.33 

 6 5.70 5.75 5.27 4.79 4.47 

30000 2 1.99 1.98 1.98 1.98 1.96 

 4 3.91 3.97 3.93 3.78 3.67 

 6 5.77 5.87 5.68 5.37 5.08 

 

In general, the speed-up varying for 2p1b from 1.39 

to 1.99 when using two processors, 2.10 to 3.95 

when using four processors and while using six 

processors the speed-up varying from 2.47 to 5.69 

for solving Problem 1 and 2. For example, in 

solving Problem 1 the maximum speed-up and 

efficiency gained by the parallel performance of the 

P2p1b using 6 processors is 2.75 [46%], 4.63 [77%] 

and 4.99 [83%] respectively at TOL =
810− when 

N=6000, 18000 and 30000.  

 

Table 12: Speed-up of 2p1b for solving Problem 2 
  TOL 

N P 210−  410−  610−  810−  1010−  

6000 2 1.57 1.57 1.50 1.41 1.39 

 4 3.14 3.30 2.56 2.22 2.10 

 6 4.44 4.71 3.14 2.67 2.47 

18000 2 1.93 1.95 1.96 1.94 1.93 

 4 3.70 3.90 3.63 3.41 3.30 

 6 5.31 5.43 5.04 4.56 4.37 

30000 2 1.97 1.99 1.98 1.94 1.92 

 4 3.73 3.94 3.76 3.58 3.52 

 6 5.52 5.69 5.34 4.98 4.81 
 

Table 13: Speed-up of 3p1b for solving Problem 2 
  TOL 

N P 210−  410−  610−  810−  1010−  

6000 2 1.66 1.69 1.59 1.50 1.45 

 4 3.18 3.38 2.79 2.44 2.26 

 6 4.37 4.40 3.52 2.97 2.68 

18000 2 1.96 1.97 1.95 1.90 1.88 

 4 3.87 3.95 3.66 3.47 3.33 

 6 5.33 5.44 5.15 4.64 4.43 

30000 2 1.98 1.98 1.98 1.97 1.96 

 4 3.96 3.97 3.89 3.77 3.67 

 6 5.63 5.91 5.55 5.29 5.07 

 

      In 3p1b, the speed-up varying from 1.45 to 1.98 

when using two processors, 2.23 to 3.97 when using 

four processors and while using six processors the 

speed-up varying from 2.47 to 5.91 for solving 

Problem 1 and 2.  

   Better speed-up and efficiency can be achieved by 

increasing the dimensions of ODEs. 

 

 

Table 14: Efficiency (%) of 2p1b for  

solving Problem 1 

  TOL 

N P 210−  410−  610−  810−  1010−  

6000 2 94 80 77 72 70 

 4 100 84 65 57 53 

 6 93 77 55 46 42 

18000 2 97 99 95 94 92 

 4 95 98 90 86 83 

 6 89 90 86 77 74 

30000 2 99 99 97 96 95 

 4 97 99 94 90 88 

 6 91 93 89 83 80 
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Table 15: Efficiency (%) of 3p1b for  

solving Problem 1 

  TOL 

N P 210−  410−  610−  810−  1010−  

6000 2 80 87 79 76 73 

 4 84 90 69 61 55 

 6 77 87 62 50 45 

18000 2 96 97 94 91 91 

 4 95 99 93 86 83 

 6 95 96 87 79 74 

30000 2 99 100 99 99 98 

 4 97 99 98 94 91 

 6 96 98 94 89 84 

 

Table 16: Efficiency (%) of 2p1b for solving  

Problem 2 

  TOL 

N P 210−  410−  610−  810−  1010−  

6000 2 79 79 75 71 70 

 4 79 83 64 56 53 

 6 74 79 52 45 41 

18000 2 97 98 98 97 97 

 4 93 98 91 85 83 

 6 89 91 84 76 73 

30000 2 99 99 99 97 96 

 4 94 99 94 90 88 

 6 92 95 89 83 80 

 

   

Table 17: Efficiency (%) of 3p1b for  

solving Problem 2 

  TOL 

N P 210−  410−  610−  810−  1010−  

6000 2 83 84 79 75 72 

 4 79 84 69 61 56 

 6 72 73 58 49 44 

18000 2 98 98 97 95 94 

 4 96 98 91 86 83 

 6 88 90 85 77 73 

30000 2 99 99 99 98 98 

 4 99 99 97 94 91 

 6 93 98 92 88 84 

 

In Table 14 – 17, the results show that the 

performance of the parallel system improved when 

solving large systems of ODEs.  

   We also could observe that as the number of 

processors increased for solving the same number of 

equations, the efficiency has slightly decreased. This 

is expected since the communication among the 

processors has increased and this has affected the 

parallel performance. The parallel performance 

improved as the workload increases. 

5 Conclusion 
    In this paper we have proposed a parallel 

algorithm for solving large system of ODEs based 

on 2-point and 3-point block method. The code has 

shown the superiority of the parallelism across the 

system when using large-scale problems. The 

numerical results show that the speed-up improves 

as the problem size increases.  
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