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Abstract: - A mathematical model using either mean-field approximation or pair approximation has both 
advantage and limitation. Mean-field approximation is suitable for describing behaviors of a large system; 

however, it neglects the scale of individual interaction. On the other hand, pair approximation is suitable for 

studying local interaction especially singles and pairs; however, the mathematical formulas are still limited. 

Thus, choosing the right model for the right purpose is recommended. The objective of this paper is to develop 

the techniques of pair approximation by using probability averaged value based on probability distribution; for 

example, multinomial distribution and Poisson distribution. These extended formulas are suitable for a model 

composed of individuals whose event rates are additionally affected by their nearby neighbor. Finally, we apply 

these tools to a simple SIS epidemic model.  
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1 Introduction 
Ecology, derived from Greek, is the study dealing 

with the interaction ships between organisms and 

their environment, including the interaction between 

each other [1]. Mathematical theories have been 

contributed successfully to all fields of ecology. 

Among them, population dynamics has the longest 

history. The population of each species is usually 

described by concentration that varies in space and 

time. The real-world phenomenon concerning with 

the surprising time scales are studied in [2]-[5]. 

However, in this paper, we mainly focus on spatial 

model. In the early models, interactions were based 

on the mass-action law. In other word, the spatial 

interaction neither exists nor plays an important 

role. Consequently, the model is typically 

represented by ordinary differential equations or 

mean-field model.  

In recent years, the effect of spatial structure is 

frequently taken into account in many ecological 

interactions such as predation, resource competition, 

parasitism, and epidemics [6]. Together with 

sufficient accumulation of mathematical knowledge, 

new mathematical methods are crystallized. Pair-

wise model was first used to explain population 

dynamics by Matsuda et al. [7] in 1992. His model 

is composed of an ordinary differential equation 

where the global and the local densities are the state 

variables. In this paper, we call his method the 

ordinary pair approximation (OPA). Since then, the 

Japanese researchers have continuously published 

theoretical results and applications in biological 

phenomena [8]-[14]. On the other side of the world, 

Rand, however, establishes a slightly different 

approach [15]. He derives master equations where 

the number of sites, the number of pairs, the number 

of triples, and the number of the paths greater than 

three are the state variables. Obviously, there is an 

infinite hierarchy of equations. Thus the truncation 

of higher order terms is really in need. That is a 

reason why a moment closure approximation has 

been developed. Then correlation equations are 

finally obtained. Pair approximation, the first order 

of moment closure approximation, has a vast 

potential for applications because the interactions 

among each other is usually considered. It has 

provided an attractive framework for studying 

epidemiology [16]-[20], ecology [21]-[23], and 

evolution [24], [25].  

In order to contribute theoretical results precisely 

and understandably, we introduce some notations, 

definitions, and concepts required throughout this 

paper in section 2. In section 3, we provide the 

formulation of pair approximation by using new 

approach (NPA). Here, the results is the extended 

version of [26]. Next we apply the NPA to a simple 

SIS model in section 4. Finally, we discuss the 

results and draw conclusion.  
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2 Preliminaries  
In this section we introduce some useful notations, 

definitions, and concepts required for this work.  

 

2.1 Notations and Definitions 
Under a given configuration ( )kσ σ=  where 

{ , }k x e∈ , the following notations are defined. 

xσ   means the state of the site or the 

individual x , 

eσ   means the state of the pair or the 

edge e , 

x iσ =   means that the state of the 

individual x is i , 

e ijσ =   means that one end of the edge e  is 

in state i , 
i
e , while the other is in 

state j , j
e , 

[ ],[ ],[ ]i ij ijk  are the number of sites, edges, and 

triples in state i , ij , and ijk , 

respectively, 

:
[ ]

l m
l  means the number of site x  which 

are in state l and have ( )
x

Q l m= , 

( )
x

Q i   is the number of neighbors of the 

sites x  which are in state i , 

x
Q  is the number of neighbors of the 

sites x , 

( )
je

Q i   is the number of neighbors of the 

sites 
j

e  which are in state i ,  

x x i
Z

σ =
  is the average of quantity 

x
Z  over 

all individuals x  which are in state 

i , 

ie e ij
Z

σ =
  is the average of quantity 

ie
Z over 

all edges e  which are in state ij , 

( )x x j
Q i

σ =
 is the average value of the number 

of i -state neighbors of a j -state 

site,  

:
( )

x l m
Q i  means the average of quantities 

( )
x

Q i  over subsets of the population 

when ( )
x

Q l m= , 

( )
je e jk

Q i
σ =

 is the average value of the number 

of i -state neighbors of a j -state 

site in a jk -state edge, 

Q   is the average number of neighbors, 

N   is the total population size,  

i
q   equals [ ] /i N , and 

|i j
q   equals [ ] [ ]ij Q j . 

 

In this framework, space is represented by a 

network of sites. Each site can either be occupied by 

an individual or remains as an empty site that is still 

available for an individual to occupy. Two sites are 

neighbors when they regularly interact with each 

other. Joining these two neighboring sites performs 

an edge or pair. A line is used for this interaction. 

The sites, edges, and states are visualized in Fig. 1. 

                  
Fig. 1 , ,x i y j e ijσ σ σ= = = . 

 

In addition, the order of singleton, pair, and triple 

is one, two, and three, respectively. We also show 

how to count singleton, pair, and triples in Fig. 2. 

There are 11 sites, representing state I 6 sites and 

state S 5 sites. More importantly, the counting 

direction is considered.  

 

 
Fig. 2 [ ] 6I = , [ ] 5S = , [ ] [ ] 5IS SI= = ,  

[ ] 2II = , [ ] 2SIS = . 

 

This idea also applies to quadruple and so on. 

 

2.2 Master and Correlation Equations 
Let f be a real-valued function of the state of the 

network at time t, which can be approximated as 

continuous. The equation f is derived by summing 

over all events in the population which affect f and 

the total change produced by those events is 

( )
events

df
r f

dt
ε

ε

ε
∈

= ∆∑  

where ( )r ε  is the rate of event ε  and fε∆  is the 

change produced in f by event ε . It is called the 
master equation. 

Our correlations are microcorrelations which can 

be measured on the scale of the interactions of 

individuals. After approximating higher order terms 

in master equations, we obtain a system of ordinary 

differential equation which composed of density of 

lower order terms, known as correlation equations. 

Moreover, the approximation technique is called the 

moment closure approximation. For instant, pair 

approximation, the first order of moment closure 

i j 

x y 

I 

I 

I 
I 

I 
S S 

S 

S 
S 

I 
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approximation, truncates triples and higher order 

terms as functions of singletons and pairs only.  

 

2.3 Probability Distribution 
Through out this paper, we focus only on two well-

known probability distributions that are multinomial 

distribution and Poisson distribution. 

 

2.3.1 Multinomial Distribution 
The multinomial distribution is an extension of the 

binomial distribution. In general, a population is 

supposed to contains items of k  different types with 

2k ≥ , and the proportion of items in the population 

that are of type i is 
i
p  when 1,...,i k= . It is also 

assumed that 0
i
p >  for 1,...,i k=  and 

1
1

k

ii
p

=
=∑ . 

Let 
i

M  denote the number of selected items that are 

of type i when 1,...,i k= .  

If 
1

( ,... )
k

M M M=  has a multinomial distribution 

together with parameters n  and 
1

( ,..., )
k

p p p= , then 

the following probability can be calculated by using 

this formula 

1

1 1 1

1

Pr( ,..., )
,...,

kmm

k k k

k

n
M m M m p p

m m

 
= = = ⋅⋅⋅ 

 
 

where  

1 1

!

,..., ! !k k

n n

m m m m

 
= 

⋅⋅ ⋅ 
. 

Moreover, ( )
i i

E M np=  and ( ) (1 )
i i i

Var M np p= −  for 

1,...,i k= . 

 

2.3.2 Poisson Distribution 
It is said that P has a Poisson distribution with 

parameter λ  where 0λ >  if P has a discrete 

distribution with probability function 

; 0,1,...
( ) Pr( ) !

0 ;otherwise

me
m

f m P m m

λλ−
=

= = = 


 

In fact the value of both mean and variance is λ . 

 

 

3 Formulation of Pair Approximation 
In general, a population network can be constructed 

over a regular d-dimensional lattice model whose 

site can be occupied by an individual carrying only 

one of many different states. An unoccupied or 

empty site, sometimes, is considered. Each site also 

interacts with other nearby sites.  

In our system, there are n individuals carrying k  

different types of population with 2k ≥ . Each of 

them has Q  neighbors. The following symbols can 

be noticed through out this paper. For 1,...,i k= , 
i

M , 

i
m , and 

i
p  mean each type of the population, the 

number of each type, and the proportion of each 

type in the population, respectively.  

Before contributing theoretical results, we need 

to set up three useful assumptions. The first two 

assumptions imply that ( )
ie

Q k  and ( )
je

Q k  are 

independent when e ijσ =  while the last one implies 

that the space average and the probabilistic average 

are identical. 

 

Assumption 1 For all k , ( )
x

Q k  and ( )
y

Q k  are 

independent when x y≠  because there is no triangle 

and no multiple connections. 

 

Assumption 2 

Pr( ( ) ) Pr( ( ) | ( ) 1)
ie x xQ k q Q k q Q j= = = ≥ . 

 

Assumption 3 (Large N  hypothesis) 

Where the total system size N  is large ( N →∞ ), 

we can identify the configuration averages x x i
Z

σ =
 

and 
e e ij

Z
σ =

, respectively with the P -expectations 

( )
P x

E Z  and 
1
( )

iP eE Z . 

 

Consequently, we can present a new way to 

approximate some special higher order terms that 

the OPA cannot do in the following theorems. 

 

Assumption 4 Assume that 
x

Q Q≡  is independent 

of x  and ( )
x

Q i  with x jσ =  is multinomially 

distributed with parameters Q  and 
i
p  where 

|i i j
p q= . 

 

Theorem 1 
[ ]

( )
[ ]

x x j

ij
Q i

jσ =
= . 

 

Theorem 2 

1 1

1 2

2

| | 1 2

1 2

| | 1 2

!
;

( 2)!
( ) ( )

!
;

( 2)!

i j i j

x x x j

i j i j

Q
Qq q i i

Q
Q i Q i

Q
q q i i

Q

σ =


+ = −

= 
 ≠
 −

. 

 

Theorem 3 
|

|

( 1) ;
( )

( 1) 1 ;j

l j

e
e ij

l j

Q q l i
Q l

Q q l iσ =

− ≠
=  − + =

. 

Theorem 4  

1 1

1 2

2

| | 1 2

1 2

| | 1 2

( 1)!
( 1) ;

( 3)!
( ) ( )

( 1)!
;

( 3)!

j j

l j l j

e e
e ij

l j l j

Q
Q q q l l

Q
Q l Q l

Q
q q l l

Q

σ =

−
− + = −

= 
− ≠

 −

. 
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These theorems have already been proved in 

[25], [26]. According to this approach, we now can 

create more formulas for pair approximation by 

changing probability distribution from multinomial 

distribution to Poisson distribution. Before more 

new theoretical results can be obtained, we have to 

neglect Assumption 4 and consider the following 

assumptions instead. 

 

Assumption 5 Assume that ( )
x

Q i  with x jσ =  is 

Poisson distributed with parameter 
[ ]

[ ]

ij

j
λ =  or 

Poisson(λ ). 

 

Thus, Pr( ( ) )
!

m

x

e
Q i m x j

m

λλ
σ

−

= = =  for 0,1,m = …  

The following lemma is a consequence of this 

assumption. 

 

Lemma 1, Assume that ( )
x

Q i  and ( )
x

Q l  with 
x jσ =  are following Poisson(λ ) and Poisson( µ ), 

respectively where 
[ ]

[ ]

ij

j
λ = , 

[ ]

[ ]

lj

j
µ = , and l i≠ . 

Therefore,   

Pr( ( ) ( ) , )
!

n

x x

e
Q i n Q l m x j

n

λλ
σ

−

= = = =  for 0,1,n = …  

Proof 

 Pr( ( ) ( ) , )
x x

Q i n Q l m x jσ= = =   

=  
Pr( ( ) , ( ) )

Pr( ( ) )

x x

x

Q i n Q l m x j

Q l m x j

σ

σ

= = =

= =
 

 =  
Pr( ( ) )Pr( ( ) )

Pr( ( ) )

x x

x

Q i n x j Q l m x j

Q l m x j

σ σ

σ

= = = =

= =
 

 =  Pr( ( ) )
x

Q i n x jσ= =  

 =  
!

n
e

n

λλ−

             

 

This lemma provides the formula to calculate the 

conditional probability. 

 

Lemma 2 Assume that ( )
x

Q i  with x jσ =  is 

following Poisson(λ ) where 
[ ]

[ ]

ij

j
λ = . Thus 

[ ] [ ]
: !

m

i m

e
l l

m

λλ−

= . 

Proof 

 [ ]
:i m

l  =  count of { }: ( ) ,
x

x Q i m x lσ= =  

  =  [ ]Pr( ( ) )xQ i m x l lσ= =  

  =  [ ]
!

m
e

l
m

λλ−

      

Lemma 3  Assume that 
1 2

( ), ( ), , ( )
x x x k

Q i Q i Q i…  with 

x jσ =  are following Poisson(
1
λ ), Poisson(

2
λ ),…, 

Poisson(
k
λ ), respectively where 

[ ]

[ ]

n

n

i j

j
λ =  for 

1,...,n k= . Then 

[ ]
1 1: , , :k ki m i m

l =
…

[ ]
1 2

1 2( )1 2

1 2
! ! !

k

k

mm m

k

k

e l
m m m

λ λ λλ λ λ − + + +……

…

. 

Proof 

[ ]
1 1: , , :k ki m i m

l
…

      

=  count of { }1 1
: ( ) , , ( ) ,

x x k k
x Q i m Q i m x lσ= = =…              

=  [ ]1 1Pr( ( ) , , ( ) )x x k kQ i m Q i m x l lσ= = =…  

=  [ ]
1 2

1 2( )1 2

1 2
! ! !

k

k

mm m

k

k

e l
m m m

λ λ λλ λ λ − + + +……

…

       

 

This lemma is an extension of the previous 

lemma. These lemmas provide the formula to 

calculate the following probability. 

 

Lemma 4 Assume that ( )
x

Q i  and ( )
x

Q l  with x jσ =  

are following Poisson(λ ) and Poisson( µ ), 

respectively, where 
[ ]

[ ]

ij

j
λ =  and 

[ ]

[ ]

lj

j
µ = . Therefore, 

1

;
!

Pr( ( ) )

;
( 1)!

j

m

e m

e
l i

m
Q l m e ij

e
l i

m

µ

µ

µ

σ
µ

−

− −


≠

= = = 
 =
 −

. 

Proof 

Pr( ( ) )
je

Q l m e ijσ= = =  
[ ]
[ ]

::
( )

( )

x l ml m

x x j

j Q i

j Q i
σ =

 

 

In case that l i≠ , 

Pr( ( ) )
je

Q l m e ijσ= =    

=  
[ ]

: 1

1

Pr( ( ) ( ) , )

[ ]
Pr( ( ) )

x x

l m k

x

k

k Q i k Q l m x j
j

j
k Q i k x j

σ

σ

∞

=
∞

=

= = =

= =

∑

∑
      

=  
!

m
e

m

µµ−

          

 

In case that l i= , 

Pr( ( ) )
je

Q l m e ijσ= =    

=  
[ ]

:

1

[ ]
Pr( ( ) )

l m

x

k

j m

j
k Q l k x jσ

∞

=

= =∑
             

=  
1

( 1)!

m
e

m

µµ− −

−
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Lemma 5 Assume that 
1

( )
x

Q l  and 
2

( )
x

Q l  with 

x jσ =  are following Poisson(
1
µ ) and Poisson(

2
µ ), 

respectively where 1

1

[ ]

[ ]

l j

j
µ =  and 2

2

[ ]

[ ]

l j

j
µ = . Thus, 

1 2Pr( ( ) , ( ) )
j je eQ l m Q l n e ijσ= = =  equals one of the 

following values: 

1. 0    when 
1 2
l l=  butm n≠ . 

2. 1Pr( ( ) )
je

Q l m e ijσ= =   when 
1 2
l l=  and m n= . 

3. 
1 2( ) 1

1 2

( 1)! !

m ne

m n

µ µ µ µ− + −

−
 when 

1 2
l l≠  and 

1
l i= . 

 For the case 
2
l i= , swapping m and n . 

4. 
1 2( )

1 2

! !

m ne

m n

µ µ µ µ− +

 when 
1 2
l l≠  and both state 

1
l and 

2
l  are not as same as 

state i . 

Proof 
(1-2) obviously follow from the probability 

definition.  

(3-4) is similar to the previous lemma. 

 

Lemma 6 Assume that the state 
1
, ,

k
l l…  are different 

and 
1

( ), , ( )
x x k

Q l Q l…  with x jσ =  are following 

Poisson(
1
µ ),…,Poisson(

k
µ ), respectively where 

[ ]

[ ]

n

n

l j

j
µ =  for 1,...,n k= . Therefore, the probability 

1 1Pr( ( ) , , ( ) )
j je e k kQ l m Q l m e ijσ= = =…  equals one of 

the following values: 

1. 
1 1( )

1

1
! !

k kmm

k

k

e

m m

µ µ µ µ− + +…
⋯

⋯

  when none of state 

1
, ,

k
l l…  equal i . 

2. 
1 1( ) 1

1

1
! ( 1)! !

k kr mm m

r k

r k

e

m m m

µ µ µ µ µ− + + −

−

…

⋯ ⋯

⋯ ⋯

 when 
r
l i= . 

Proof 
By mathematical induction. 

 

 The following two theorems are concerned with 

calculating averages. 

 

Theorem 5 Assume that ( )
x

Q l  with x jσ =  is 

following Poisson( µ ) where 
[ ]

[ ]

lj

j
µ = . Then 

;
( )

1 ;je e ij

l i
Q l

l iσ

µ
µ=

≠
= 

+ =
 

Proof 

( )
je e ij

Q l
σ =

 =  
1

Pr( ( ) )
je

k

k Q l k e ijσ
∞

=

= =∑   

 

If l i≠ , using Lemma 4 and Taylor series expansion 

( )
je e ij

Q l
σ

µ
=
= . 

 

If 
1
l i= , using Lemma 4 and the fact that 

1

1 ( 1)!

k

k

k
e e

k

µ µµ µ
∞

−

=

= +
−∑  ,  

( )
je e ij

Q l
σ =

1µ= + . 

 

Theorem 6 For both 
1
l  and 

2
l ≠  i , assume that 

1
( )

x
Q l  and 

2
( )

x
Q l  with x jσ =  are following 

Poisson(
1
µ ) and Poisson(

2
µ ), respectively where 

[ ]

[ ]

n

n

l j

j
µ = . Consequently, 

1 2 1 2

1 2

1 1 1 2

;
( ) ( )

( 1) ;j je e
e ij

l l
Q l Q l

l lσ

µ µ
µ µ=

≠
= 

+ =
 

Proof 

1 2( ) ( )
j je e

e ij
Q l Q l

σ =
 

=  
1 2

1 1

Pr( ( ) , ( ) )
j je e

m n

mn Q l m Q l n e ijσ
∞ ∞

= =

= = =∑∑ .          

 

For 
1 2
l l≠ , using Lemma 5 and Taylor series 

expansion, 

1 2( ) ( )
j je e

e ij
Q l Q l

σ =
=  

1 2
µ µ . 

 

For 
1 2
l l= , using Lemma 2 and the fact that 

2

1 1 1

1 ( 1)!

m

m

m
e e

m

µ µµ µ µ
∞

=

= +
−∑ , 

1 2( ) ( )
j je e

e ij
Q l Q l

σ =
=  

1 1
( 1)µ µ + . 

 

After developing NPA, we need to see how the 

average calculation works and check its validity. 

The SIS epidemic model is a relatively simple 

problem to begin with.  

    
 

4 The SIS Spatial Model 
The simple SIS epidemic model is a good example 

to see the usefulness of NPA. As usual, the simple 

SIS model can be separated into two possible states, 

that is, S  (a susceptible individual) and I  (an 

infective individual). The state of each site and edge 

can evolve over time according to two major types 

of events such as infection and recovery. Clearly, 

infection is an edge event. It changes the state 

e SIσ =  of the edge e  into the state 'e IIσ =  at the 

rate β . However, recovery is a site event. It 

changes the state x Iσ =  of a site x  into the state 

' x Sσ =  at the rate δ . 
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Therefore, the master equations can be derived as 

follows. 

[ ]
x I e SI

d S

dt σ σ
δ β

= =
= −∑ ∑  

[ ]
x I e SI

d I

dt σ σ
δ β

= =
= − +∑ ∑  

[ ]
( ) ( ( ) ( ))

( )

S Sx e ex I e SI

xx I

d SI
Q S Q S Q I

dt

Q I

σ σ

σ

δ β

δ

= =

=

= − + −

+

∑ ∑

∑
[ ]

2 ( ) 2 ( )
Sx ex I e SI

d SS
Q S Q S

dt σ σ
δ β

= =
= −∑ ∑  

[ ]
2 ( ) 2 ( )

Se xe SI x I

d II
Q I Q I

dt σ σ
β δ

= =
= −∑ ∑  

 

However, the human-to-human transmission of 

Swine Flu usually occurs by inhalation of infectious 

droplets and droplet nuclei, and by direct contact, 

which is facilitated by air and land travel and social 

gatherings [27]. Therefore, the transmission rate and 

the recovery rate could vary depending on the 

surrounding infectious people. In other word, we 

able to write the infection rate and the recovery rate 

as 0 1 ( )
Se

b bQ Iβ = +  and 
0 1

( )
x

d d Q Iδ = − , respectively 

where 
0 1 0 1
, , ,b b d d  are constant. Moreover, according 

to the concept of space average, 

( ) [ ] ( )x x x jx j
Q i j Q i

σσ ==
=∑  

and  

( ) [ ] ( )
j je ee jk e jk

Q i jk Q i
σ σ= =

=∑  

Consequently, the master equations can be rewritten 

in the average forms instead of the summation terms 

as shown below. 

0 1 0

1

[ ]
[ ] [ ] ( ) [ ]

[ ] ( )
S

x x I

e
e SI

d S
d I d I Q I b SI

dt

b SI Q I

σ

σ

=

=

= − −

−
 

0 1

0 1

0 1

0 1

[ ]
[ ] ( ) [ ] ( ) ( )

[ ] ( ) [ ] ( ) ( )

[ ] ( ) [ ] ( ) ( )

[ ] ( ) [ ] ( ) ( )

S S S

S S S

x x xx I x I

e e e
e SI e SI

e e e
e SI e SI

x x xx I x I

d SI
d I Q S d I Q I Q S

dt

b SI Q S b SI Q I Q S

b SI Q I b SI Q I Q I
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In order to derive the correlation equations, we 

need pair approximation method. Particularly, if the 

infection rate and the recovery rate are constant, 

then OPA and NPA are obviously identical. 

However, OPA has some limitations in the SIS case. 

Therefore, the following correlation equations are 

obtained by using NPA. 

 

Spatial SIS model: version 1 
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Spatial SIS model: version 2 
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Hence, spatial SIS model: version 1 is based on 

multinomial distribution while spatial SIS model: 

version 2 is based on Poisson distribution. The 

following results mainly provide the behaviour of 

spatial SIS model: version 1. In the similar manner, 

we finally know the behaviour of spatial SIS model: 

version 2. 

 

4.1 Theoretical Results 
Firstly, we neglect spatial structure altogether by 

ignoring the correlation between neighboring sites 

on the lattice [12]. Hence the superscript M, the 

superscript P, and the subscript e symbolize for 

mean-field approximation, pair approximation, and 

equilibrium, respectively. 

 

4.1.1 Mean-field Approximation 

In this case, it implies that the local density ( |i jq ) 

equals the global density (
iq ). Consequently, we 

obtain fewer equations. The following equation is 

the change of infectious people 

3 2 2

1 1 0 1 1

0 1 0

[ ]
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where 
0 1 1

( 2)L b Q bQ Q d Q= − + − + .  

 

4.1.2 Pair Approximation 
Instead of neglecting the difference between the 

local and the global densities. We can also search 

for the equilibrium in the same manner. 
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0b = , the equilibrium equations are 
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     (3) 

Unluckily, we cannot obtain the explicit form of the 

equilibrium point when 
1

0b ≠ .   

 

4.2 Numerical Results 
In this section we mainly investigate the density of 

infected individuals, defined by 
i
q = [ ] /I N , along 

the time series. Consequently, we have to modify 

(1) in subsection 4.1.1 by dividing N both sides. The 

upcoming figures indicate the asymptotic behaviour 

of solutions of the modified equation.  

In case that the infection rate and the recovery 

rate are not affected by the surrounding infectious 

individuals, that is, 
1 1

0, 0b d= = , the solution curves 

are visualized in Fig. 3 with the fixed parameters 

0 0
0.3, 0.2b d= =  and the varying parameter 

1,2,4,8Q = . Obviously, the highest solution curve 

occurs when 8Q =  which means that the more 

neighbours, the higher density of infected 

individuals at the equilibrium point.  

In case that only the infection rate is affected by 

the surrounding infectious individuals, that is,  

1 1
0, 0b d≠ = , Fig. 4 shows the solution curve when 

0 0
0.3, 0.2, 4b d Q= = =  are fixed and 

1
b  is assigned 

with the following values 0.9,0.3,0.05,0.01 . The 

highest solution curve occurs when 
1

0.9b =  

implying that the stronger effect of the surrounding 

infectious individuals on the infection rate, the 

higher density of infected individuals at the 

equilibrium point.  

In case that only the recovery rate is affected by 

the surrounding infectious individuals, that is,  

1 1
0, 0b d= ≠ , the solution curves are then illustrated 

in Fig. 5 with the fixed parameters 
0

0.3b = , 
1

0b = , 

0
0.2d = , 4Q =  and the varying parameter 

1
d =  

0.05,0.04,0.02,0 . The highest solution curve occurs 

when 
1
d =  0.05  referring that the stronger effect of 

the surrounding infectious individuals on the 

recovery rate, the higher density of infected 

individuals at the equilibrium point. 

In case that the infection rate and the recovery 

rate are affected by the surrounding infectious 
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individuals, that is, 
1 1

0, 0b d≠ ≠ . Fig. 6 shows the 

effect of the surrounding infectious individuals. The 

solution curves are obtained by setting 
0

0.3b = ,  

1
0.1b = , 

0
0.2d = , 

1
0.01d =  and 8, 4, 2, 1.Q =  The 

highest solution curve occurs when 8Q = .  

We, finally, compare numerically the qualitative 

behaviors of two versions of spatial SIS models for 

a particular value of each parameter. In Fig. 7, the 

densities of infected individuals in both spatial SIS 

models asymptotically tend to different equilibrium 

points. However, they are quite close to each other. 

In addition, the greater value of Q, the closer these 

two equilibrium points are.  

 

 
Fig. 3 Time evolution of the density of infected 

individuals 
i
q . Parameters: 

0
0.3b = , 

1
0b = , 

0
0.2d = , 

1
0d =  and 8,4,2,1Q =  (from top to bottom, 

respectively).  

 
Fig. 4 Time evolution of the density of infected 

individuals 
i
q . Parameters: 

0
0.3b = , 

0
0.2d = , 

1
0d = , 

4Q =  and 
1

0.9, 0.3,0.05,0.01b =  (from top to bottom 

respectively).  

 
Fig. 5 Time evolution of the density of infected 

individuals 
i
q . Parameters: 

0
0.3b = , 

1
0b = , 

0
0.2d = , 

4Q =  and
1

0.05,0.04,0.02,0d =  (from top to bottom 

respectively).  

 

 
Fig. 6 Time evolution of the density of infected 

individuals 
i
q . Parameters: 

0
0.3b = ,  

1
0.1b = , 

0
0.2d = , 

1
0.01d =  and 8, 4, 2, 1Q =  (from top to bottom 

respectively).  

 

Not only do we focus on equations in subsection 

4.1.1, but we also observe the behaviour of system 

in subsection 4.1.2 by comparing the numbers of 

infected individuals and links between two infected 

individuals at the equilibrium point. For example, 

we could enter the following parameter values 

0 0 1 1
0.3, 0.2, 0, 0.01, 4, 100b d b d Q N= = = = = =  into 

(2) and (3). After some calculations, we obtain 

[ ] 85P

e
I ≈  and [ ] 294P

e
II ≈ . Obviously, [ ] [ ]P P

e e
I II<  

implying that the infected individuals prefer staying 

close together or tend to be clumped spatially. 
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Fig. 7 The time series solution curves of the density of 

infected individuals 
i
q . Parameters: 

0
0.3b = , 

1
0.1b = , 

0
0.2d = , 

1
0.01d = , 2Q = . Poisson distribution (top) 

and multinomial distribution (bottom).  

 

 

5 Conclusion 
Due to the limitation of OPA, we need to find a 

slightly different path to truncate the special higher 

order terms. Such a method is using average. We 

assume that the population size is large; therefore, 

both space average and probabilistic average are 

identical. It is the main idea we use to develop pair 

approximation method. In this paper, multinomial 

distribution and Poisson distribution are considered. 

Not only useful for a simple SIS epidemic model, 

does this given technique (NPA) is also suitable for 

a model evolving according to the transition rates 

affecting additionally by neighbors. 

Intuitively, people infect flu virus easily from 

their nearby neighbors. The health organization 

usually suggests infectious people to have some rest 

and be away from public places. It implies that if we 

surrounding with more infectious people, then we 

have higher chance to infected and/or lower chance 

to recover as shown in the numerical results.  
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