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Abstract: - The distribution of diseases is one of the most interesting real-world phenomena which can be 

systematically studied through a mathematical model. A well-known simple epidemic model with surprising 

dynamics is the SIS model. Usually, the time domains that are widely used in mathematical models are limited 

to real numbers for the case of continuous time or to integers for the case of discrete time. However, a disease 

pandemic such as an influenza pandemic regularly disappears from a population and then recurs after a period 

of time. Additionally, collecting actual data continuously is time-consuming, relatively expensive, and really 

impractical. It seems that using a continuous-time model to describe observed data may not always be possible 

due to time domain conflict. The purpose of this paper is, therefore, to study the qualitative behavior of SIS 

models on continuous, discrete, and mixed continuous-discrete time scales. We investigate their dynamic 

behavior and examine how this behavior changes in the different time scale domains. We show that the 

dynamic behavior can change in a systematic manner from simple stable steady-state solutions for the 

continuous time domain to complicated chaotic solutions for the discrete-time domain. 
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1 Introduction 
Mathematical modelling has a long and rich history, 

spanning many fields, not only in the physical 

sciences but also in the biological sciences. This 

modelling typically treats time as a discrete variable 

or a continuous variable. For discrete time, a model 

is formulated by difference equation(s), for 

example, [1]-[6]. For continuous time, a model is 

represented by differential equation(s), for example, 

[7]. Unlike physical data, biological data are 

difficult to collect continuously. A variety of time 

measurements (seconds, hours, days, weeks, 

months, or years) are regularly used [8]. Sometimes 

observed data reveal periodic patterns in time series 

[9], [10]. Obviously, the traditional categories of 

time variable as being wholly continuous or wholly 

discrete should be reconsidered and the effects of 

mixed continuous-discrete time scales on the 

behavior of disease models should be examined. 

Fortunately, Stefan Hilger introduced the theory 

of time scales in 1988 in order to unify continuous 

(R ) and discrete (Z ) analysis [11]. Since then, the 

time scales calculus has been gradually developed 

and continuously extended. The time scales calculus 

shares the general ideas of traditional calculus; 

however, it broadens these ideas for use with 
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functions whose time variable can be an arbitrary 

nonempty closed subset of the real numbers. Time 

scales theory has also been used in the study of first 

order dynamic equations [12], first order dynamical 

systems [13]-[15], numerical results [16], and a 

variety of applications, including a plant population 

model [17], economic model [18], predator-prey 

model [19], and West Nile virus model [20].  

An outline of this paper is as follows. Since time 

scale calculus is relatively new and there are many 

notations, definitions, and concepts, we introduce 

some of these important and useful ideas in section 

2. In section 3, an SIS epidemic model is selected as 

a representative of a mathematical model. This 

simple model reveals surprising qualitative 

behaviour even for time domains that are either 

entirely real numbers or entirely integers. We then 

modify the SIS model for time scales that are a 

mixture of continuous and discrete regions. In 

section 4, we give a theoretical analysis of the 

dynamic behaviour of the SIS model on each of the 

different time scales. In section 5, numerical 

solutions of the SIS model on the different time 

scales are presented and the results compared with 

results from the theoretical analysis. Finally, we 

discuss the results and draw conclusions. 

 

 

2 Preliminaries 
In order to explain the later analytical methods more 

clearly, we begin by introducing the main concepts, 

notation and definitions of calculus on time scales. 

 

2.1 Time Scales 
A time scale is an arbitrary nonempty closed subset 

of the real numbers [17], [21]. A time scale is 

usually denoted by the symbol T . Forward and 

backward jump operators are defined by  

( ) inf{ : }t s s tσ = ∈ >T  

and  

( ) sup{ : }t s s tρ = ∈ <T , 

where inf sup∅ = T , sup inf∅ = T  and ∅  denotes 

the empty set. A point t ∈T is called left-dense if 

inft > T  and ( )t tρ = , right-dense if supt < T and 

( )t tσ = , left-scattered if ( )t tρ <  and right-scattered 

if ( )t tσ > .  The set κ
T  is defined to be T  if T  does 

not have a left-scattered maximum m ; otherwise it 

is T  without this left-scattered maximum. All 

definitions are summarized in Table 1. 

 
The graininess function : [0, )µ → ∞T is defined 

by ( ) ( )t t tµ σ= − . The interval notation in time scale 

T  is defined by [ , ] { | }a b t a t b= ∈ ≤ ≤T . 

 

2.2 Delta Derivatives 

The (delta) derivative of :f →T R  at point t κ∈T  

is defined as follows. Assume :f →T R  is a 

function and let t κ∈T . Then ( )f t∆  is defined to be 

the number (provided it exists) with the property 

that for all 0ε > , there is a neighborhood U of t  

(i.e., ( , )U t tδ δ= − + T∩  for some 0δ > ) such that 

( ( )) ( ) ( )( ( ) ) ( )f t f s f t t s t sσ σ ε σ∆− − − ≤ − , 

for all s U∈ . 

Another useful formula for the relationship 

concerning the (delta) derivative is given by 

( ) ( )
lim ( ) 0

( )
( ( )) ( )

( ) 0.
( )

s t

f t f s
if t

t s
f t

f t f t
if t

t t

µ

σ
µ

σ

→
∆

−
= −

=  − >
 −

              (1) 

To avoid separate discussion of the two cases 

( ) 0tµ =  and ( ) 0tµ > , there is another useful 

formula which holds when f  is delta differentiable 

at t κ∈T , namely 

( ( )) ( ) ( ) ( )f t f t t f tσ µ ∆= + .                  (2)  

 

2.3 Integration  
Definition 1 A function :f →T R  is called 

regulated provided its right-side limits exist (finite) 

at all right-dense points in T and its left-sided limits 

exist (finite) at all left-dense points in T .    

Definition 2 A function :f →T R  is called rd-

continuous provided it is continuous at right-dense 

points in T  and its left-sided limits exist (finite) at 

left-dense points in T . The set of rd-continuous 

functions :f →T R will be denoted by 

( ) ( , )
rd rd rd

C C C= =T T R . 

The set of functions :f →T R  that are 

differentiable and whose derivative is rd-continuous 

is denoted by 
1 1 1( ) ( , )
rd rd rd

C C C= =T T R . 

TABLE 1 

CLASSIFICATION OF POINTS 

t right-scattered ( )t tσ<  

t right-dense ( )t tσ=  

t left-scattered ( )t tρ <  

t left-dense ( )t tρ =  

t isolated ( ) ( )t t tρ σ< <  

t dense ( ) ( )t t tρ σ= =  
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Theorem 1 (Existence of Pre-Antiderivatives). Let  

f  be regulated. Then there exists a function F  

which is pre-differentiable with region of 

differentiation D such that  

( ) ( )F t f t∆ =  holds for all t D∈ .  

Definition 3 Assume :f →T R  is a regulated 

function. Any function F as in Theorem 1 is called a 

pre-antiderivative of  f . The indefinite integral of a 

regulated function is defined by 

( ) ( )f t t F t C∆ = +∫ , 

where C is an arbitrary constant and F is a pre-

antiderivative of  f .  

Definition 4 A function :F →T R  is called an 

antiderivative of a rd-continuous function f  if 

( ) ( )F t f t∆ =  for all t κ∈T . If 
0
t ∈T  then 

0

( ) ( )
t

t
F t f s s= ∆∫  for t ∈T . For all ,m n∈T  and 

m n< , the Cauchy integral and the infinite integral 

are defined by 

( ) ( ) ( )
n

m
f t t F n F m∆ = −∫   

and  

( ) lim ( )
n

m mn
f t t f t t

∞

→∞
∆ = ∆∫ ∫ , respectively.  

 

2.4 First-Order Dynamic Equations 
The nontrivial function, ( )z t , is called the solution of 

the dynamic system 

 ( ) ( , ( )),z t f t z t∆ =   nz∈R ,  t ∈T               (3) 

when 1

0
( ) ([ , ) , )n

rd
z t C t∈ ∞

T
R  and satisfies (3). If ( )z t  

also satisfies the initial condition  

0 0
( )z t z= ,                                 (4) 

then ( )z t  is called the solution of initial value 

problem (3) and (4).     

 

2.5 Example 
The theory of time scale is useful not only for 
understanding the relationship between difference 

and differential equations [21], [22] but also for 

understanding time scales that are a combination 

between continuous and discrete time. 

 
Fig.1 Examples of time scales. 

 

 

 

In the case =T R , we have 

( ) ( )t t tσ ρ= =  , ( ) 0tµ = ,  

( ) ( )f t f t∆ ′= , ( ) ( )
n n

m m
f t t f t dt∆ =∫ ∫ ,   

where '( ) ( ) /f t df t dt=  is the right-derivative of 

( )f t . 

Thus, the time scales operators reduce to the 

corresponding continuous operators.  

In the case ,

0

: [ ( ), ( ) ]l h

k

k l h k l h l
∞

=

= = + + +T P ∪  where 

, 0l h >  and 
0

k ∈N , we have 

{ }

0

0

[ ( ), ( ) )

( )

( ) ,

k

k

t if t k l h k l h l

t

t h if t k l h l

σ

∞

=

∞

=


∈ + + +


= 

 + ∈ + +


∪

∪

{ }

0

1

( ( ), ( ) ]

( )

( ) ,

k

k

t if t k l h k l h l

t

t h if t k l h

ρ

∞

=

∞

=


∈ + + +


= 

 − ∈ +


∪

∪

{ }

0

0

0 [ ( ), ( ) )

( )

( ) ,

k

k

if t k l h k l h l

t

h if t k l h l

µ

∞

=

∞

=


∈ + + +


= 

 ∈ + +


∪

∪

{ }

0

0

( ) [ ( ), ( ) )

( )
( ( )) ( )

( ) ,

k

k

f t if t k l h k l h l

f t
f t f t

if t k l h l
h

σ

∞

=∆

∞

=


′ ∈ + + +


= 

− ∈ + +


∪

∪

{ }
0

0

( ) , [ ( ), ( ) ),

( )

( ) ( )

( ), .

n

m

n

m

f t dt if m n k l h k l h l

kf t t

hf m if m k l h l and

n m kσ

 ∈ + + +

 ∈∆ = 
 ∈ + +


= ∈

∫

∫ N

N

 
In the case { : , 0}h hk k h= = ∈ >T Z� Z , i.e., where the 

points are  equally spaced points in time, we have  

( )t t hσ = + , ( )t t hρ = −  , ( )t hµ = ,  

( ) ( )
( )

f t h f t
f t

h

∆ + −
= , 

1

( ) ( )
n

n

m
t m

f t t hf t
−

=

∆ = ∑∫ .  

Therefore, every point is isolated. This time scales is 

considered as discrete and the delta derivative 

operator corresponds to the forward finite difference 

operator (∆ ) and the delta integration corresponds 

to summation. Assume 
0
t ∈T  and it is convenient to 

let 
0

0t > . The time scale interval 
0

[0, )t
T

 is defined 

by 
0 0

[0, ) [0, )t t=
T T

T∩ .  

 

 

, 0h h >

R

P

Z

Z
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3 SIS Epidemic Models on Time 

Scales 
For the SIS epidemic model on time scales T , ( )S t  

represents the number of susceptible individuals at 

time t  and ( )I t  is the number of infectious 

individuals at time t . We assume that the total 

population size is a constant N . Let γ  be the 

recovery rate of an infectious individual who then 

returns to the susceptible population. Then ( )I tγ  

represents the total number of infectious individuals 

who recover per unit time at the time t . Let α  be 

the disease virulence per unit time, i.e., the rate of 

infection of a susceptible person due to contact with 

an infectious person. Then ( / ) ( ) ( )N S t I tα  represents 

the infection rate at which the susceptible 

population contracts the disease at time t . Thus the 

SIS epidemic system for time scales can be written 

in the following form: 

( ) ( ) ( )S t I t S t
N

α
γ∆  

= − + 
 

, ( ) 0S t ≥           (5) 

( ) ( ) ( )I t I t S t
N

α
γ∆  

= − 
 

, ( ) 0I t ≥               (6) 

with positive initial conditions )(0S  and )(0I  

satisfying N0I0S =+ )()( . The total population size 

remains constant and thus 

( ) ( ) ( ( )) ( ( ))S t I t S t I t Nσ σ+ = + =  for 0t ≥ .  

Another assumption is that the population is 

homogeneously mixed at all times. The parameters 

, , Nα γ  are all positive constants.                         

For the continuous time scale, the system 

becomes  

( ) ( )
dS

I t S t
dt N

α
γ 

= − + 
 

, ( ) 0S t ≥           (7) 

( ) ( )
dI

I t S t
dt N

α
γ 

= − 
 

, ( ) 0I t ≥             (8) 

The system can be changed to be a single 

equation by substituting ( ) ( )I t N S t= −  into (7). 

Therefore, 

2 ( ) ( ) ( )
dS

S t S t N
dt N

α
α γ γ= − + +                  (9) 

An exact solution of (9) can be obtained by 

integrating /dt ds using the method of partial 

fractions.  The result is: 

( )0

( )

0

1

( )
1

t

t

C
e N

S t
C e

α γ

α γ

γ
α

−

−

 
− 

 =
 − 

, 

where )/()(
α
γN

SNSC 000 −−=  and 
0

(0)S S= . 

Obviously, the asymptotic behavior of ( )S t for large 

t  is 

( )

N
for

S t

N for

γ
α γ

α
α γ


>

= 
 <

 

Therefore, the solution of (9) is non-oscillatory and 

reaches an equilibrium point.  

For any other time scales, the SIS epidemic 

model is 

           
( ( )) ( ) ( ) ( )

( )
( )

S t S t S t h S t
S t

t h

σ
µ

∆ − + −
= =  

                  ( ) ( )I t S t
N

α
γ 

= − + 
 

, ( ) 0S t ≥ .          (10) 

            
( ( )) ( ) ( ) ( )

( )
( )

I t I t I t h I t
I t

t h

σ
µ

∆ − + −
= =  

            ( ) ( )I t S t
N

α
γ 

= − 
 

, ( ) 0I t ≥ .             (11) 

The system can be changed to a single equation as 

before 

 
2

( ) ( ) ( ) ( )

: ( ( ))

S t S t S t N
N

F S t

α
α γ γ∆ = − + +

=
        (12) 

The equation can also be written as a difference 

equation:  

 
2

( ( )) ( ) (1 ) ( )

: ( ( ))

S t S t S t N
N

f S t

αµ
σ αµ γµ γ µ= + − − +

=
.   (13) 

The continuous time scale is useful for 

mathematical models but the seasonal time scale 

also occurs n the real world. 

 

 
Fig. 2 The number of influenza-associated Pediatric 

Deaths. The data shows periodic outbreaks of disease. [9] 

 

In the case ,

0

: [ ( ), ( ) ]l h

k

k l h k l h l
∞

=

= = + + +T P ∪  where 
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, 0l h > , a solution of (12) is 

( )0

( )

0

1

( )
1

t

t

C
e N

S t
C e

α γ

α γ

γ
α

−

−

 
− 

 =
 − 

, 

where 0

0

0

( )S N
C

N
S

γ
α

−
=

 − 
 

and
0

( ( ))S S k l h= +  

for 
0

[ ( ), ( ) )
k

t k l h k l h l
∞

=

∈ + + +∪  and  

2
(( 1)( 1)) ( ( 1) )

(1 ) ( ( 1) )

S k l S k l l
N

S k l l N

α

α γ γ

+ + = + +

+ − − + + +
 

for { }
0

( )
k

t k l h l
∞

=

∈ + +∪  

 

In the case { : , 0}h hk k h= = ∈ >T Z� Z , the graininess 

function is defined by ( ) ( )t t h t hµ = + − = . The 

analytical solution of (13) for all values of 

parameters is still unknown, although numerical 

solutions can be obtained for any given parameter 

values. Therefore, qualitative analysis is a useful 

tool.  

 

 

4 Qualitative analysis of SIS epidemic 

models  
4.1 Equilibrium Points 

For a natural disease process, each parameter is 

assumed to be positive and each variable is non-

negative. Therefore, the region of interest is 
2{( , ) | 0, 0, }S I S I S I NΓ = ∈ ≥ ≥ + =R

 
The equilibrium point or the steady state (time-

independent) solution is obtained by setting 
*( ( )) ( ) ( ( ))S t S t f S t Sσ = = =  in (13).  

2 ( ) 0S S N
N

α
α γ γ− + + = .                    (14) 

Therefore, 
( )

*

1,2

( )

2

N
S

α γ α γ

α

+ ± −
= . 

There are two equilibrium points for both α γ<  

and α γ> , namely, the disease-free equilibrium 

point * *

1 1
( , ) ( ,0)S I N=  and the endemic equilibrium 

point * *

2 2
( , ) ( / , / )S I N N Nγ α γ α= − . However, this 

second equilibrium point only satisfies the 

conditions 0 ( )S t N< < , 0 ( )I t N< <  when α γ> . 

Consequently, we first consider α γ> .  

 

4.2 Stability 
We consider a first-order dynamic equation in the 

following form: 

( ) ( , ( ))x t F t x t∆ =  

where ( )x t is the value of x  at time t . 

 The conditions for asymptotic stability of 

equilibrium points, *x , are obtained by linearization 

of the equations [23]. For the discrete time scale, the 

condition is that / 1dF dx < , where *x x= , and for 

the continuous time scale, the condition is that the 

real part of 0
dF

dx
< , where *x x= . 

To determine the asymptotic stability of the 

discrete case (13) we look at ( )S t  close to *S  where 
*S  is the equilibrium point and define 

*( ) ( )S t S S t= + ɶ                              (15) 

where ( )S tɶ  is a small quantity termed a perturbation 

of the equilibrium point *S . Then, 
*

*

* *

( ( )) ( ( ))

( ( ))

( ( ))

S t S t S

f S t S

f S S t S

σ σ= −

= −

= + −

ɶ

ɶ

               (16) 

and a Taylor series expansion of ( ( ))f S t  about the 

point *S  gives: 

* * 2

*

( ( )) ( ) ( ) ( ( ))
S

df
f S S t f S S t O S t

dS

 
+ = + + 

 
ɶ ɶ ɶ . 

2( ( ))O S tɶ  is very small and can be neglected. The 

linear approximation for (16) is: 

*

( ( )) ( ) ( )
S

df
S t S t aS t

dS
σ

 
= = 

 
ɶ ɶ ɶ . 

Thus, if 1a < , then the equilibrium point is 

asymptotically stable. 

For the period time scale, 

,

0

: [ ( ), ( ) ]l h

k

k l h k l h l
∞

=

= = + + +T P ∪  

where , 0l h >  and 
0

k ∈N ,  

Consider the continuous interval  

[ ( ), ( ) )t k l h k l h l∈ + + +  

From 2 ( )
dS

S S N
dt N

α
α γ γ= − + +  the equilibrium 

points are 
1,2

,
N

S N
γ
α

= .  

Stability of the steady-state solution on the 

continuous interval is the same as the stability of the 

steady-state solution of the differential equation.  By 

using linearization from (12) and (15), we have  
*

*( ( ))
( ( ))

d S S t
F S S t

dt

+
= +

ɶ
ɶ  

* *

2
* 2

2

( )
( ) ( ) ( ) ...

S S

dS t dF d F
F S S t S t

dt dS dS

  
= + + +       

ɶ
ɶ ɶ  
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( )
( ) ( ) ( )

dS t
S t S t

dt
γ α λ= − =

ɶ
ɶ ɶ  

Therefore, ( ) tS t Ceλ=ɶ ; 0 t l≤ <  
0

(0)S S=ɶ ɶ , 

0
( ) tS t S eλ=ɶ ɶ . 

At t l= ; 
0

( ) lS l S eλ=ɶ ɶ  

At ( )t k l h l= + +  

2
(( 1)( )) ( ( ) )

( 1) ( ( 1) )

: ( ( ( ) ))

S k l h S k l h l
N

S k l l N

G S k l h l

α

α γ γ

+ + = + +

− + − + + +

= + +

 

To find equilibrium point we solve  

2
( ( ) ) ( ( ) )

( 1) ( ( ) )

S k l h l S k l h l
N

S k l h l N

α

α γ γ

+ + = + +

− + − + + +
 

The equilibrium points are 1,2

* ,
N

S N
γ
α

= .  

At 0k = ; 
* *( 1) ( ( ))S S l G S S l+ + = +ɶ ɶ  

             
* *

2
* 2

2
( ) ( ) ( ) ...

S S

dG d G
G S S l S l

dS dS

  
= + + +       

ɶ ɶ  

  
0

( 1) ( 1) ( )

( 1)
l

S l S l

S e
λ

γ α

γ α

+ = − +

= − +

ɶ ɶ

ɶ
 

      ( ) tS t Ceλ=ɶ  

  
( 1)

0

( 1)

( 1)

l

l

S l Ce

S e

λ

λγ α

++ =

= − +

ɶ

ɶ
 

0
( 1)C S e λγ α −= − + ɶ  

( 1)

0
( ) ( 1) tS t S eλγ α −= − +ɶ ɶ  where 1 2 1l t l+ ≤ ≤ + . 

For the general solution  

0

1
( )

k

tS t S e
e

λ
λ

γ α− + =  
 

 where [ ( ), ( ) )t k l h k l h l∈ + + +  

At ( )t k l h= + ,  

( )

0

1
( ( ))

k

k l hS k l h S e
e

λ
λ

γ α +− + + =  
 

 

At ( 1)( )t k l h= + + , 
1

( 1)( )

0

1
(( 1)( ))

k

k l hS k l h S e
e

λ
λ

γ α +
+ +− + + + =  

 
 

Therefore,  

( )1
(( 1)( )) ( ( ))

l h
S k l h e S k l h

e

λ
λ

γ α +− + + + = + 
 

 

The stable equilibrium occurs when 

( )1
1

l h
e

e

λ
λ

γ α +− +  < 
 

 

For example, for 1h =  we can rearrange this 

inequality and obtain 

ln 1
l

γ α

λ

− +
< −  whereλ  is eigenvalue of the 

differential equation on the continuous region of 

length l  

Here Re( )λ γ α= −  

Theorem 2. If the inequalities 2 ( ) 0α γ µ− < − <  

hold, then a disease-free equilibrium point *

1
S N=  is 

locally asymptotically stable. Otherwise, *

1
S N= is 

unstable. 

Proof. For (13), the asymptotic stability is given by   

*
1

*
1

2
(1 )

S N
S N

S
a

N

αµ
αµ γµ

=
=

= + − − 1 ( ) 1µ α γ= + − < . 

Theorem 3. If the inequality 0 ( ) 2α γ µ< − <  holds, 

then an endemic equilibrium point *

2
/S Nγ α=  is 

locally asymptotically stable. Otherwise, *

2
/S Nγ α=  

is unstable. 

Proof. For (13), the stability is determined by 

       *
2

2
(1 ) 1 ( ) 1

S

N
a

N

µα γ
αµ γµ µ γ α

α
= + − − = + − < . 

 

4.3 Initial Conditions 
Lemma 1. For ( ) 1 0α γ µ+ − < , 1γµ <  and α γ> , 

the solutions to the single-population SIS model are 

positive for all initial conditions [0, ]N . 

Lemma 2. The solutions to SIS epidemic model are 

positive for all initial conditions if and only 

if 20 1 (1 )γµ αµ γµ≤ − < < +  and α γ> . 

Proof. It is similar to the proof in [1].  

Lemma 3. For ( ) 1 0α γ µ+ − > , α γ> , and 1γµ > , 

the solutions to the single population SIS model are 

positive for initial conditions 
( 1)

,
N

N
γµ
αµ

 −
 
 

. 

Proposition 1. The solutions of the SIS epidemic 

model of (5) and (6) remain nonnegative and are 

bounded under conditions stated in Theorems 2, 3 

and Lemmas 1-3. 
 

4.4 The Period-Doubling Route to Chaos 
To find the period two cycle, we need to find the 

solutions of ( ( ( )) ( )f f S t S t= . In addition to the 

equilibrium point of (13) given by  

))(())(()( tSftStS == σ , 

there are two more equilibrium points of (13) given 

by  

         )),(()))((()))((()( tSftSfftSftS 2=== σ  

which form a period 2 cycle.     

The two points on the period 2 cycle are 
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( ) ( )2 2

1,2 2 ( ) 4 2S Nαµ γµ α γ µ αµ= + − ± − − . 

The period two cycle exists when the square root is 

real, i.e., when 2>− µγα )( . 

The stability is determined by  
1 2

1
S S S S

a a
= =

< . 

From this condition it can be shown that the period 

2 cycle 
1,2

S  is locally asymptotically stable if 

2 ( ) 6α γ µ< − < , Otherwise the cycle 
1,2

S  is 

unstable. 

To find the period 2n  cycle, let 2 ( ( )) ( )
n

f S t S t=  

and solve for equilibrium points ( Ŝ ). The stability is 

considered by 
1 2
ˆ ˆ ˆ... 1

nS S S S S S
a a a

= = =
< . It is 

extremely complicated, if not impossible, to find 

these higher-order limit cycles by analytical 

methods, and therefore numerical methods are 

useful. 

 

 

5 Numerical Result 
This section shows the numerical solutions for many 

different type of time scales. We begin by looking at 

how the behavior of the solutions changes for a 

combination of continuous and discrete time scales. 

 

5.1 Combination of continuous and discrete 

time scales. 
For the same values of parameters 3.6α = , 

0.9γ = and 100N = , there are various behaviors of 

the solution depending on the values of the 

parameters l  and h . Fig. 3 shows that the positive 

equilibrium is asymptotically stable on the 

continuous time scale 
1,0
P  i.e., for discrete jump 

0h = . Fig. 4 shows that the positive equilibrium on 

time scale 
1,1
P is also asymptotically stable, i.e., for 

continuous region and jump both of length 1. The 

gaps in the solution are due to the discrete time 

jumps µ  of length 1h = . In the real world 

application, the mosquito population increases 

drastically with the onset of heavy rainfall. 

Therefore, the dengue fever has a high in 

transmission in rainy season [24]. Fig. 5 shows that 

the positive equilibrium on time scale 
0.00001,1
P  is 

unpredictable. Fig. 3-Fig. 5 show that as the length 

of the continuous interval increases the positive 

stable equilibrium point is reached more quickly. 

The first jumps in the values of S  in Fig. 4 and Fig. 

5 are the same and are from ( )S t = 23.7578 to 

( 1)S t + =  27.1672.  They are the same because the 

size of the jump in S  is fixed by the S  value before 

the jump is 23.7578 and the length of the time jump 

1h = . However, later jumps in S  in the two figures 

are different because the size of S  at the end of a 

continuous region depends on the length of the 

continuous region. 

 

 
Fig. 3 The time series solution of (12) on time scale 

1,0
P therefore 0µ =  with 3.6α = , 0.9γ = and 100N = . 

The result appears as a non-oscillatory solution. For 

0h = , the time scale is a continuous time scale. 

 

 
Fig. 4 The time series solution of (12) on time scale 

1,1
P therefore 1µ =  with 3.6α = , 0.9γ = and 100N = . 

The result appears as a non-oscillatory solution which is 

similar to the result in Fig. 3 for a continuous time scale. 

The result disappears in some intervals because of the 

discrete time jump. 
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Fig. 5 The time series solution of (12) on time scale 

0.00001,1
P therefore 1µ =  with 3.6α = , 0.9γ = and 

100N = . The result appears unpredictable solution. The 

length of continuous time interval is very small and time 

scale approximates a discrete time scale. 

 

98 100 102 104 106 108 110
0

10

20

30

40

50

60
P(l,h) time scale: l = 0.1  h = 1  alpha value = 3.6  gamma value = 0.9

Time (t)

T
h
e
 n
u
m
b
e
r 
o
f 
s
u
s
c
e
p
ti
b
le
 i
n
d
iv
id
u
a
ls
 (
S
)

 
Fig. 6 The time series solution of (12) on time scale 

0.1,1
P  with 3.6α = , 0.9γ = and 100N = . The result 

appears as a period two cycle with some continuous 

interval. 
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Fig. 7 The time series solution of (12) on time scale 

0.05,1
P  with 3.6α = , 0.9γ = and 100N = . The result 

appears as a period four cycle with some small 

continuous interval. 

 

60 65 70 75 80 85 90 95 100 105
0

10

20

30

40

50

60

70
P(l,h) time scale: l = 0.035  h = 1  alpha value = 3.6  gamma value = 0.9

Time (t)

T
h
e
 n
u
m
b
e
r 
o
f 
s
u
s
c
e
p
ti
b
le
 i
n
d
iv
id
u
a
ls
 (
S
)

  
Fig. 8 The time series solution of (12) on time scale 

0.035,1
P  with 3.6α = , 0.9γ = and 100N = . The result 

appears as a period eight cycle with a very small 

continuous interval. 
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Fig. 9 The time series solution of (12) on time scale 

0.01,1
P  with 1µ =  3.6α = , 0.9γ = and 100N = . The 

result appears unpredictable solution. The length of 

continuous time interval is small. The behavior on this 

time scale is similar to the behavior on a discrete time 

scale. 

 

Fig. 10 shows how the behavior of the solution 

changes as the length of the continuous time region 

is reduced keeping the discrete time jump 

unchanged.  The parameter values are 3.6α = , 

0.9γ = and 100N = . The result is the bifurcation 

path to chaos shown in Fig. 10. Two nontrivial 

equilibria occur until 0.1965l = . 
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Fig. 10 The bifurcation diagram of l . The parameter 

values in (12) are: 3.6α = , 0.9γ = . 

 

We will now look at the discrete time scale case in 

more detail. 

 

5.2 Discrete Time Scales 

In the discrete time scale, the period four cycle can 

be obtained by numerical computation of the 

equilibrium points of 4
( ( )) ( )f S t S t= . For parameter 

values 3.6α = , 0.9γ = , and 100N = , the system of 

dynamic equations has a stable period two cycle 

when (0.740741,0.907218)µ ∈ , and a stable period 

four cycle when (0.907218,0.942256)µ ∈ . 

From [3], [25], the SIS epidemic model can be 

transformed to the discrete logistic model  

( )( ( )) ( ( )) ( ) 1 ( )x t f x t rx t x tσ = = − , 

by the substitutions 
( )

( )
(1 )

I t
x t

N

αµ
γµ αµ

=
− +

 and 

1r γµ αµ= − + . 

r  is a bifurcation parameter in the logistic model 

while µ  is a bifurcation parameter in the SIS 

epidemic model. However, as stated above r  and µ  

are related by 1r γµ αµ= − + .  

0 ( ) 2α γ µ< − <  gives the inequality 

1 1 ( ) 3α γ µ< + − < , which corresponds to the 

condition 1 3r< < , which is the condition for 

asymptotic stability of a non-zero equilibrium point 

for the logistic model. 

From [26], the ratio ( ) ( )1 1n n n n
µ µ µ µ− +− −  is 

equivalent to ( ) ( )1 1n n n n
r r r r− +− − which is called the 

Myrberg or Feigenbaum number δ . 

From analysis (see, e.g., [6]) this ratio 

approaches a constant, 

( ) ( )1 1
0

lim 4.669202n n n n
n

δ µ µ µ µ− +→
= − − ≈  

Since 

( )
( )

( ) ( )( )
( ) ( )( )

( )
( )

11 1

1 11

1 ( ) 1 ( )

1 ( ) 1 ( )

n nn n n n

n n n nn n

r r

r r

α γ µ α γ µ µ µ

µ µα γ µ α γ µ
−− −

+ ++

+ − − + −− −
= =

− −+ − − + −
 

Some numerical estimates of the Feigenbaum 

number are given in Table II. These estimates are, 

however, subject to appreciable numerical errors as 

the limit for δ approaches 0/0. 

    
 

Fig. 11 shows how the solution behavior of (13) 

changes for 3.6α = , 0.9γ = . For (0,0.740741)µ ∈  

the discrete equation has a stable equilibrium point, 

which corresponds with the stable equilibrium point 

of the continuous SIS model. For 1µ = , the solution 

is chaotic. 

As shown in [6] (see also [27]), if there exists a 

period 3 cycle, then there exists chaotic behavior. 

For 3.6α = , 0.9γ = , the bifurcation diagrams show 

a period three cycle for (1.0476,1.0524)µ ∈  and also 

show chaos. 

 
Fig. 11 The bifurcation diagram of µ . The parameter 

values in (13) are: 3.6α = , 0.9γ = . 

 
Fig. 12 The time series solution of (13) with 3.6α = , 

0.9γ = and 100N = . The non-oscillatory solution 

occurs when 0.1µ =  while oscillating period-2 solution 

occurs when 0.8µ = . 

TABLE 2 

The Feigenbaum Constant 

n nµ  
1n nµ µ −−  ( ) ( )1 1n n n n

µ µ µ µ− +− −  

1 0.740741   

2 0.907218 0.166477 4.751327 

3 0.942256 0.035038 4.656831 

4 0.94978 0.007524 4.66685 

5 0.951392 0.001612 4.665595 

6 0.951738 0.000346 4.688442 

7 0.951811 7.37E-05  
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Fig. 13 The time series solution of (13) with 3.6α = , 

0.9γ = , and 100N = . The chaos occurs when 1µ = .   

 
Fig. 14 The x –axis is µ  and y-axis is α . Area I is 

region of stable equilibrium point, area II is region of 

stable period two cycle, and area III is region of stable 

higher period cycles and chaos. Parameter value 0.9γ = .  

 

 

6 Conclusion 
In this paper, the time space of the model is 

important because the behavior is changed in each 

model. For the continuous interval, if it is big 

enough, then the behavior of the model is similar to 

continuous model. If the continuous interval is 

small, then the behavior of the model is close to 

discrete model. Since the collecting of data could 

not be continuous, therefore the discrete model is 

important. The results of the analysis in this paper 

show that for an SIS model, the predictions of the 

model depend critically on the time scales used.  
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