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Abstract: - A scale invariant model of statistical mechanics is applied to describe a modified statistical theory 
of turbulence and its quantum mechanical foundations. Hierarchies of statistical fields from cosmic to Planck 
scales are described. Energy spectrum of equilibrium isotropic turbulence is shown to follow Planck law. 
Predicted velocity profiles of turbulent boundary layer over a flat plate at four consecutive scales of LED, 
LCD, LMD, and LAD are shown to be in close agreement with the experimental observations in the literature. 
The physical and quantum nature of time is described and a scale-invariant definition of time is presented and 
its relativistic behavior is examined.  New paradigms for physical foundations of quantum mechanics as well 
as derivation of Dirac relativistic wave equation are introduced.  
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1 Introduction 
It is well known that the laws of nature appear to 
reveal ever increasing similarities over a broad 
range of scales of space and time from the 
exceedingly large scale of cosmology to the minute 
scale of quantum optics (Fig.1).  The similarities 
between stochastic quantum fields [1-17] and 
classical hydrodynamic fields [18-29] resulted in 
recent introduction of a scale-invariant model of 
statistical mechanics [30], and its application to 
thermodynamics [31] and fluid mechanics [32].   
 More recently, the implication of the model to 
the statistical theory of turbulence [33, 34] was 
investigated.  In the present study the physical 
foundations of the problems of turbulence and 
quantum mechanics are further examined. 
Homogenous isotropic turbulence is identified as a 
spectrum of eddies (energy levels) with Gaussian 
velocity distribution, Planck energy distribution, 
and Maxwell-Boltzmann speed distribution.  The 
nature of dissipation spectrum of isotropic 
turbulence is examined and a derivation of Dirac 
relativistic wave equation is presented. 
 

2 A Scale Invariant Model of 
Statistical Mechanics  
Following the classical methods [35-39] the 
invariant definitions of density , and velocity of 
atom u, element v, and system w at the scale  
are given as [31] 

n m m f du                    1 u v  (1) 

1m f d

    
  v u



 

Similarly, the invariant definition of the peculiar and 
diffusion velocities are introduced as  



u

            
 1 w v  (2) 

  
  V u v         ,         V v w  3 

 

such that   


1 
V V  (4) 



 For each statistical field, one defines particles that 
form the background fluid and are viewed as point-
mass or "atom" of the field.  Next, the elements of the 
field are defined as finite-sized composite entities 
each composed of an ensemble of "atoms" as shown 
in Fig.1.   
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Fig.1 A scale invariant view of statistical mechanics 
from cosmic to tachyon scales.  
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Finally, the ensemble of a large number of 
"elements" is defined as the statistical "system" at 
that particular scale.        
 

3 Scale Invariant Forms of the 
Conservation Equations for 
Chemically Reactive Fields  
Following the classical methods [35-37], the scale-
invariant forms of mass, thermal energy, linear and 
angular momentum conservation equations at scale 
 are given as [40] 
 

 iβ
iβ iβ iβ

βt





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that involve the volumetric density of thermal 

energy , linear momentumi i h   
i i p v 

i

, 

and angular momentum i i    , i i   v . 

Also, i is the chemical reaction rate, ih 
 is the 

absolute enthalpy [40],  
 

 

  

T

iβ piβ β0
h c d  T  (9a)
    

and  is the stress tensor [35] ijP
 

ijβ β iβ iβ jβ jβ β βm (  )(  )f du  P u v u v
                       

(10)
  

 

In the derivation of (7) we have used the definition 
of the peculiar velocity (3) along with the identity 
 
 

i j i i i j j i j i( )( ) j         
      V V u v u v u u v v   (11) 

 
The definition of absolute enthalpy in (9a) results in 

the definition of standard heat of formation 
 

for 

chemical species i [40]  

o

ifβh

 

 

  

oTo
fiβ piβ β0

h c  dT

0



             (9b) 
 

where To is the standard temperature.  The definition 
(9b) helps to avoid the conventional practice of 
arbitrarily setting the standard heat of formation of 
some species equal to zero.  Furthermore, following 

Nernst-Planck statement of the third law of 

thermodynamics one has  in the limit  

as expected. 


βh  βT 0

 

 The classical definition of vorticity involves the 
curl of linear velocity thus giving 

rotational velocity of particle a secondary status in that 
it depends on its translational velocity v.  However, it 
is known that particle’s rotation about its center of 
mass is independent of the translational motion of its 
center of mass.  In other words, translational, 
rotational, and vibrational (pulsational) motions of 
particle are independent degrees of freedom that 
should not be necessarily coupled.  To resolve this 
paradox, the iso-spin of particle at scale  is defined as 
the curl of the velocity at the next lower scale of 
 

 v

 

1 1       v u   (12) 
 

such that the rotational velocity, while having a 
connection to some type of translational motion at 
internal scale  retains its independent degree of 
freedom at the external scale  as desired. A schematic 
description of iso-spin and vorticity fields is shown in 
Fig.2. The nature of galactic vortices in cosmology 
and the associated dissipation have been discussed [25, 
42]. 
 
 

           
 

Fig.2 Description of internal (iso-spin) versus 
external vorticity fields in cosmology [41].  
 
 The local velocity in (5)-(8) is expressed in 

terms of the convective  and the diffusive 

v

w V  

velocities [40]  

 

g   w v V      ,      g ln( )D   V   (13a)

tg   w v V            (13b)tg ln( )   V  

hg   w v V       hg ln( )   V p  (13c) 

rhg   w v V         (13d) rhg ln( )  V π 
 

 

where (Vg, Vtg, Vhg, Vrhg
) are respectively the 

diffusive, the thermo-diffusive, the translational and 
rotational hydro-diffusive velocities.  
 Because by definition fluids can only support 
compressive normal forces, following Cauchy the total 
stress tensor for fluids is expressed as [40] 
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ijβ β ijβ β β ij β lk lk ijp 2 e       P v
  

       
β β β ββ ij ij ijp       v v

 
(14)

  

Making the conventional Stokes assumption, i.e. 
setting the bulk viscosity b to zero, the two Lame 
constants will be related by [43] 
 

β β β

2
0

3
b          (15)  

and (14) reduces to [40] 
 

ij ij ij t h ijp (p
3
 p )        


     P v

 

        (16) 

 

that involves thermodynamic pt and hydrodynamic 
ph pressures [40].  Following the classical methods 
[35-37], by substituting from (13)-(16) into (5)-(8) 
and neglecting cross-diffusion terms the invariant 
forms of conservation equations are written as [40] 
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(19)

i i i2

i i i i

iβ
t 

  

     



 
     



ω ω
+ w ω ω ω w   (20)

 

 The main new feature of the modified form of 
the equation of motion (19) is its linearity due to the 
difference between the convective w versus the 
local velocity v as compared with the non-linear 
classical Navier-Stokes equation of motion 
 

2 p
( )

t

1

3


    




v
+ v v v v 


   (21) 

The convection velocity in (19) must be obtained 
from the solution of the equation of motion for outer 
potential flow at the next larger scale w = v.  One 
further notes that in (19) the absence of convection 
results in none-homogeneous diffusion equation 
while in (21) the absence of velocity leads to the 
vanishing of almost the entire equation of motion 
[40].  Also, the linearity of (19), in harmony with 
Carrier equation [44], resolves the classical paradox 
of drag reciprocity [45, 46].  

 The central question concerning Cauchy 
equation of motion (7) say at  = m is how many 
“molecules” are included in the definition of the 
mean molecular velocity .  One can 

identify three distinguishable cases: (1) When 
mj mj cj
 v u u

cm v u

m m
( ,

 is itself random then all three velocities 

m
, )u v

m

V  in (3) are random in a stochastically 

stationary field made of ensembles of clusters and 
molecules with Brownian motions and hence 
Gaussian velocity distribution, Planck energy 
distribution, and Maxwell-Boltzmann speed 
distribution. If in addition both the vorticity 

m
0  v

m



0

 

m

 as well as the iso-spin (12)  

 u   are zero, then for an incompressible 

flow the continuity equation (5) and Cauchy equation 
of motion (7) lead to Bernoulli equation.  In Section 
7 it will be shown that under the above mentioned 
conditions Schrödinger equation can be directly 
derived from Bernoulli equation such that the energy 
spectrum of the equilibrium field will be governed by 
quantum mechanics and hence by Planck law. (2) 
When 

m c
v

m

u

0

 is not random but the vorticity 

vanishes    the flow is irrotational and ideal, 

inviscid m= 0, and once again one obtains Bernoulli 
equation from (5) and (7) with the solution given by 
the classical potential flow.  (3) When 

m c
v u

m
0

 is not 

random and vorticity does not vanish  v

m
μ 0

β β+1
w v

, the 

rotational non-ideal viscous  flow will be 

governed by the equation of motion (19) with the 
convection velocity  obtained from the 

solution of potential flow at the next larger scale of 
.  In Section 9 it will be shown that the viscous 
equation of motion (19) is associated with Dirac 
relativistic wave equation.  In the sequel, all three 
cases of flow conditions discussed above will be 
examined. 
 

4 A Modified Statistical Theory of 
Turbulence 
The invariant model of statistical mechanics (1)-(4) 
suggests that all statistical fields shown in Fig.1 are 
turbulent fields and governed by (5)-(8) [33, 34]. First, 
let us start with the field of laminar molecular 
dynamics LMD when molecules, clusters of molecules 
(cluster), and cluster of clusters of molecules (eddy) 
form the “atom”, the “element”, and the “system” with 

the velocities .  Similarly, the fields of 
laminar cluster-dynamics LCD and eddy-dynamics 

m m m( ,  , )u v w
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LED will have the velocities , and 

 in accordance with (1)-(2).  For the 
fields of LED, LCD, and LMD, typical 
characteristic “atom”, element, and system lengths 
are 

c c c( ,  , )u v w
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( ,  

( ,

( ,  , L )

 

EED      (22a) 
5 3

e e e, L ) (10 , 10  

ECD     (22b) 7 5

c c c, L ) (10 , 10  

EMD   
 

(22c) 9 7

m m m , L ) (10 , 10  
 

If one applies the same (atom, element, system) = 

  

10 -15

10 -17

10 -19 10 -19

10 -21

10 -23

10 19

10 17

10 15

10 23

10 21

10 19

 relative sizes in (22) to the entire 

spatial scale of Fig.1, then the resulting cascades or 
hierarchy of overlapping statistical fields will 

pear as schematically shown in Fig.3.  ap
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Fig.3 Hierarchy of statistical fields with 

( ,  , L )  

(10 1

( G /

 from cosmic to Planck scales [34].  
 
 

 

According to Fig.3, starting from the hydrodynamic 

scale  after seven generations 
of statistical fields one reaches the electro-dynamic 

scale with the element size , and exactly after 
seven more generations one reaches Planck length 

scale , where G is the 
gravitational constant. Similarly, seven 
generations of statistical fields separate the 

hydrodynamic scale  from the 

scale of planetary dynamics (astrophysics)  and 
the latter from galactic-dynamics 

(cosmology) m. 

3 1 1 30 10 10,  ,  ,  ) 

353 1/ 2c 10) 

3(10 1

3510

1710

m

10 10, , 1 310,  )
1710

 The left hand side of Fig.1 corresponds to 
equilibrium statistical fields when the velocities of 
elements of the field are random since at 
thermodynamic equilibrium particles i.e. oscillators 
of such statistical fields will have normal or 
Gaussian velocity distribution.  For example, for 

stationary homogeneous isotropic turbulence at EED 
scale, the experimental data of Townsend [47] 
confirms the Gaussian velocity distribution of eddies 
as shown in Fig.4. 
 

 
 
 

Fig.4 Measured velocity distribution in isotropic 
turbulent flow [47].  
 
Because at thermodynamic equilibrium the mean 
velocity of each particle, Heisenberg-Kramers virtual 
oscillator [48], vanishes <u> = 0 the energy of 
particle oscillating in two directions (x+, x-) is 
expressed as  
 

2 2
x xm u / 2 m u / 2              

        2 2 1/2 2 1/2
xm u p                   (23) 

 

where m<u2
x>1/2 = <p> is the root-mean-square 

momentum of particle and <u2
x> =<u2

x> by 
equipartition principle.  At any scale , the result (23) 
can be expressed in terms of either frequency or 
wavelength  
 

2 2 1/2 2 1/2
 m u p h                          (24) 

 

2 2 1/2 2 1/2
 m u p k                          (25) 

 

when the definition of stochastic Planck and 
Boltzmann factors are introduced as [33] 
 

2 1/2
 h p                 (26) 

 

2 1/2
 k p                (27) 

 

 At the important scale of EKD (Fig.1) 
corresponding to Casimir vacuum [49] composed of 
photon gas, the universal constants of Planck [50, 51] 
and Boltzmann [31] are obtained from (24)-(25) as 
 

2 1/ 2 34
k k kh h m c 6.626 10       J-s (28) 

 

2 1/ 2 23
k k kk k m c 1.381 10       J/K (29) 

 

Next, following de Broglie hypothesis for the 
wavelength of matter waves [2]  
 

h / p    (30) 
 

the frequency of matter waves is defined as [31] 
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k / p  

h k

23

2
x 



            (31) 
 

When matter and radiation are in the state of 
thermodynamic equilibrium (30) and (31) can be 
expressed as 
 

kh h    ,         (32) kk k  
 
 The definitions (28) and (29) result in the 
gravitational mass of photon [31] 
 
 

3 1/ 2 41
km (hk / c ) 1.84278 10    kg    (33) 

 

that is much larger than the reported value of 

 kg [52].  The finite gravitational mass of 
photons was anticipated by Newton [53] and is in 
accordance with the Einstein-de Broglie theory of 
light [54-58].  Avogardo-Loschmidt number was 
predicted as [31]  

514 10

 

o 2
kN 1/(m c ) 6.0376 10                      (34) 

 

leading to the modified value of the universal gas 
constant  

 
o oR N k 8.338    kJ/(kmol-K)     (35) 

 

 The classical definition of thermodynamic 
temperature that is based on two degrees of 
freedom  
 

2
xkT m u 2m u            (36) 

 

was recently modified to a new definition based on 
single degree of freedom [59] 
 

2
xkT m u              (37) 

 

such that  
 

T 2T               (38) 

 

The factor 2 in (38) results in the predicted speed 
of sound in nitrogen [60] 
 

2 1/2
xa u p / (2 ) 357       m/s     (39) 

 

(  m/s for air) in close agreement with 
observations.  Therefore, the square root of 2 in 
(39) resolves the classical problem of Newton 
concerning his prediction of velocity of sound as 

a 350

 

p /a              (40) 
 

discussed by Chandrasekhar [61]  
 
 

“Newton must have been baffled, not to say 
disappointed.  Search as he might, he could find no 
flaw in his theoretical framework—neither could 
Euler, Lagrange, and Laplace; nor, indeed, anyone 
down to the present” 

 

 The factor of 2 in (38) also leads to the modified 
value of the mechanical equivalent of heat J [59] 
 

cJ 2J 2 4.169 8338    Joules/(kcal)   (41) 

where the value [kJ/kcal] is the 

average of the two values Jc = (4.15, 4.19) reported 
by Pauli [62].  The number in (41) is thus identified 
as the universal gas constant (35) when expressed in 
appropriate MKS system of units  

cJ 4.169 4.17 

 
 

o oR kN 8338        Joules/(kmol-K)       (42) 
 

The modified value of the universal gas constant (42) 
was recently identified [63] as De Pretto number 
8338 that appeared in the mass–energy equivalence 
equation of De Pretto [64] 
 
 

2 2Joules E mc      = mc / 8338    kcal     (43) 

5 Energy Spectra of Isotropic 
Turbulence given by Planck Energy 
Distribution Law  
The field of isotropic homogeneous turbulence is 
identified as equilibrium eddy dynamics EED, Fig.1, 
with turbulent eddies defined as clusters of molecular 
clusters constituting the elements of the field.  In a 
recent investigation [33], it was shown that the 
energy spectrum of eddies in isotropic turbulence is 
governed by invariant Planck energy distribution law 
[33, 50]  
 
 

3

h / kT3

dN 8 h
d

u e 1
 



  




 
 

V
                        (44) 

 
 

schematically shown in Fig.5. 
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n0
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3. μ10-19

4. μ10-19
e n

 
 
Fig.5 Planck energy distribution law governing the 
energy spectrum of eddies at the temperature T = 300 
K. 
      
 From application of Boltzmann distribution of 
molecules in clusters and clusters in eddies it was 
found that [33] 
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h / kT

g

e 1
N




 


                       (45) 

 

that along with Rayleigh-Jeans number for 
degeneracy [51, 65, 66] 
 

3

28
d

u
dg  



 


 

V




                      (46) 

 

and  = h give (44).  It is interesting to examine 
a new perspective of (46) that is related to 
determination of number of degeneracy from field 
quantization [67].  The number of degeneracy of 
particles, Heisenberg-Kramers virtual oscillators 
[48], in spherical volume VS is written as 
 

3
S2g /  V                   (47) 

where 3
  is the rectangular volume occupied by 

each oscillator 3

oV  
2 1/ 2

x y  

 when due to isotropy 

 and the factor 

2 comes from allowing particles to have two modes 
either (up) or (down) iso-spin (polarization). The 
system spherical VS and rectangular V volumes are 
related as 

2 1/2 2 1/2

z      

 

3 3
S

4 4 4
R L

3 3 3

  
  V V                       (48) 

 

 For systems in thermodynamic equilibrium 

the temperature  will be constant 

and hence  or 

23kT m u   
1/2 2 1/2 2

     


2 1/2u  

 

/u                          (49) 
 

Substituting from (48) and (49) into (47) results in 
 

3

38
g

3u

 


 

V
                      (50) 

 

that leads to the number of oscillators between 
frequencies   and d     

3

28
dg d

u

 


  

V
                      (51) 

 

in accordance with (46). 
 With Gaussian velocity distribution, Fig.4, 
the same chain of reasoning as employed in the 
classical kinetic theory of gas requires that the 
distribution of the speeds of oscillators (eddies) in 
stationary isotropic turbulence be given by the 
invariant Maxwell-Boltzmann distribution function  
 
 
 

2m u / 2kTu 3/ 2 2
dN m

4  ( ) u  e du
N 2 kT

   
 



 


         (52) 

 

By (52), one arrives at a hierarchy of embedded 
Maxwell-Boltzmann distribution functions for EED, 
ECD, and EMD scales shown in Fig.6.  
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Fig.6 Maxwell-Boltzmann speed distribution viewed as 
stationary spectra of cluster sizes for EED, ECD, and 
EMD scales at 300 K [33]. 

 
 

 
 To summarize, at equilibrium the statistical 
fields of any scale shown on the left-hand-side of 
Fig.1 will have elements with (a) Gaussian velocity 
distribution, (b) Planck energy distribution, and (c) 
Maxwell-Boltzmann speed distribution. For the 
conventional fields of ECD and EMD, it is well 
known that the conditions (a) and (c) are true and 
because of equilibrium between matter and radiation 
fields it is reasonable to expect that the condition (b) 
above will also apply to LCD and LMD.  At the scale 
of LED, the conditions (a) shown by Townsend’s 
data in Fig.4 and hence condition (c) are known to 
hold.  Preliminary examination of the three-
dimensional energy spectrum E(k) for isotropic 
turbulence measured by Van Atta and Chen [68] in 
Fig.7 
 
 

     
 
 

Fig.7 Normalized three-dimensional energy spectra for 
isotropic turbulence [68]. 
 
appears to support the validity of condition (b).   
 The schematic diagram given in Fig.8 from 
Landahl and Mollo-Christensen [69]  
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Fig.8 Behavior of three-dimensional spectrum E(k, t) 
in various wave number ranges [69]. 
 
also appears to support the validity of condition (b) 
namely that Planck law governs the energy 
spectrum of eddies in isotropic turbulence.  
Unfortunately, in spite of the large number of 
experimental studies, data that clearly and directly 
show the variation of three-dimensional energy 
spectrum E(k) with wave number k are still 
lacking. 
 According to Fig.8, the Kolmogorov-Obukhov  
k-5/3 law [22, 23] is a local feature, valid only in the 
inertial subrange, of the more universal Planck law 
(44).  For stationary isotropic turbulent fields, 
energy input into the system cascades down to 
smaller and smaller oscillators until it finally 
reaches the Kolmogorov dissipation length scale k 
at which point all of the added energy blends into 
background white noise and is removed from the 
system as heat.  In view of Fig.6, k is naturally 
identified as the atomic length  of LED scale 

which is the same as the element c of LCD scale 
e

  

k e c                        (53) 
 

that appears in Boussinesq eddy diffusivity [70] 
 
 

1 1
v

3 3e e e cu c                    (54) 

 
 

On the other hand, the kinematic viscosity of LCD 
field is related to the “atomic” length or the 

molecular mean free path m that appears in 
Maxwell’s formula for kinematic viscosity [30] 

c

 
 
 

1 1
v

3 3c c c mu m      ,           (55) 

 
 

associated with viscous dissipation in fluid 
mechanics. 
 In stationary isotropic turbulent fields, energy 
flux occurs between randomly moving eddies of 
diverse size while leaving the system stochastically 
stationary in time. A schematic diagram of energy 

flux across hierarchies of eddies from large to small 
size is shown in Fig.9 from the study by Lumley et al 
[71]  
 
 

              
 
     Fig. 9 A realistic view of spectral energy flux [71]. 
 

 
In the following section, it will be suggested that the 
exchange of particles, clusters, between various size 
eddies (energy levels) is governed by quantum 
mechanics through an invariant Schrödinger 
equation.  Hence, the stochastically stationary state of 
various size eddies will be parallel to Bohr’s 
stationary states in atomic theory [48]. 
 For stationary isotropic turbulent fields the net 
energy flux across hierarchies of eddies should be a 
constant independent of viscosity such as is 
commonly assumed in the inertial subrange.  Also, at 
equilibrium, the temperature will be constant 

23 Bk T m u  

E 

= .  Therefore, if one expresses 

the cluster energy as = mu2, and the eddy energy as 

   , with the cluster velocity given as u = 

 such that  where 

=  is the wave number, one arrives at 

2du d(2 / ) d     

)

 

 

2/3 2/3 22 (dE Fd mudu u d          

      = 2/3 1 4/3 2 2/3 5/3( ) d d             (56) 
 

leading to the distribution function 
 

2/3 5/3( )F                            (57) 
 

that is the Kolmogorov-Obukhov  law [22, 23].  5/3
 The most central concept associated with 
turbulent dissipation is the spectral definition of 
turbulent viscosity introduced by Heisenberg [26]  
 

 

3

( )
k

F d


 


 
    

                      (58) 

 

This is because the spectral definition of kinematic 
viscosity (58) suggests that in stationary isotropic 
turbulence the dissipation spectrum should be closely 
related to the energy spectrum and thereby to Planck 
energy spectrum. Preliminary examination of 
dissipation spectrum shown in Fig. 10 from McComb 
and Shanmugasundaram [72] appears to support 

ch a conjecture. su
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Fig.10 Comparison of scaled one-dimensional 
dissipation spectrum with experimental data [72]. 
 
The experimental data of Fig.10 along with Planck 
distribution function as well as this same 
distribution function shifted by a constant amount 
of energy are shown in Fig.11. One may view the 
experimental data in Fig.10 as dissipation spectrum 
of energy associated with the Planck energy 
spectrum plus a constant amount of energy added 
in order to maintain the turbulent field stationary.   
 

     
 

Fig.11 One-dimensional dissipation spectrum [72] 
compared with (1) Planck energy distribution (2) 
Planck energy distribution with constant 
displacement. 
 
Similar comparison with Planck distribution as 
shown in Fig.11 is obtained with the more recent 
experimental data of one-dimensional dissipation 
spectrum of isotropic turbulence from study by 
Saddoughi and Veeravalli [73] given in Fig.12. 
 

             
 

Fig.12 One-dimensional dissipation spectra 
measured (a) u1–spectrum (b) u2-spectrum (c) u3-
spectrum [73].  
 

In another very recent experimental investigation the 
energy spectra of turbulent flow within the boundary 
layer in close vicinity of rigid wall was measured by 
Marusic et al., [74] and the reported energy spectra 
shown in Fig.(13) appear to have profiles quite 
similar to Planck distribution law.  
 
 
 

   
Fig.13 Reynolds number evolution of the premultiplied 
energy spectra of streamwise velocity at the inner-peak 
location (z+ = 15) for the true measurements (A) and 
the prediction based on the filtered u signal measured 
in the log region (B) [74]. 
 
 The normalized three-dimensional energy 
spectrum for homogeneous isotropic turbulent field 
was obtained from the transformation of one-
dimensional spectrum of Lin [75] by Ling and Huang 
[76] as 
 

2
2( ) exp(- )

3
E K K  K                    (59) 

 

with the distribution shown in Fig.14.  
 

          
 

Fig.14 Normalized three-dimensional energy spectrum 
of weak turbulence [76]. 
 
The similarity between Fig.14 and the Planck 
distribution function shown in Fig.5 is apparent and 
with h/kT = c1 one can express (43) as 
 

3
2 1 1 exp( - ) / [1 exp( - )]dN c c c              (60) 

 

to facilitate comparison with (59). Further future 
investigations on systematic comparisons between 
measurements of three-dimensional energy spectrum 
of equilibrium isotropic turbulence and Planck 
distribution (Fig.5) are needed. 
 Because the velocity distribution of eddies in 
isotropic turbulence is known to be Gaussian, Fig.4, 
the distribution of the speed of eddies in isotropic 
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turbulence must follow Maxwell-Boltzmann 
distribution function in accordance with the kinetic 
theory of gas.  On the other hand, in a recent 
investigation [33] the invariant Maxwell-Boltzmann 
distribution function was directly derived from the 
invariant Planck energy distribution function.  
Therefore, it is expected that the energy spectrum 
of eddies in isotropic turbulence should follow the 
Planck law [33, 34].  
 In the scale invariant statistical theory of 
turbulence described above the statistical nature of 
the problem does not arise from the notion of fluid 
instabilities as in the classical theories of 
turbulence, but rather arises from similar 
considerations as those in the kinetic theory of gas 
in harmony with perceptions of Heisenberg [26] 
 
“Turbulence is an essentially statistical problem of 
the same type as one meets in statistical mechanics, 
since it is the problem of distribution of energy 
among a very large number of degrees of freedom.  
Just as in Maxwell theory this problem can be solved 
without going into details of the mechanical motions, 
so it can be solved here by simple considerations of 
similarity.” 
 
It was also emphasized by Heisenberg that the 
study of flow instabilities cannot in principle lead 
to the understanding of turbulent phenomena itself 
as noted by Chandrasekhar [77] 
  
“However, as Heisenberg has recently emphasized, 
investigation of stability along these lines, even if 
successful, cannot, in principle, lead to an 
understanding of the phenomena of turbulence itself; 
for the basic problem of turbulence is of an entirely 
different character.  That this is the case becomes 
apparent when we ask ourselves the very elementary 
question, “What is the reason that a phenomena like 
turbulence can occur at all?”.  The answer must be 
that an ideal fluid is a mechanicals system with very 
large number of degrees of freedom and that, in 
consequence, it is theoretically capable of a very large 
number of different types of motions.  Laminar flow is 
only one of the many possible motions that the system 
is capable of, and to expect that it will always be 
realized is as futile as to expect that in a gas we shall 
find all the molecules moving with the same velocity 
parallel to one another.  It is far more likely that all 
forms of possible motions will be simultaneously 
present.  The fundamental problem of turbulence 
would therefore appear to be a statistical one of 
specifying the probability with which the various 
types of motions may occur and are present.  Stated in 
this way, it is clear that the problem of turbulence has 
an analogy with the problem of analyzing a 
continuous spectrum of radiation.” 

 The significance of analogy between the energy 
spectra in turbulence and in optics, dry 
hydrodynamics [17], was further emphasized by 
Chandrasekhar [77] 
 

“Now, returning to the optical analogy I referred to 
earlier, we know that under condition of equilibrium 
the distribution of energy in the continuous spectrum 
will be that given by Planck’s law.  We may ask 
whether a similar equilibrium spectrum exists for 
turbulence.  In answering this question, we must keep 
in mind one important distinction between the optical 
analogue and turbulence. In optical case the 
equilibrium Planck spectrum will be reached, no 
matter what the initial distribution is.  In contrast, 
turbulence can be maintained only by external energy, 
like continuous stirring, the energy available from 
thermal instability, or rotation in differentially rotating 
atmosphere.  In other words, energy is required for the 
maintenance of turbulence; in the absence of such an 
agency, turbulence will decay and the spectrum will be 
a function of time.” 
 

The optical analogy discussed by Chandrasekhar in 
the above quotation becomes complete if one allows 
a constant energy input at small wave numbers (at 
system scale Le of EED) that moves through the 
hierarchy of eddies (Fig.9) until it is dissipated into 
heat that is removed at Kolmogorov scale k = .   e
 According to the modified statistical theory of 
turbulence [33, 34], and in harmony with the 
perceptions of Heisenberg and Chandrasekhar 
discussed above, all flows that may appear laminar at 
scale  are actually bulk advection of turbulent flows 
at the scale of .  The hierarchies of embedded 
turbulent flows are most clearly seen in turbulent 
boundary layer over a flat plate when the solutions of 
(19) at outer  and inner  scales were respectively 
found to be [34]    

2

11v 5 8(2 / )  erf ( y / 3
    2)               (61) 

and   

1v 8 (2/ ) erf ( / 8y 
   )        (62) 

For example, the solutions in (61) and (62) at  = e 
and  = c correspond to LED and LCD and their 
comparisons with experimental data [36, 69, 78-80] 
are shown in Fig.15.   
 

                5 10 15 20 25 30
y+

5

10

15

v+

                                 
Fig.15 Comparison between the predicted velocity 
profiles from (61) and (62) at LED and LCD scales and 
experimental data in the literature [36, 69, 78-80]. 
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Similarly, the solutions in (61) and (62) at  = c 
and  = m correspond to LCD and LMD and at  
= m and  = a corresponding to LMD and LAD and 
their comparisons with experimental data of Lancien  
et al. [81] and Meinhart  et al. [82] are shown in 
Figs.16 and 17, respectively. 
 
 

                                                   
 
 
 

Fig.16 Comparisons between the predicted velocity 
profiles from (61) and (62) at LCD and LMD scales 
and experimental data in the literature [81]. 
 

 

                                                   
 
 
 

Fig.17 Comparisons between the predicted velocity 
profiles from (61) and (62) at LMD and LAD scales 
and experimental data in the literature [82] 
 
 
 

The results in Figs.15-17 show close agreement 
between predictions and measurements for four 
consecutive statistical fields of LED, LCD, LMD, 
and LAD spanning a factor of 108 in spatial range. 
 An important observation concerning the 
results shown in Fig.15-17 is the absence of any 
transition region between the velocity fields of 
adjacent scales.  This is to be expected since both 
flow fields at scales  and  are turbulent and all 
that is needed in connecting the two solutions is the 
proper “renormalization” of the coordinates as 
described in [34].  While the outer most turbulent 
field experiences the uniform free stream velocity 
w, all subsequent inner velocity fields match the 

slope of the corresponding outer flow 

and hence must match the linear velocity

β(dv /dy ) 

v y=  
  . 

6 The Natures of Potential and 
Viscous Flows  
In this section, the natures of potential flow and 
viscous boundary layer flow will be examined by 
application of Cauchy (7) and the modified form of 
equation of motion (19), respectively.  This is in 

part motivated by the fact that potential flow fields 
are needed for the derivation of Schrödinger equation 
to be discussed in the following section. For 
convenience, the well known problem of two-
dimensional stagnation point flow will be considered. 
For potential flows the velocity may be expressed in 
terms of the velocity potential β  as 

  v          (63) 
 

Except for a few [43, 83], the minus sign in (63) is 
neglected in most textbooks on fluid mechanics 
including some classical texts [27, 28].  However, it 
is emphasized here that the choice of minus sign in 
(63) is important because it insures that the fluid 
flows in the direction of decreasing potential in 
harmony with Ohm’s law for current density  
 

e e e e   J V         (64) 

that governs the diffusional flux (drift) of electrons 
through conductors in electrodynamics. 
   For the classical problem of two-dimensional 
stagnation point flow the complex potential  
 
 

2Z (z) i z / 2      2 2(x y ) / 2 ixy      (65) 
 

with z x iy   leads to the well known velocity 
potential and stream function  
 

2 2(x y ) / 2                 (66) 
 

xy                 (67) 
 

with some of the streamlines shown in Fig.18.  
 
 

   

     
 

Fig.18 Streamlines and iso-potential lines for stagnation 
flow. 
 
The Cauchy-Riemann conditions and the velocity 
field from (63), (66), and (67) are  
 

xv
x y
  x

  
     
 

          (68) 

yv y
y x
   

   
 

            (69) 
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One notes that the velocity (68)-(69) that is 
perpendicular to the equi-potential lines is in the 
direction of decreasing potential as shown in 
Fig.18.  For flow in the reverse direction the sign 
of the complex potential (65) should be changed 

such that .  2Z (z) z / 2


 

 Next, for the study of viscous flow within the 
thin boundary layer at the lower scale  let us 
consider the reverse of the outer potential flow 
(68)-(69) that leads to dimensionless convective 
velocity of the inner viscous layer [84] 
 

x x 1v w    x y

2

   ,            (70) y y 1v w   
 
 

With the conventional assumption of negligible 
pressure gradient across boundary layer and 

,  one 

obtains for an incompressible flow from (19)  
x xv / x v / y     2 2 2/ x / y    

 

2
x x

y 2

v v
w

y y

 


    
           (71) 

 

that with the boundary conditions 
 
 

x x(0) 0   ,    ( ) x  v v w x             (72)
  

and upon substitution from (70) leads to the 
solution 
 

xv x erf (y / 2 )
 

           (73) 
 

Also, from the continuity equation (5) for an 
incompressible flow one obtains 
 

 

 

y

y 0
v erf (y / 2)  dy           (74) 

 

leading to the stream function 
 

 

x erf (y / 2)dy                       (75) 
 

with some calculated streamlines shown in Fig.19. 
 

                        
 

Fig.19 Streamlines in the boundary layer of 
stagnation point flow from (75). 
 

7 Invariant Schrödinger Equation and 

Quantum Mechanical Foundations of 
Turbulence  
The fact that the energy spectrum of equilibrium 
isotropic turbulence is given by Planck distribution 
(Figs.5, 9, 13, 14) is a strong evidence for quantum 
mechanical foundation of turbulence [33, 34].  This 
is further supported by recent derivation of invariant 
Schrödinger equation from invariant Bernoulli 
equation [33] to be further examined in the present 
section. As stated in Sec.3, when the three velocities 

m m m
( , , )Vu v  in (3) are all random the system is 

composed of an ensemble of clusters and molecules 
under equilibrium state.  When both vorticity and 
iso-spin (12) are zero and one considers non-reactive 
incompressible fluid, the flow field will be potential 
and the continuity (5) and Cauchy equation of motion 
(7) lead to invariant Bernoulli equation that upon 
substitution from (63) gives [33] 
 

 

2( ) [ ( )]
p cons tan t

t 2
   



   

 

 
0   


  (76) 

 

The constant in (76) is set to zero since pressure to be 
identified as potential is only defined to within an 
additive constant.  Comparison of (76) with the 
Hamilton-Jacobi equation of classical mechanics [2] 
 

2S ( S)
U 0

t 2m

 
  


          (77) 

 

results in introduction of the invariant action [33, 85]  
 

S ( , t)     x            (78) 
  
By the results in (63) the gradient of the action (78) 
becomes momentum in accordance with the classical 
results [3] 
 

S ( , t)            x v p         (79) 
 

     In addition to absence of vorticity 0 v  

required for potential flow one further requires the 
iso-spin (12) to also vanish 
 

0 u    ,        u      (80) 
 

such that from (3) one obtains  
 

0 V    ,         V       (81) 
 

Next, one considers the peculiar velocity 
V  in (3) as 

a small perturbation  
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    u v V                   (82) 
 

 

and in view of (63), substitutions from (78)-(81) 
into (82) give 

 
 

                   ,      << 1    (83) 
 

 

By (78), and (80)-(83) one arrives at 
 

 

o oS S S S                 (84) 
 

where oS      , and the wave function  of 

quantum mechanics is defined as [33, 85] 
 

 

S                (85) 
 

 Substituting from (84) into (76) and 
separating terms of equal powers of  leads to 
 

 

2
o oS ( S )

U 0
t 2 
 



 
 


             (86) 

 

 

oS
0

t 
    



             (87) 

 

where the volumetric potential energy density is 
defined as [28] 
 

U p n U                   (88) 
 

     To analyze (86), one introduces the moving 
coordinate  
 

z x u t                    (89) 
 

such that 
 

x o z oS S       ,   o zS / t u So            (90) 
 
 

Substitutions from (88), (89) and (90) in (86) give 
the conservation of energy 
 

 

E T U        ,   E T U           (91) 
 

where 
 

 

2E u n E        ,  2T u / 2 n T        ,    
 

     2 2U V n U u /        2

2

0

       (92)  
 

 

One also obtains from (3)  
 
 

2 2 2 2             u v V v V
 

                      
(93) 2

     v V
 

since 2   v V , that can also be expressed as 
 

 h u p /                      (94) 

and hence  
pH U V                 (95) 

where V  is the volume, and M hH     and 

M uU  


 
are enthalpy and internal energy, 

respectively.  Equation (95) represents the first law of 

thermodynamics  
 

Q U W                (96) 

when reversible heat and work are defined as   
TQ H S      and pW V    at thermodynamic 

equilibrium and S is entropy [31]. 

 For analysis of (87) one moves to the lower 
scale () and introduces the stretched internal time 
and space coordinates as 
 

o 1t t t   
 , oz z z 1          (97) 

 

where <<1  such that (87) becomes 
 

1z
1

u
t 


 



0


   


         (98) 

 

By taking the first time derivative of (98) and 
substituting for 1/ t    in the resulting equation 

from (98) itself and noting that  one 

arrives at the wave equation 
1 1u f (t , z   )

 

1

2
2 2

z2
1

u
t 


 



 
  


              (99) 

 

or 
 

 

2
2 2

2
u

t


 

 
  


             (100) 

 
 

where the subscripts () have been omitted.  From 
substitution of the product solution (x, 
t)x)tinto (100) one obtains 
 
 

2
2u

 


  

  
  

 
             (101) 

 

where  is the separation constant.  The solution of 
the temporal part of (101) is 
 
 

oexp( i u t) exp( i t)              (102) 
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suggesting that u ==2is a circular 
frequency . 
    Following Planck [50, 51], one introduces by 
(24) the invariant expressions   
 

2E m u h      



       ,           (103) E n h   
 

when the harmonic atomic velocity is expressed as  

u     It was anticipated by Dirac [86] that 

amongst the fundamental constants (c, e, h), the 
Planck constant h might be expressible in terms of 
other fundamental constants (28).  Using the result 
(103) one obtains  
 

u 2 E / h                    (104) 

such that (102) becomes 
 

exp( i2 tE / h )             (105) 

  

   By substitutions from (92), (104), and (32) 
into (101), one obtains the invariant time-
independent Schrödinger equation [87, 88] 
 

2
2

2

8 m
(E U ) 0

h


  


           (106) 

 

and through multiplication by (105), the invariant 
time-dependent Schrödinger equation 
 

2
2

oi U
t 2m
 

 



     




 0      (107) 

 

that governs the dynamics of particles from cosmic 
to tachyonic scales (Fig.1) [33, 88]. Since 
E T U     by (92), the Schrödinger equation 

(106) gives the stationary states of particles that 
are trapped within de Broglie wave packet under 
the potential defined in (92) acting as Poincaré 
stress.  In view of the definition (10), anticipation 
of an external pressure or stress as being the cause 
of particle stability by Poincaré [89-91] is a 
testimony to the true genius of this great 
mathematician, physicist, and philosopher. 
 It is emphasized that the stability of particle, 
Heisenberg-Kramers virtual oscillator [48], is due 
to the external force it experiences because of the 
pressure (92) induced by the peculiar velocity of 
the “atoms” of the field itself.  In other words, it is 
the peculiar motions of atoms themselves that 
stabilizes different size atomic clusters. For 
example, peculiar motions of clusters are 
responsible for stability of eddies, and peculiar 
motions of molecules are responsible for stability 
of clusters, and so on.  Hence, at the scale of 
stochastic electrodynamics  = s ESD and chromo-
dynamics  = k, EKD (see Figs. 1, 3) the model 

suggests that peculiar motions of photons and 
tachyons are respectively responsible for the stability 
of electrons and photons.  In view of the invariant 
Planck (44) and Schrödinger (107) equations, the 
model also suggests that Planck spectrum in 
equilibrium radiation represents stationary sizes of 
photon clusters, de Broglie molecules of light [92] or 
light bundles.  Therefore, different “colors” of light 
are now recognized to correspond to different size 
photon clusters, photon wave packets, in accordance 
with the perceptions of Newton [53] and Einstein 
[66].   
 The formal derivation [33] of Schrödinger 
equation (107) from Bernoulli equation (76) provides 
for a new paradigm of the physical foundation of 
quantum mechanics. Soon after the introduction of 
his equation, Schrödinger himself [93] tried to 
identify some type of ensemble average 
interpretation of the wave function.  Clearly, 
according to (85) the statistical ensemble nature of 
 naturally arises from the velocity potential     

Therefore, the dual and seemingly incompatible 
objective versus subjective natures of  emphasized 
by de Broglie [1-3] can now be resolved.  This is 
because the objective part of (85) is associated 
with the density and accounts for the particle 
localization while the subjective part of  is 
associated with the complex velocity potential    

that accounts for the observed action-at-a-distance as 
well as renormalization [94] and thereby the success 
of Born’s [95] probabilistic interpretation of .  
 The definition of wave function (85) also helps 
to clarify the nature of wave-particle duality and de 
Broglie’s theory of double solutions [1-3, 96, 97].  
This is because the velocity potential    acts as 

guidance wave that contains global information about 
the environment while remaining non-observable 
since it operates at the “hidden” “atomic” scale.  
Thus, the reason for success of separation of particle 
from wave according to de Broglie [1-3] and Bohm 
and Vigier [7, 9] becomes understood.   Moreover, 
the reason for the failure of von Neumann no hidden 
variable theory [97-99] becomes clear since (107) for 
hierarchies of embedded statistical fields, Fig.1, 
could be subject to infinite hidden variables in 
harmony with Gödel’s incompleteness theorem. 
 As one moves to smaller scales, one always finds 
a continuum because each element is composed of an 
entire statistical field (see Fig.1), such that one can 
again define a velocity potential   and thereby 

define a new wave function 1   
   .  The 

cascade of particles as singularities embedded in 
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guidance waves is in exact agreement with the 
perceptions of de Broglie concerning interactions 
between the particle and the "hidden thermostat" 
[3] 
 

 “Here is another important point.  I have shown 
in my previous publications that, in order to justify 
the well-established fact that the expression 
(x,y,z,t)2 d gives, at least with Schrödinger's 
equation, the probability for the presence of the 
particle in the element of volume d at the instant t, it 
is necessary that the particle jump continually from 
one guidance trajectory to another, as a result of 
continual perturbation coming from subquantal 
milieu.  The guidance trajectories would really be 
followed only if the particle were not undergoing 
continual perturbations due to its random heat 
exchanges with the hidden thermostat.  In other 
words, a Brownian motion is superposed on the 
guidance movement.  A simple comparison will make 
this clearer.  A granule placed on the surface of a 
liquid is caught by the general movement of the 
latter.  If the granule is heavy enough not to feel the 
action of individual shocks received from the 
invisible molecules of the fluid, it will follow one of 
the hydrodynamic streamlines.  If the granule is a 
particle, the assembly of the molecules of the fluid is 
comparable with the hidden thermostat of our 
theory, and the streamline described by the particle 
is its guiding trajectory.  But if the granule is 
sufficiently light, its movement will be continually 
perturbed by the individual random impacts of the 
molecules of the fluid.  Thus, the granule will have, 
besides its regular movement along one of the 
streamlines of the global flow of the fluid, a Brownian 
movement which will make it pass from one 
streamline to another.  One can represent Brownian 
movement approximately by diffusion equation of the 
form =    t D , and it is interesting to seek, as 

various authors have done recently, the value of the 
coefficient D in the case of the Schrödinger equation 
corresponding to the Brownian movement. 
 I have recently studied (14) the same question 
starting from the idea that, even during the period of 
random perturbations, the internal phase of the 
particle remains equal to that of the wave.  I have 
found the value /D = (3m ) , which differs only by a 

numerical coefficient from the one found by other 
authors. 
 This concludes the account of my present ideas 
on the reinterpretation of wave mechanics with the 
help of images which guided me in my early work.  
My collaborators and I are working actively to 
develop these ideas in various directions.  Today, I 
am convinced that the conceptions developed in the 
present article, when suitably developed and 
corrected at certain points, may in the future provide 
a real physical interpretation of present quantum 
mechanics.” 

 To reveal the truly universal (Fig.1) nature of 
quantum mechanics one notes that for each statistical 
field shown in Figs.1 and 3 one can write a Bernoulli 
equation and by (76)-(107) arrive at a Schrödinger 

equation. At Planck scale  (see 
Fig.3) the hydrodynamic field represents the physical 
space [100] or Casimir vacuum [49] with its 
fluctuations and energy spectrum.  According to 
definitions (27)-(28), the universal Planck and 
Boltzmann constants (h, k) respectively relate to 
spatial () and temporal () aspects of vacuum 
fluctuations. Also, at cosmic scales 1035 with = g 
(Figs.1, 3), the wave function g will correspond to 
the wave function of the universe [101, 102].  The 
wave-particle duality of galaxies has been established 
by their observed quantized red shifts [103].  Indeed, 
it has been suggested by Laughlin and Pines [104] 
that Schrödinger equation may account for a part of 
the final theory, i.e. the theory of everything (TOE). 
Also, Feynman et. al. [105] suggested that 
Schrödinger equation may very possibly describe life 
itself. 

353 1/ 2( G / c 10) m 

 In regards to the universality of quantum 
mechanics discussed above, it is interesting to 
examine the connections between classical and 
quantum mechanics. It seems that the new paradigm 
of quantum mechanics presented herein is in 
harmony with the perceptions of Heisenberg [106]  
 

 “We no longer say “Newtonian mechanics is false and 
must be replaced by quantum mechanics, which is 
correct.”  Instead we adopt the formula “Classical 
mechanics is a consistent self–enclosed scientific 
theory.  It is strictly correct description of nature 
wherever its concepts can be applied” 
 

This is because according to (76)-(107) quantum 
mechanics concerns behavior of virtual oscillators, 
wave packets in statistical fields such as in 
cosmology, hydrodynamics, molecular dynamics, 
electrodynamics or optics.  Classical Newtonian 
mechanics is often concerned with motion of a few 
bodies such as the earth-moon-sun three-body 
problem. 
   According to Fig.3, a factor of 10-17 seems to 
separate the spatial scales of the stochastic fields of 
chromodynamics (10-35), electrodynamics (10-17), 
hydrodynamics (100), astrophysics (1017), and 
cosmology (1035). However, there are no 
mathematical or physical reasons to limit either large 
or small ends of the hierarchies shown in Fig.3.  If 
one assumes with Newton that space is infinite and 
our universe is just one of many universes as 
suggested by Fig.3, then the recent observed 
asymmetry in the power spectrum from the right 
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versus the left side of our universe [107] 
schematically shown in Fig.20. 
  

P(k)

k

Right

Left

       

P(k)

k

Right

Left

 
         (a)                                    (b) 
 
Fig.20 Asymmetry in measured cosmic power 
spectrum (a) calculated (b) measured [107]. 
 
appears to suggest that our universe is rotating in 
harmony with perceptions of Kerr [108] and Gödel 
[109] as well as all statistical fields of lower scales 
shown in Fig.1.  Since it is known that galaxies 
including our Milky Way rotate, the cosmic iso-
spin (12) is non-zero .  This suggests that 

the vorticity at cosmic scales (rotation of clusters 
of galaxies) may also be finite  that 

according to Fig.1 also means finite iso-spin of the 
many-universe field . But finite 

vorticity of the multi-universe field  means 

rotation of our universe.  

0g 

g 

0g 

0u 

0u 

 One may now introduce a new paradigm of 
the physical foundation of quantum mechanics 
according to which Bohr’s stationary states will 
correspond to the statistically stationary sizes of 
clusters, de Broglie wave packets, which will be 
governed by Maxwell-Boltzmann distribution 
function (52) as shown in Fig.6 [33]. Next, 
different energy levels of quantum mechanics are 
identified as different size clusters (elements).  For 
example, in EED field one views the transfer of a 
cluster from a small rapidly oscillating eddy (j) to a 
large slowly oscillating eddy (i) as transition from 
the high energy level (j) to the low energy level (i), 
see Fig.6, as schematically shown in Fig.21. 
 
 

            
ei

ej

mjicji

Eddy-j

Eddy-i

cluster molecule

 
 

Fig.21 Transition of cluster cij from eddy-j to eddy-i 
leading to emission of molecule mij [34]. 
 
 

Such a transition will be accompanied with 
emission of a “sub-particle” that will be a 

“molecule” (see Fig.21) to carry away the excess 
energy [34] 
 

ji j i j ih( )                (108) 
 
 

in harmony with Bohr’s theory of atomic spectra 
[48].  Therefore, the reason for the quantum nature of 
“molecular” energy spectra in equilibrium isotropic 
turbulence is that transitions can only occur between 
eddies with energy levels that satisfy the criterion of 
stationarity imposed by Maxwell-Boltzmann speed 
distribution function [100].   
 The new paradigm of quantum mechanics can 
help to resolve many of the central paradoxes of 
quantum mechanics.  First is the problem of particle 
trajectory since according to the classical 
Copenhagen interpretation no trajectory could be 
defined for the particle during its transition that is 
absurd.  According to the present model, any one of 
the particles of cluster (level) j could go through any 
trajectory to cluster (level) i and emit energy (108) 
with the exact same final consequence. The actual 
transition trajectories are dependent on the statistical 
nature of the distribution of clusters of various sizes 
(i.e energy levels).  The probabilistic nature of 
various possible trajectories in effecting the same 
final outcome accounts for the success of Feynman’s 
integral over all paths.   
 The next central problem of classical quantum 
mechanics is that of the collapse of the wave function 
[3]. Under the present model, the quantum mechanic 
wave function is related to the velocity potential (85), 
and hence to its conjugate stream function   (65) 

that acts as de Broglie “guidance wave” [1-3, 96, 97] 
that guides the motion of the particle that is a 
singularity on the wave.  Therefore, in the present 
paradigm the collapse of the wave function is 
identified as the collapse of the velocity potential due 
to the interactions between the measuring instrument 
and the flow field.  In fact, the very dynamics of the 
wave function collapse could be systematically 
investigated and observed under various scenarios of 
experimental interactions with known velocity 
potentials. 
 Finally, the problems of double-slit experiment 
[2] as well as EPR [110] in classical quantum 
mechanics could now be resolved.  This is because 
the EPR problem of action at a distance established 
by Aspect et al., [111] could now be explained by 
possible superluminal tachyonic signals within 
physical space between the separated particles.  Also, 
the double slit problem [2] is resolved due to the 
propagation of waves produced by the motion of 
particle in the tachyonic fluid that constitutes the 
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physical space.  Simple experimental observations 
performed with macroscopic double-slit testing 
device under water employing small particles 
under micro-gravity is expected to verify the 
validity of the present model. 

8 Compressibility of Physical Space 
and its impact on Special Theory of 
Relativity  
The invariant time dependent Schrödinger equation 
(107) was derived from Bernoulli equation for an 
incompressible fluid. According to the scale-
invariant statistical theory of fields schematically 
shown Fig.1 physical space is identified as a 
tachyonic fluid [100] that is Dirac's stochastic 
ether [112] or de Broglie's "hidden thermostat" [3]. 
Photons are considered to be composed of a large 
number of much smaller particles [100] called 
tachyons [113].  The importance of Aristotle’s 
ether to the theory of electrons was emphasized by 
Lorentz [114, 115] 
 
 

"I cannot but regard the ether, which is the 
seat of an electromagnetic field with its energy 
and its vibrations, as endowed with certain 
degree of substantiality, however different it 
may be from all ordinary matter" 
 
 

Since the velocity of light is the mean thermal 
speed of tachyons, uk = c = vt, at least some of the 
tachyons must be superluminal.   
 The tachyonic fluid that constitutes the 
physical space is considered to be compressible in 
accordance with Planck's compressible ether [114].  
If the compressible tachyonic fluid is viewed as an 
ideal gas, its change of density when brought 
isentropically to rest will be given by the 
expression involving Michelson number v / cMi  
[116] 

1 1

1 1
2

2

2

1 v 1
1 1

2 c 2
Mi   

    
   

  
    


   (109) 

 

With  = 4/3 for photon gas, (109) leads to Lorentz-
FitzGerlad contraction [116] 
 
 

2

o 1 (v / c)             (110) 
 
 

that accounts for the null result of Michelson–
Morley experiment [117]. 
 Therefore, supersonic Ma > 1 (superchromatic 
Mi > 1) flow of air (tachyonic fluid) leads to the 
formation of Mach (Poincaré-Minkowski) cone 
that separates the zone of sound (light) from the 

zone of silence (darkness).  Compressibility of 
physical space can therefore result in Lorentz-
FitzGerald contraction [114], thus accounting for 
relativistic effects [89-91, 114, 117-120] and 
providing a causal explanation [118] of such effects 
in accordance with the perceptions of Poincaré and 
Lorentz [89-91, 114, 120]. 
 In view of the above considerations and in 
harmony with ideas of Darrigol [121] and Galison 
[122], one can identify two distinct paradigms of the 
Special Theory of Relativity [116]: 
 
 

 (A) Poincaré-Lorentz 
      Dynamic Theory of Relativity 
     Space and time (x, t) are altered due to causal 
     effects of motion on the ether. 
 
 

 (B) Einstein 
      Kinematic Theory of Relativity 
     Space and time (x, t) are altered due to the two  
     postulates of relativity: 

1- The laws of physics do not change form for 
all inertial frames of reference. 

2- Velocity of light is a universal constant 
independent of the motion of its source. 

 

 
 

 The result (110) and the almost constant cosmic 
temperature Tg and hence the speed of light  
 

o o gc(T c)               (111) 
 

lead to the frequency transformation 
 

2

o 1 (v / c)/                      (112) 
 

The relativistic transformation of frequency in (112) 
may also be expressed as contraction of time duration 
or transformation of period  as 
 

2

o 1 (v / c)                   (113) 
 

Hence, time durations and space extensions contract 
by (113) and (110) such that the speed of light 
remains invariant (111).  It is emphasized however 
that the relation between time and space according to 
the dynamic theory of relativity of Poincaré-Lorentz 
is causal as emphasized by Pauli [118] and is 
induced by compressibility of physical space itself 
rather than being a purely kinematic effect as 
suggested by Einstein [119] according to paradigm 
(B) above.   
 Parallel to ideas of Lorentz [114], the concept of 
ether always played a crucial role in Poincaré’s 
perceptions of relativity [121, 122] as he explicitly 
stated in his Principle of Relativity [123] 
 
 

 “We might imagine for example, that it is the ether 
which is modified when it is in relative motion in 
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reference to the material medium which it penetrates, 
that when it is thus modified, it no longer transmits 
perturbations with the same velocity in every 
direction.” 
 
 

As opposed to Einstein who at the time found the 
ether to be superfluous [119], Poincaré anticipated 
the granular structure of the ether and its possible 
role in electrodynamics [123]  
 
 

 “We know nothing of the ether, how its molecules 
are disposed, whether they attract or repel each 
other; but we know this medium transmits at the 
same time the optical perturbations and the electrical 
perturbations;” 
 
 

 “The electrons, therefore, act upon one another, but 
this action is not direct, it is accomplished through 
the ether as intermediary.” 
 

Also, the true physical significance of Lorentz’s 
local time [114] was first recognized by Poincaré 
[124].  In his lecture delivered in London in 1912 
shortly before he died Poincaré stated [122, 125] 
 
 

 “Today some physicists want to adopt a new 
convention.  It is not that they are constrained to do 
so; they consider this new convention more 
convenient; that is all.  And those who are not of this 
opinion can legitimately retain the old one in order 
not to disturb their old habits.  I believe, just between 
us, that this is what they shall do for a long time to 
come.” 
 

 The definitions of lengths (L ), ,    in (22) 

and velocities ( , , )  w v u

( , , t

 in (1)-(2) result in the 

following definitions of system, element, and 
atomic "times" )     for the statistical field 

at scale [30] 
 

β β β β+1L w τ/    (114a) 

β β β β+1τ λ v t/     (114b) 

β β β β-1t u τ/   (114c) 
 

where , and  are the free paths of atoms, and 

elements, and L = is the system size.  Atomic 
time (114c) could also be based on the rotation 
velocity of particles since the equipartition 
principle of Boltzmann  

β


2 2 2/ 2 / 2 / 2tm u I m r        2

ru

    
 

results in  2tu r       that leads to  

1 / 2 / /rt ur ru          (114d) 
 

Therefore, there exists an internal clock associated 
with the random thermal motions of atoms t =  

for each statistical field from cosmic to tachyonic 
scales [100] 
 

       e c m a s... ...           ) 
 
 

The physical model schematically shown in Fig.1 
suggests a hierarchy of embedded clocks each 
associated with its own periodic motions as 
schematically shown in Fig.22. 
 
 
 

            
 
 

          Fig.22 Hierarchies of embedded clocks. 
 
Clearly, the problem of time reversal at any scale  is 
now much more complex and requires reversal of the 
entire hierarchies of times of lower scales (115).   
 According to Fig.22, time is suggested to have a 
spatial direction thus a vector property.  Possible 
spatial anisotropy of time could be explained by the 
fact that the fundamental “atomic” t time of any 
statistical field at scale  will depend on the 
thermodynamic temperature of the filed T [100].  
Thus, to reveal possible spatial dependence of time 
we consider three equilibrium systems , 

, and  at three different thermodynamic 

temperatures . When system  

interacts with both systems  and S from 

different directions, spatial temperature anisotropy 
must occur in the transition layers between the 
adjacent systems.  Such temperature anisotropy will 
hence be accompanied with anisotropy of time.  That 
is, change of atomic time when moving in the 
direction of system one to two will be different from 
that of one to three. 

1 1S (T )

1 1S (T )

3T )

2 2S (T ) 3 3S (T )

1 2(T T, , 3T )

2 2S (T ) 3 (

 The most fundamental and universal physical 
time is the time associated with the tachyon 
fluctuations t = tk [100] of Casimir vacuum [49] at 
Planck scale. One may associate the absolute 
mathematical time of Newton to the equilibrium state 
of tachyon-dynamics (tt) that in the absence of any 
non-homogeneity (light) will be a timeless (eternal) 
world of darkness irrespective of its stochastic 
dynamics because, in accordance with the 
perceptions of Aristotle [126], the concept of time 
without any change is meaningless. 
 The classical problem of time emphasized by 
Aristotle [126] concerns the nature of time as past, 
present, and future that was most eloquently 
described by St. Augustine [126] 
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“But the two times, past and future how can they be?, 
since the past is no more and the future is not yet?” 
 

“Thus we can affirm that time is only in that it tends 
towards not-being” 
 
 “Yet Lord, we are aware of periods of time; we 
compare one period with another and say that some 
are longer, some shorter” 
 

“Does not my soul speak truly to You when I say that 
I can measure time?  For so it is, O Lord my God.  I 
measure it and I do not know what it is that I am 
measuring” 
 

 Now, the classical problem of how could a 
finite time be constructed from multitudes of 
instants, “nows”, that do not exist can be addressed 
by the invariant definition of atomic time in (114c)  
 

β β -1t β           (116) 
 

This is because the “atomic” instant t = 0 of scale 
 has a finite duration at the lower scale  
(114c). Thus, one uses clocks of  scale to 
measure time of  scale, clocks of  scale to 
measure time of  scale, and so on at infinitum.  
Therefore, similar considerations employed for 
description of analysis in space continuum [127] 
will be required to describe the temporal continuum 
discussed by Weyl [128] 
 

 “Exact time- or space-points are not the ultimate, 
underlying, atomic elements of the duration or 
extension given to us in experience.  On the contrary, 
only reason, which thoroughly penetrates what is 
experientially given, is able to grasp exact ideas” 
 

Accordingly, if one does not wish to allow for 
infinite divisibility of time and space, then 
following Leibniz [127] one must introduce the 
temporal monad just like the spatial monad to 
represent the absolute smallest “atom” of time or 
Chronon.  Also, parallel to Heisenberg’s spatial 
uncertainty principle [129] 
 

 p h      (117) 
 

that limits the resolution of spatial measurements, 
the temporal uncertainty principle [100] 
 

 p k          (118) 
 

limits the resolution of time measurements.   
 Since time is identified as a physical attribute 
of the dynamics of tachyonic atoms (114c) and 
space is identified as this compressible tachyonic 
fluid itself, it is clear that the causal connections 
between space and time in relativistic physics 
become apparent.  For example, in the classical 
problem of twin paradox of the special theory of 

relativity, the different times experienced by the 
twins could be attributed to the different rates of 
biological reactions in their body induced by the 
compressibility of physical space.  According to the 
causal dynamic theory of relativity of Poincaré-
Lorentz, the reason for the coincidence of directions 
of biological and cosmological times [130] becomes 
apparent.   
 The physical space or Casimir vacuum [49] 
when identified as a compressible tachyonic fluid 
provides a new paradigm for the physical foundation 
of quantum gravity [100].  The general implications 
of the model to time reversibility in quantum 
cosmology and to Everett’s many-universe theory 
[101, 131-132] require further future investigations. 
Because of the definition of atomic time in (114c), 
quantum theories of gravity [131-138] may have 
wave functions g that instead of Wheeler-DeWitt 
equation [101, 131, 132, 133, 138] 
 

gH 0              (119) 
 

satisfy the modified Wheeler-DeWitt equation  

 

g
g

1

H
t

i



 


  (120) 

 

that is Schrödinger equation (107). The resurrection 
of time in (120) is made possible because the new 
“atomic” time arises from internal degrees of 
freedom, permitting g (x1, x2, x3, t, t) and the 
associated gij(x1, x2, x3, t, t), that by 
thermodynamic considerations is related to the 
temperature of the field [100]. 
 The definition of time in (114) is in accordance 
with ephemeris time in astronomy [136, 139]  
 

2( )

2( )
i ii

m d
t

E V


 



            (121) 

 

Substituting in (121) the kinetic energy 

 and mass fraction Yi = mi/m 
results in 

2v / 2K E V m  

 

2 2

2

( ) ( )

2( ) v
i i i ii i

m d m Y d
t

E V m
 

  


 
 

 

       
2

2

( )

v v

m d d
m
 

     (122) 

 
 

that is in accordance with (114). The mean extension 
d and duration t are mass-average of the 
component extension di and duration ti and the 
corresponding velocity defined as  
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2( )

2( )
i i

i
i i

m dt
E V
 


    ,         v i
i

i

d
t




      (123) 

 

where , , and 

.  The invariant definition of time 

in (114) suggests that the description of temporal 
continuum [128] requires introduction of “temporal 
measure” that relates to the important problems of 
duration and simultaneity identified by Poincaré in 
1898 [140] as emphasized by Barbour [136]. 

i iE K V 
/i j ijm m r

i
2v / 2i i iK m

iV G 

9 Implications to Dirac Relativistic 
Wave Equation  
It is interesting to explore the implications of the 
quantum mechanical wave function (85) to Dirac’s 
relativistic wave equation [141].  To do this one 
notes that since the peculiar velocity of particle at 
scale   
 

  
  V u v    ,           (124) 

 

is the diffusion velocity of scale () one can 
express (124) in terms of the velocities of the lower 
scale  as in (3) 
 

1 1 1  V v w           (125) 
 

Thus, the results (124) and (85) relate the quantum 
mechanic wave function to the equation of motion 
at scale  through diffusion velocity (125). 
  Hence, one starts with Cauchy equation of 
motion (7) at scale    
 

iβ-1
iβ-1 jβ-1 ijβ-1

j

( )
t x

 
  

 

p
p v P       (126) 

 

Next, the pressure within the particle at the lower 
scale  is considered to be constant such that 

and (126) reduces to ijβ-1 0P
 

iβ-1 j
iβ-1

j

x
( )

t x t

 
 

  

p
p 0         (127) 

 

 Parallel to derivation of Schrödinger equation 
[33], one next considers the moving coordinates 
 

jβ jβ j βw t x z              (128) 
 

that for uniform velocity w results in 
 

jβ-1 jβ-1 j β-1 jβ-1 jβ-1w   v V V w      (129) 
 

in accordance with (125). The components of 
convective velocity in (128) are expressed as 
 

jβ-1 j β-1ww            (130) 

 

such that 
 

2 2 2
β-1 j β-1 jβ-1w w  2w          (131) 

 

For uniform convection velocity (130) by (125) and 
substitution from (13c) one obtains from (127) 
 

2
iβ-1 iβ-1 iβ-1

j β-1 β 2
j j

w
t x


  

 
 

p p


x

p
      (132) 

 

that is identical to (19) when . β-1 β-1p 0 v 

 For uniform convective velocity W (125) gives 
 

iβ-1 iβ-1 ijβ-1 ijβA    v w V V          (133) 
 

where A is a constant. Also, for an incompressible 
fluid with A B   one obtains from (133) 
 

iβ-1 ijβ β-1 iB B Y          v V        (134) 
 

that by (85) gives 
 

iβ-1 β-1 i βB Y  p               (135) 
 

Substituting from (135) into (132) leads to 
 
 

2
β β

j β-1 2
j j

w
t m

β

x x
 

  
 

 




       (136) 

 

where the viscosity tensor m by (13c) is defined as 
 

β ijβ m        ,   j

ij ij

i

ln

x


 


 



p
V     (137) 

 

Following Dirac [141], by (137), and (125)-(131) the 
parameters j m( , ) 

4 4

are considered to be tensors 

representing   matrices. However, since 
according to Dirac one of his four equations is 
redundant [141], the final wave equation will only 
involve three components such that by (131)  
 

2 2 2
1 2 3 1                (138) 

 

in accordance with Dirac theory
 

[141]. Also, the 
definitions (131) and (137) are in harmony with the 
perceptions of Dirac [141] who anticipated 
that j m( , )  may be related to some coordinates 

associated with internal degrees of freedom. 
 Relating Schrödinger and Dirac wave functions 

by the expression  with 
ββ Dβ( ) ( ),j jz x t   

 

 2
β β-1 β-1 j( ) exp[( m w / ) ]jz i   z

x

      (139) 

, , and the 

total energy defined as , one obtains 

Dβ
exp( exp( w / )/ ) m j jm E ii t     

2
β-1 β-1 β-12m wE 
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from (128), (139) and (136) the scale invariant 
relativistic wave equation 
 

Dβ Dβ

j m β-1 β-1

β-1 j

Dβ 0
1

( ) ( m w
w t

i
x

  
 

 
 

 )
 

 (140)  

 

At the important scale of Casimir vacuum [49] 
(ETD in Fig.1), when is the speed 

of light, equation (140) becomes Dirac relativistic 
wave equation for electrons [141] 

β-1 t k
w v u c   

 

Dβ Dβ

j m Dβ

j

0
1

( ) ( mc)
t

i
c x

 
 


 

  
 

        (141) 

 

 Because it was by shear genius and 
mathematical intuition that Dirac arrived at his 
relativistic wave equation (141), the physical basis 
of this equation remains quite abstract and 
mysterious.  Therefore, the simple derivation of 
Dirac equation presented above may help the 
understanding of this important equation.  It is also 
noted that the wave function  in (85) remains 
well defined even in the presence of spin as long as 

 such that  by (124).  The 

true significance of the tensors 


   v


u 0


  V

j m( , )  in (130) 

and (137) as well as the wave function (139) 
require further future investigations.   

10 Concluding Remarks  
A modified statistical theory of turbulence was 
presented and the connections between the 
problems of turbulence and quantum mechanics 
were further explored. New paradigms for physical 
foundations of invariant Planck law, Schrödinger 
equation, and Dirac relativistic wave equation 
were presented.  The predicted velocity profiles for 
flow over a flat plate were compared with 
measurements for LED, LCD, LMD, and LAD 
scales. The universal nature of turbulence across 
broad range of spatio-temporal scales is in 
harmony with occurrence of fractals in physical 
science emphasized by Takayasu [142]. 
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