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Abstract: - In this article, we study the degenerate parabolic problem, ( ) ( ),q q

t x xx u x u x f uβ− =  satisfying the 
Dirichlet boundary condition and a nonnegative initial condition where q  and β  are given constants and f  is 
a suitable function. We show that under certain conditions the degenerate parabolic problem has a blow-up 
solution and the blow-up set of such a blow-up solution is the whole domain of .x  Furthermore, we give the 
sufficient condition to blow-up in finite time.  Finally, we generalize the degenerate parabolic problem into the 
general form, ( ) ( ( ) ) ( ) ( ).t x xk x u p x u k x f u− =  Under appropriate assumptions on functions ,  k p and ,f  we still 
obtain the same results as the previous problem. 
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1 Introduction 
Let T  be any positive real number and q  and β  be 
positive constants with 0,q >  [0,1)β ∈  and 

0.q β+ ≠  Let (0,1),I =  (0, ),TQ I T= ×  I  and  TQ  be 
their closure of  I  and  ,TQ  respectively.  In this 
article, we study the degenerate parabolic initial-
boundary value problem, 

0

( ) ( ( , )),  ( , ) ,
(0, ) 0 (1, ),  (0, ),

( ,0) ( ),  ,

q q
t x x Tx u x u x f u x t x t Q

u t u t t T

u x u x x I

β ⎫− = ∈
⎪

= = ∈ ⎬
⎪= ∈ ⎭

                (1) 

where f and 0u are suitable functions.  In 1985, C. 
E. Mueller and F. B. Weissler [12] studied the 
behavior of solutions to the semilinear heat equation 

0

( ),  ( , ) (0, ),
( , ) 0,  ( , ) (0, ),

( ,0) ( ),  ,

tu u u f u x t
u x t x t

u x u x x

λ= Δ − + ∈Ω× ∞ ⎫
⎪= ∈∂Ω× ∞ ⎬
⎪= ∈Ω ⎭

                      (2) 

where Ω  is n\  or a smooth bounded domain in 
,n\  ∂Ω  denotes the smooth boundary of ,Ω  

2

1

,
n

i
i=

Δ = ∂∑  0,λ ≥  f and 0u  are given function. They 

proved that, under appropriated hypothesis, 
solutions of problem (2) blow up in finite time and 
in fact blow up only at a single point.  Further, in 
2009, J. P. Pinasco [13] established the blow-up 
positive solutions of parabolic problems with 

reaction terms of local and nonlocal type involving a 
variable exponent, 

0

( ),  ( , ) (0, ),
( , ) 0,  ( , ) (0, ),

( ,0) ( ),  ,

tu u f u x t
u x t x t

u x u x x

= Δ + ∈Ω× ∞
= ∈∂Ω× ∞

= ∈Ω
                         

where nΩ∈\  is a bounded domain with a smooth 
boundary ,∂Ω  and the source term is of the form 

( )( ) ( ) p xf u a x u=  or ( )( ) ( ) ( , )q xf u a x u y t dy
Ω

= ∫  with 

given functions ,   and .a p q  For blow-up problems of 
the degenerate semilinear parabolic type, in 1999, C. 
Y. Chan and W. Y. Chan [3] proved the existence of 
a blow-up solution of the degenerate semilinear 
parabolic initial-boundary value problem 

0

( ),  ( , ) ,
(0, ) 0 (1, ),  (0, ),

( ,0) ( ),  ,

q
t xx Tx u u f u x t Q

u t u t t T

u x u x x I

⎫− = ∈
⎪

= = ∈ ⎬
⎪= ∈ ⎭

                                  (3) 

where f and 0u are given functions. They proved 
existence and uniqueness of a blow-up solution of 
problem (3) by transforming problem (2) into the 
equivalent integral equation in terms of its Green’s 
function. Furthermore, in 2006, C. Y.  Chan and W. 
Y. Chan [4] showed that under certain condition on 
functions f and 0 ,u  a solution u  of problem (3) 
blows up at every point in .I  After paper [3] 
published, in 2004, Y.P. Chen and C.H. Xie [8] 
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discussed the degenerate parabolic equation with the 
nonlocal term: 

1

0

0

( ) ( ( , ))  for ( , ) ,

(0, ) 0 (1, ) for (0, ),

( ,0) ( ) for .

t x x Tu x u f u x t dx x t Q

u t u t t T

u x u x x I

β ⎫
− = ∈ ⎪

⎪
⎪= = ∈ ⎬
⎪= ∈ ⎪
⎪⎭

∫
              (4) 

They consider the local existence and uniqueness of 
a classical solution. Under appropriate hypotheses,  
they obtained some sufficient conditions for the 
global existence and blow-up of a positive solution 
of problem (4).  Additionally, in 2004, Y.P. Chen, 
Q. Liu and C.H. Xie [7] studied the degenerate 
nonlinear reaction-diffusion equation with nonlocal 
source: 

1

0

0

( ) ( , )  for ( , ) ,

(0, ) 0 (1, ) for (0, ),

( ,0) ( ) for .

q p
t x x Tx u x u u x t dx x t Q

u t u t t T

u x u x x I

β ⎫
− = ∈ ⎪

⎪
⎪= = ∈ ⎬
⎪= ∈ ⎪
⎪⎭

∫
              (5) 

They established the local existence and uniqueness 
of a classical solution of problem (5). Under 
appropriate hypotheses, they also get some 
sufficient conditions for a global existence and 
blow-up of a positive solution. Furthermore, under 
certain conditions, it is proved that the blow-up set 
of the solution of problem (5) is the whole domain. 
In 2010, P. Sawangtong, B. Novaprateep and W. 
Jumpen [15] established the existence of a blow-up 
solution of the following degenerate parabolic 
problem with the localized nonlinear source: 

( ) 0

0

1 ( ) ( ( , )) for ( , ) ,
( )

(0, ) 0 (1, ) for (0, ),

( ,0) ( ) for ,

t x Tx
u p x u f u x t x t Q

k x
u t u t t T

u x u x x I

⎫− = ∈ ⎪
⎪⎪= = ∈ ⎬
⎪= ∈ ⎪
⎪⎭

 (6)   

where , ,k p f and 0u are suitable functions. In 2010 
P. Sawangtong and W. Jumpen [14] studied the 
degenerate parabolic problem (6). In this article we 
continuos to study the degenerate parabolic problem 
(6) and our objective is to show that before blow-up 
phenomenon will occur, the degenerate parabolic 
problem (1) has a unique continuous solution u on 
the finite time interval 1T  with 1 0T > for any .x I∈  
Moreover, the sufficient condition to guarantee 
occurrence of finite time blow-up and the blow-up 
of  such a blow-up solution are given. In order to 
make more complete, we extend our degenerate 
parabolic problem (1) into the more general form: 

0( ) ( ( ) ) ( ) ( ( , ))t x xk x u p x u k x f u x t− =  where k  and p are 
given functions. Under some conditions, we also 
obtain the same results as the degenerate parabolic 
problem (1). In order to obtain our results for 
degenerate parabolic problem (1), we need 
assumptions on functions f  and  0u  as follows. 
(A) 2 ([0, ))f C∈ ∞  is convex with (0) 0f =  and 

( ) 0f s >  for 0.s >  
(B) 2

0 ( ),u C I∈  0 0(0) 0 (1),u u= = 0u is nonnegative on 
I  and  0u  satisfies the inequality, 

      0
0( ( )) 0 on .qdud x x f u x I

dx dx
β⎛ ⎞ + ≥⎜ ⎟

⎝ ⎠
                     (7) 

We note that by proposition 2.1 of [12], condition 
(A) implies that f is increasing and locally 
Lipschitz continuous on [0, ).∞  

A solution u  of the degenerate parabolic problem 
(1) is said to blow-up at the point b  in finite time lT  
if there exists a sequence ( , )n nx t  with l

nt T< such 

that l( , ) ( , )n nx t b T→  and ( , ) .n nu x t →∞  Furthermore, 
the set consisting of all blow-up points of a blow-up 
solution is called the blow-up set.  

This paper is organized as follows. In section 2, 
we find associating eigenfunctions and eigenvalues 
to the degenerate parabolic problem (1). We prove 
the existence and uniqueness of a solution of 
problem (1) before blow-up occurs by using the 
Banach fixed point theorem and give the sufficient 
condition to blow-up in finite time in section 3 and 
4, respectively.  In section 5, we give the blow-up 
set of such a blow-up solution of the degenerate 
parabolic problem (1). The extended problem, 

( ) ( ( ) ) ( ) ( )t x xk x u p x u k x f u− = , of the degenerate 
parabolic problem, ( ) ( )q q

t x xx u x u x f uβ− = , is studied 
in the last section. 
 
2 Eigenvalues and Eigenfunctions 

By using separation of variables [9] and [11] on the 
homogenous problem corresponding to problem (1), 
we obtain the singular eigenvalue problem, 

( ) 0 for ,

(0) 0 (1).

qd dx x x x I
dx dx

β ϕ λ ϕ

ϕ ϕ

⎫⎛ ⎞ + = ∈ ⎪⎜ ⎟
⎝ ⎠ ⎬

⎪= = ⎭

                        (8) 

Let 
1

2( ) ( ).x x y x
β

ϕ
−

=  Then 
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1 1
2 21( ) ( ) ( )

2
x x y x x y x

β ββϕ
− − −−⎛ ⎞′ ′= + ⎜ ⎟

⎝ ⎠
                        (9) 

and 

1 1
2 2( ) ( ) (1 ) ( )x x y x x y x
β β

ϕ β
− − −

′′ ′′ ′= + −  

             
3

21 1 ( ).
2 2

x y x
ββ β − −− − −⎛ ⎞⎛ ⎞+⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
                    (10) 

Substituting equation (9) and (10) in equation (8), 
we obtain 

1 1 3
2 2 21 1( ) (1 ) ( ) ( )

2 2
x x y x x y x x y x

β β β
β β ββ

− − − − −⎡ ⎤− − −⎛ ⎞⎛ ⎞′′ ′+ − +⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎣ ⎦

 

1 1 1
1 2 2 21( ) ( ) ( ) 0

2
qx x y x x y x x x y x

β β β
β ββ λ

− − − −
− ⎡ ⎤−⎛ ⎞′+ + + =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
or 

21 1 1 3
2 2 2 21( ) ( ) ( ) 0.

2
qx y x x y x x x x y x

β β β ββλ
+ − − −⎡ ⎤−⎛ ⎞′′ ′+ + − =⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
                                                                             (11) 

Dividing both sides of equation (11) by 
1

2 ,x
β+

 we get 

2

2

1 1 1( ) ( ) ( ) 0.
2

qy x y x x y x
x x

β βλ −
⎡ ⎤−⎛ ⎞′′ ′+ + − =⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
      (12) 

Multiplying both side of equation (12) by 2 ,x  the 
singular eigenvalue problem (8) becomes 

2
2 2 1( ) ( ) ( ) 0,

2

(0) is bounded and (1) 0.

qx y x xy x x y x

y y

β βλ − +
⎫⎡ ⎤−⎛ ⎞′′ ′+ + − = ⎪⎢ ⎥⎜ ⎟

⎝ ⎠ ⎬⎢ ⎥⎣ ⎦
⎪

= ⎭

    (13) 

Again, we set 
2

2 .qx z β− +=  Then 

22( ) ( )
2

q
qqy x z y z

β
ββ −

− +− +⎛ ⎞′ ′= ⎜ ⎟
⎝ ⎠

 

and 

2( ) 22
2 22 2( ) ( ) ( ).

2 2 2

q q
q qq q qy x z y z z y z

β β
β ββ β β− − −

− + − +− + − − +⎛ ⎞ ⎛ ⎞⎛ ⎞′′ ′′ ′= +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

From equation (13), we have 

4 2( )2
2 22 ( )

2

q
q qqz z y z

β
β ββ −

− + − +
⎡ − +⎛ ⎞ ′′⎢⎜ ⎟
⎝ ⎠⎢⎣

 

2
22 ( )

2 2

q
qq q z y z

β
ββ β − −

− +
⎤− − +⎛ ⎞⎛ ⎞ ′+ ⎥⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎥⎦
 

2
22 1( ) ( ) 0

2 2
q zy z z y zβ βλ

⎡ ⎤− + −⎛ ⎞ ⎛ ⎞′+ + − =⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

           

or
( )

( )

22
2

2 2

14( ) ( ) ( ) 0,
( 2) 2

(0) is bounded and (1) 0.

zz y z zy z y z
q q

y y

βλ
β β

⎫⎡ ⎤−
′′ ′ ⎪+ + − =⎢ ⎥ ⎪

− + ⎬− +⎢ ⎥⎣ ⎦ ⎪
= ⎪⎭

           

                                                                             (14) 
Thus, we see that equation (14) is a Bessel equation. 
Its general solution of a Bessel equation (14) is 
given by 

( ) ( ) ( )y z AJ z BJ zμ μω ω−= +   

where 1 ,
2q

βμ
β
−

=
− +

1
22 ,

2q
λω
β

=
− +

 A  and B  are 

arbitrary constants and Jμ  denotes the Bessel 
function of the first kind of order ( 0).μ >  Turning to 
the boundary condition, at 0z =  leads to 0B =  and 
then we obtain 

( ) ( ).y z AJ zμ ω=                                                     (15) 

 The boundary condition at 1x =  gives the 
following equation, 

( ) 0.Jμ ω =                                                             (16) 

Then, by equation (15), the appropriate 
eigenfunctions nϕ  of the singular eigenvalue 
problem (15) are 

1 2
2 2( ) ( )

q

n nx Ax J x
β β

μϕ ω
− − +

=                                    (17) 

where nω  is the thn root of equation (16).  In order to 
obtain the orthonormal property of nϕ  with the 
weight function ,qx  

1

0

1 if 
( ) ( ) ,

0 if 
q

n m

n m
x x x dx

n m
ϕ ϕ

=⎧
= ⎨ ≠⎩

∫  we use the 

orthogonality of Bessel functions, that is, 

WSEAS TRANSACTIONS on MATHEMATICS P. Sawangtong, W. Jumpen

ISSN: 1109-2769 725 Issue 9, Volume 9, September 2010



1 2
1

0

1 ( ) if 
( ) ( ) ,2

0 if 

n
n m

J n m
xJ x J x dx

n m

μ
μ μ

ω
ω ω +

⎧ =⎪= ⎨
⎪ ≠⎩

∫   

to determine the value of constant .A  To do so, we 
consider 

1 1 2
2 2 1 2 2

1
0 0

( ) ( ) .
q

q q
n nx x dx A x J x dx

β
β

μϕ ω
− +

− +
+=∫ ∫               (18) 

Let 
2

2 .
q

y x
β− +

=  Then 22 .
2

qqdy x dx
ββ −− +⎛ ⎞= ⎜ ⎟

⎝ ⎠
 Let us 

consider  the right-hand side of equation (18) 

1 12 2
2 1 2 22

1
0 0

2( ) ( )
2

q
q

n n
AA x J x dx yJ y dy

q

β
β

μ μω ω
β

− +
− +

+ =
− +∫ ∫  

                                            
2

2
1( ).

2 n
A J

q μ ω
β +=

− +
  (19) 

It follows from (18) and (19) that 

1 2
2 2

1
0

( ) ( ).
2

q
n n

Ax x dx J
q μϕ ω

β +=
− +∫   

Since the right-hand side of equation (18) must 
equal to 1, the value of constant A  is determined by 

1
2

1

( 2) .
( )n

qA
Jμ

β
ω+

− +
=  Hence, eigenfunctions nϕ  of the 

singular eigenvalue problem (17) are defined by 

1 1 2
2 2 2

1

( 2) ( )
( ) .

( )

q

n
n

n

q x J x
x

J

β β

μ

μ

β ω
ϕ

ω

− − +

+

− +
=                    (20) 

Further, it follows from [1] that 

2( ) as .n O n nλ = →∞                                              

Lemma 2.1 For any ,x I∈  
1 1

2 4
0( )n nx c x

β

ϕ λ
−

≤  for 
some positive constant 0.c  

Proof.  By [1], we have 

2
2( ) 1 for any 0.

q

nJ x
β

μ ω μ
− +

≤ >                              (21) 

It follows from [6] that 

1
1 2
2

0
1

1
2( )

n

n

c
qJμ

πλ
βω+

⎛ ⎞
⎜ ⎟≤ ⎜ ⎟− +⎜ ⎟
⎝ ⎠

                                    (22) 

where 0c  is some positive constant. Therefore, by 
equations (20), (21) and (22), the proof of this 
lemma is complete. 

 
3 Local existence of blow-up solution 

In this section, we will show the existence and 
uniqueness of a nonnegative continuous solution of 
a degenerate parabolic problem (1). Green’s 
function ( , , , )G x t ξ τ corresponding to the degenerate 
parabolic problem (1) is determined by the 
following system, for any x and ξ in ,I  and t and 
τ in (0, ),T  

( , , , ) ( ( , , , )) ( ) ( ),
( , , , ) 0 for ,

(0, , , ) 0 (1, , , ),

q
t x xx G x t x G x t x t

G x t t
G t G t

βξ τ ξ τ δ ξ δ τ
ξ τ τ

ξ τ ξ τ

⎫− = − −
⎪= < ⎬
⎪= = ⎭

 

                                                                             (23)                 
where δ  is the Dirac delta function. Let 

 
1

( , , , ) ( ) ( )n n
n

G x t a t xξ τ ϕ
∞

=

= ∑                                     (24) 

Substituting equation (24) into equation (23), we 
obtain 

1 1

( ) ( ) ( ) ( ) ( ).q n
n n n

n n

ddx a t x a t x x t
dx dx

β ϕ
ϕ δ ξ δ τ

∞ ∞

= =

⎛ ⎞′ − = − −⎜ ⎟
⎝ ⎠

∑ ∑
 
Multiplying both sides by nϕ  and then integrating 
both sides with respect to x  over its domain, we 
have 
1 1

1 10 0

( ) ( ) ( ) ( ) ( )q n
n n n n n

n n

ddx x a t x dx x a t x dx
dx dx

β ϕ
ϕ ϕ ϕ

∞ ∞

= =

⎛ ⎞′ − ⎜ ⎟
⎝ ⎠

∑ ∑∫ ∫
1

0

( ) ( ) ( ) .n x x t dxϕ δ ξ δ τ= − −∫  

By the orthonormal property of eigenfunctions nϕ  
and the property of Dirac delta function, we get 

( ) ( ) ( ) ( )n n n na t a t tλ ϕ ξ δ τ′ + = −  
or 

( )( ) ( ) ( ) .n nt t
n n

d e a t t e
dt

λ λϕ ξ δ τ= −  

Integrating both sides from t  to 1t  with 1 ,t τ<  we 
obtain 

( )
1 1

( ) ( ) ( )n n

t t
s s

n n
t t

d e a s x e ds
ds

λ λϕ ξ δ ξ= −∫ ∫  

or 
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1
1( ) ( ) ( ) .n n nt t t

n n ne a t e a t eλ λ λϕ ξ− =  
Since ( , , , ) 0 for ,G x t tξ τ τ= <  1( ) 0na t =  for all .n  
We then obtain that ( )( ) ( ) n t

n na t e λ τϕ ξ − −=  for any .n  
Therefore the Green’s function corresponding to 
problem (1) is defined by 

( )

1

( , , , ) ( ) ( ) n t
n n

n

G x t x e λ τξ τ ϕ ϕ ξ
∞

− −

=

= ∑  for ,t τ>         (25)                                 

where  and n nϕ λ  are eigenfunctions and eigenvalues 
of the singular eigenvalue problem (8), respectively.  
 
Lemma 3.1 For ,t τ>  ( , , , )G x t ξ τ  is continuous for 
( , , , ) (0, ] [0, ).x t I T I Tξ τ ∈ × × ×  
Proof. By lemma 2.1 and equation (25), we obtain 
that 

1 1 1
( ) 2 ( )2 2 2

0
1 1

( ) ( ) t t
n n n

n n

x e c x e
β β

τ τϕ ϕ ξ ξ λ
− −∞ ∞

− − − −

= =

≤∑ ∑  

                                  
1

2 ( )2
0

1

t
n

n

c e τλ
∞

− −

=

≤ ∑ , 

which converges uniformly. We then get the result.  
 
Next lemma shows the positivity of Green’s 
function .G   
 
Lemma 3.2   For any ( , , , ) (0, ] [0, ),x t I T I Tξ τ ∈ × × ×   

0G >  with  .t τ>  
Proof. The proof of this lemma is similar to that of 
lemma 4.c of [5]. 
 
To derive the equivalent integral equation of a 
degenerate parabolic problem (1),  let us consider 
the adjoint operator *L defined by 

* qL x x
t x x

β∂ ∂ ∂⎛ ⎞= − − ⎜ ⎟∂ ∂ ∂⎝ ⎠
 

corresponding to the operator 
qL x x

t x x
β∂ ∂ ∂⎛ ⎞= − ⎜ ⎟∂ ∂ ∂⎝ ⎠

 

of a degenerate parabolic problem (1). By Green’s 
second identity, we obtain the equivalent integral 
equation to problem (1) given by 

1

0
0

( , ) ( , , ,0) ( )qu x t G x t u dξ ξ ξ ξ= ∫  

             
1

0 0

( , , , ) ( ( , )) .
t

qG x t f u d dξ ξ τ ξ τ ξ τ+∫ ∫             (26) 

 
Theorem 3.3 There exists a finite time 1 0T > such 
that a degenerate parabolic problem has a unique 
continuous solution    u  on the finite time interval  

1[0, ]T  for any .x I∈   
Proof. Let M  be a positive constant with 

0max ( ) 1.
x I

M u x
∈

> +  Locally Lipschitz continuity 

of f implies that for any u M≤  and v M≤  there is 
a positive constant L  depending on  M  such that 

( ) ( ) .f u f v L u v− ≤ −  Further, since 
1

0 0

( , , , ) 0
t

qG x t d dξ ξ τ ξ τ →∫ ∫  as 0,t →  there exists a 

finite time 1T   such that 
1

0 0

( ) ( , , , ) 1
t

qf M G x t d dξ ξ τ ξ τ <∫ ∫  for 1[0, ]t T∈           

and 
1

0 0

( , , , ) 1
t

qL G x t d dξ ξ τ ξ τ <∫ ∫  for 1[0, ].t T∈                

We next define the space E  by 

1

1
( , )

( ) such that sup ( , )
T

T
x t Q

E u C Q u x t M
∈

⎧ ⎫⎪ ⎪= ∈ ≤⎨ ⎬
⎪ ⎪⎩ ⎭

.      

Then, the space E  is a Banach space equipped with 
the norm 

1
( , )
sup ( , ) .

T
E

x t Q
u u x t

∈
=  Let Φ  be a mapping 

defined by 
1

0
0

( , ) ( , , ,0) ( )qu x t G x t u dξ ξ ξ ξΦ = ∫  

                
1

0 0

( , , , ) ( ( , )) .
t

qG x t f u d dξ ξ τ ξ τ ξ τ+∫ ∫  

In order to apply the Banach fixed point theorem we 
would like show that Φ  maps E into itself and Φ  is 
a contraction mapping. Let u and v  be any element 
in .E  We then have that 

1

0
0

( , ) ( , , ,0) ( )qu x t G x t u dξ ξ ξ ξΦ ≤ ∫   

                 
1

0 0

( , , , ) ( ( , )) .
t

qG x t f u d dξ ξ τ ξ τ ξ τ+ ∫ ∫        (27) 

Let us consider the following auxiliary problem, 

1

0

( ) 0,  ( , ) ,

(0, ) 0 (1, ),  (0, ),

( ,0) ( ),  .

q
t x x Tx u x u x t Q

u t u t t T

u x u x x I

β ⎫− = ∈
⎪

= = ∈ ⎬
⎪= ∈ ⎭

                             (28) 

From (26), a solution u  of problem (28) is given by, 

for any 
1

( , ) ,Tx t Q∈  
1

0
0

( , ) ( , , ,0) ( ) .qu x t G x t u dξ ξ ξ ξ= ∫  

On the other hand, Maximum principle for parabolic 
type [10] implies that 0( , ) max ( )

x I
u x t u x

∈
≤  on 

1
.TQ  We 

then obtain that, for any 
1

( , ) ,Tx t Q∈  
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1

0

( , , ,0) 1.qG x t dξ ξ ξ ≤∫  From inequality (27), we get 

that, for any 
1

( , ) ,Tx t Q∈  
1

0
0 0

( , ) max ( ) ( ) ( , , , ) .
t

q

x I
u x t u x f M G x t d d Mξ ξ τ ξ τ

∈
Φ ≤ + <∫ ∫

 
This shows that u EΦ ∈ for any .u E∈ Next, locally 
Lipschitz continuity of f yields  

( , ) ( , )u x t v x tΦ −Φ  
1

0 0

( , , , ) ( ( , )) ( ( , ))
t

qG x t f u f v d dξ ξ τ ξ τ ξ τ ξ τ≤ −∫ ∫  

1

0 0

( , , , ) .
t

q
E

L G x t d d u vξ ξ τ ξ τ≤ −∫ ∫  

By definition of 1,T we obtain thatΦ is a contraction 
mapping. Hence, by the Banach fixed point 
theorem, the equivalent integral equation (26) has a 
unique continuous solution u  on 

1
.TQ  The proof of 

this theorem therefore is complete.  
 
Theorem 3.4 Let  maxT  be the supremum of all  1T  
such that the solution u  of the degenerate parabolic 
problem (1) is bounded.  If maxT is finite, then 

max
( , )

sup ( , )
Tx t Q

u x t
∈

 is unbounded as t converges to max .T  

Proof. Suppose that 
max

( , )
sup ( , )

Tx t Q
u x t

∈
 is finite. Let N  

be any positive constant with 
max

( , )
sup ( , ) 1.

Tx t Q
N u x t

∈
> +  

By theorem 3.1, there exists a finite time 2 maxT T>  
such that the degenerate parabolic problem has a 
unique continuous solution on 

2
.TQ  We then obtain 

a contradiction to definition of max .T  Hence, we get 
the result.  
 
Lemma 3.5 If 2,1( ) ( )TTv C Q C Q∈ ∩ satisfies 

( ) ( , ) ( , ),  ( , ) ,
(0, ) 0  and  (1, ) 0, (0, ),

( ,0) 0,  ,

q
t x x Tx v x v B x t v x t x t Q
v t v t t T

v x x I

β− ≥ ∈
≥ ≥ ∈

≥ ∈

              

where ( , )B x t  is bounded and nonnegative on ,TQ  
then ( , ) 0v x t ≥  on  .TQ  
Proof. Let ( ,1)β β′∈ be a positive constant and 

( , ) ( , ) (1 ) ctw x t v x t x eβ βη ′−= + +  
where η is any positive constant and c  is a positive 
constant  to be determined. We see that, on the 
parabolic boundary, 0.w >  Let us consider that for 

any ( , ) ,Tx t Q∈  
( ) ( , ) ( , )q

t x xx w x w B x t w x tβ− −  

2

1(1 ) ( )( 1)ct q cte cx x e
x

β β
βη η β β β′−
′−

′ ′≥ + − − −  

   
( , )
max ( , ) (1 )

T

ct

x t Q
e B x t xβ βη ′−

∈

⎛ ⎞− +⎜ ⎟
⎝ ⎠

 

2

1(1 ) ( )(1 )ct q cte cx x e
x

β β
βη η β β β′−
′−

′ ′≥ + + − −  

  
( , )

2 max ( , ) .
T

ct

x t Q
e B x tη

∈

⎛ ⎞− ⎜ ⎟
⎝ ⎠

                                        (29) 

If 
( , )

1max ( , ) ( )(1 ),
2Tx t Q

B x t β β β
∈

′ ′≤ − − then, by equation 

(29), 
( ) ( , ) ( , )q

t x xx w x w B x t w x tβ− −  

2

1(1 ) ( )(1 ) 1ct q cte cx x e
x

β β
βη η β β β′−
′−

⎡ ⎤′ ′≥ + + − − −⎢ ⎥⎣ ⎦
 

0.≥  
On the other hand, we assume that 

( , )

1max ( , ) ( )(1 ).
2Tx t Q

B x t β β β
∈

′ ′> − −  

Let 0 ( 0)x >  be the root of equation, 

2( , )

1max ( , ) ( )(1 ),
2Tx t Q

B x t
x β β β β′−∈

′ ′= − −  

and let 
( , )

0 0

2 max ( , ) .
(1 ) T

q x t Q
c B x t

x x β β′− ∈

⎛ ⎞= ⎜ ⎟+ ⎝ ⎠
 It follows 

from equation (29) that  
if 0 ,x x> then the definition of c  yields 

( ) ( , ) ( , )q
t x xx w x w B x t w x tβ− −  

( , )
(1 ) 2max ( , )ct q

x t
e cx x B x tβ βη ′−⎡ ⎤≥ + −⎢ ⎥⎣ ⎦

 

0 0 ( , )
(1 ) 2max ( , )ct q

x t
e cx x B x tβ βη ′−⎡ ⎤≥ + −⎢ ⎥⎣ ⎦

 

0,≥  
and if 0 ,x x≤  then 
 ( ) ( , ) ( , )q

t x xx w x w B x t w x tβ− −  

2
0

1(1 ) ( )(1 )ct q cte cx x e
x

β β
βη η β β β′−
′−

′ ′≥ + + − −  

  
( , )

2 max ( , )
T

ct

x t Q
e B x tη

∈

⎛ ⎞− ⎜ ⎟
⎝ ⎠

 

0.≥  
Therefore 

( ) ( , ) ( , ) 0 on q
t x x Tx w x w B x t w x t Qβ− − ≥ .                

We would like to show that 0w > on .TQ  Suppose 
that there exists a point 1 1( , )x t with 1 1( , ) 0.w x t ≤  We 
define the set 

{ } such that w( , ) 0 for some A t x t x I= ≤ ∈  is non-

empty. Let t�  denotes its infimum. Since ( ,0) 0,w x >  
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we have 0 .t T< <�  Then there exists some 2x I∈  
such that 2( , ) 0,w x t =�  2( , ) 0tw x t ≤�  and 2( , ) 0.xw x t =�  
Since w  attains its local minimum at 2( , ),x t�  we 
have 2( , ) 0.xxw x t ≥�   Thus 

2 2 2 2 2 2 2 20 ( , ) ( , ) ( ( , )) ( , ) ( , ) 0.q q
t t x xx w x t x w x t x w x t B x t w x tβ≥ ≥ − − >� � � � �

This contradiction shows that 0 on .Tw Q>  As 
0,η →  we will get the result.  

 
We will give additional properties of the solution 
u of the degenerate parabolic problem (1) in the 
next lemma. 
 
Lemma 3.6  0  and 0 on .t Tu u u Q≥ ≥   
Proof. Let 0( , ) ( , ) ( ) on .Tw x t u x t u x Q= −  For any 
( , ) ,Tx t Q∈  equation (7) implies that 

0( ) ( )q q
t x x

dudx w x w x f u x
dx dx

β β⎛ ⎞− = + ⎜ ⎟
⎝ ⎠

 

                         ( )0( ) ( )qx f u f u≥ −  
                         1( ) ( , )qx f w x tζ′=  
where 1ζ  is a positive constant between u and 0.u  
Further, on the parabolic boundary, 0.w ≥  Then 
lemma 3.5 yields that 0u u≥ on .TQ  Let h  be any 
positive constant with (0, )h T∈  
and ( , ) ( , ) ( , )z x t u x t h u x t= + −  on .T hQ −  For any 
( , ) ,T hx t Q −∈  we obtain 

( ) ( ( , )) ( ( , ))q q q
t x xx z x z x f u x t h x f u x tβ− = + −  

                       2( ) ( , )qx f z x tζ′=  
where 2ζ  is a positive constant between ( , )u x t h+  
and ( , ).u x t  Moreover, since 0  on ,Tu u Q≥  we  have 
that  

0( ,0) ( , ) ( ) 0z x u x h u x= − ≥  for x I∈  and 
(0, ) 0 (1, )z t z t= =  for  (0, ).t T h∈ −  Lemma 3.5 

implies that 0tu ≥  on Q .T  Therefore the proof of 
this lemma is complete. 
 
4 A sufficient condition to blow-up in 
finite time 

In this section, we will give the sufficient 
condition to ensure occurrence of blow-up in finite 
time. Let 1( 0)ϕ >  be the first eigenfunction of the 
singular eigenvalue problem (8) and 1( 0)λ >  its 
corresponding eigenvalue. Further, we assume that 
1

1
0

( ) 1.qx x dxϕ =∫                                                       

We define the function H by 
1

1
0

( ) ( , ) ( ) .qH t x u x t x dxϕ= ∫                                        (30) 

We note that since ( )lim ,
s

f s
s→∞

→∞  there exists a 

positive constant 0z  such that 

1 0( ) 0 for any .f s s s zλ− > ≥                                    (31) 
Theorem 4.1 Let 

0 1

.
( )z

ds
f s sλ

∞

< ∞
−∫                                                     

Then, for any initial function 0u such that 
1

0 1 0
0

(0) ( ) ( ) ,qH x u x x dx zϕ= ≥∫  

the solution u  of a degenerate parabolic problem (1) 
blows up in finite time. 
Proof. Suppose that u  exists for all time 0t ≥  for 
any .x I∈  By multiplying equation (1) both side by 

1ϕ  and integrating with respect to x  over its 
domain, we have 

1

1 1
0

( ) ( ) ( ( , )) ( ) .qdH t H t x f u x t x dx
dt

λ ϕ+ = ∫                   (32) 

By convexity of ,f  we can apply the Jensen’s 
inequality to equation (32) and then we obtain 

1
( ) ( ( )) ( ).dH t f H t H t

dt
λ≥ −                                      

From equation (30), we differentiate the function H  
with respect to x and then we have 

1

1
0

( ) ( , ) ( ) .q
t

dH t x u x t x dx
dt

ϕ= ∫                                     

Thus lemma 3.6 yields that ( ) 0.dH t
dt

>  We further 

get that 0( )H t z≥ for all .t By equation (31), we have 

1 0
( ) ( ( )) ( ) 0 for 0 and (0) .dH t f H t H t t H z

dt
λ≥ − ≥ > ≥  

So we separate variables to find 
( )

1 1(0) 0

.
( ) ( )

H t

H

ds dst
f s s f s sλ λ

∞

≤ ≤ < ∞
− −∫ ∫  

Hence t is finite and a contradiction is achieved. 
The solution can not exist for all positive time. 
 
5 Blow-up set 
    In this section, the blow-up set for u of problem 
(1) is shown. 
 
Theorem 5.1 The blow-up set of a solution u  of the 
degenerate parabolic problem (1) is .I  
Proof.  From equation (26), there are two positive 
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constants 1c  and 2c  such that 

max

1

1 2
( , ) 0 0

sup ( , ) ( ( , )) .
T

t

x t Q
u x t c c f u d dξ τ ξ τ

∈
≤ + ∫ ∫  

Theorem 3.2 implies that as max ,t T→  
max 1

0 0

( ( , )) .
T

f u d dξ τ ξ τ → ∞∫ ∫                                       

On the other hand, there are two positive constant 
3c  and 4c  such that 

max

1

3 4
0 0

( , ) ( ( , ))  for any ( , ) .
t

Tu x t c c f u d d x t Qξ τ ξ τ≥ + ∈∫ ∫  

                                                                            (33) 

As max ,t T→  we obtain that, by (33), ( , )u x t →∞  for 
all .x I∈  Furthermore, for { }0,1 ,x∈  we can find a 

sequence ( ){ },n nx t  such that lim ( , ) .n nn
u x t

→∞
→ ∞  

Hence, the blow-up set of a solution of a degenerate 
parabolic problem (1) is .I  
 
6 Generalized problem 

In this section, we extend our degenerate 
parabolic initial-boundary value problem (1) in 
more general form by replacing function 
coefficients of tu  and xu , qx and ,xβ  by functions 

( )k x  and ( ),p x  respectively.  We now consider the 
following degenerate parabolic initial-boundary 
value problem, 

0

( ) ( ( ) ) ( ) ( ),  ( , ) ,
(0, ) 0 (1, ),  (0, ),

( ,0) ( ),  ,

t x x Tk x u p x u k x f u x t Q
u t u t t T

u x u x x I

⎫− = ∈
⎪

= = ∈ ⎬
⎪= ∈ ⎭

           (34) 

where k  and p  are determined. In order to obtain 
the same results as a degenerate parabolic problem 
(1), we have to assume the following. 
(C) ( ),k C I∈  (0) 0k =  and k  is positive on (0,1].  
(D) 1( ),p C I∈  (0) 0,p = p is positive on (0,1]  and 
p′ is positive on .I  

As obtaining equation (8) the corresponding 
singular eigenvalue problem of (34) is defined by 

( ) ( ) ( ) 0 for ,

(0) 0 (1).

d dp x k x x x I
dx dx

φ λ φ

φ φ

⎫⎛ ⎞ + = ∈ ⎪⎜ ⎟
⎝ ⎠ ⎬

⎪= = ⎭

               (35) 

We notice that it follows from conditions (C) and 
(D) that the point 0x =  is a singular point of 
problem (35).  From equation (35), we can rewrite 
the corresponding singular eigenvalue problem (35) 
in the following equivalent form, 

2 2( ) ( )( ) ( ) ( ) 0 on ,
( ) ( )

(0) 0 (1).

p x k xx x x x x x x I
p x p x

φ φ λ φ

φ φ

⎫′⎡ ⎤ ⎡ ⎤′′ ′+ + = ⎪⎢ ⎥ ⎢ ⎥
⎬⎣ ⎦ ⎣ ⎦
⎪= = ⎭

       

                                                                            (36) 
To ensure the existence of eigenfunctions nφ  and 
eigenvalues ,nλ  we need an additional condition on 
functions k  and .p  

(E) The limit of 
2( ) ( ) and 

( ) ( )
xp x x k x
p x p x
′ are finite as x  

converges to 0  and 
2( ) ( ) and 

( ) ( )
xp x x k x
p x p x
′  are analytic 

at 0.x =  
We note that theorem 5.7.1 [2] implies that 
eigenfunctions nφ  and eigenvalues nλ  of a 
corresponding singular eigenvalue problem (36) 
exist. Moreover completeness of eigenfunctions nφ  
of  a singular eigenvalue problem (36) results from 
the next hypothesis. 

(F) 
1 1

2

0 0

( , ) ( ) ( )H x k x k d dxξ ξ ξ∫ ∫  is finite where H  is the 

corresponding Green’s function to problem (36). 
 

Well-known properties of eigenfunctions nφ  and 

eigenvalues nλ  are shown in next lemma referred to 
[xx]. 
 
Lemma 6.1 

6.1.1.
1

0

1 for ,
( ) ( ) ( )

0 for .n m

m m
k x x x dx

m n
φ φ

=⎧
= ⎨ ≠⎩

∫  

6.1.2. All eigenvalues are real and positive. 
6.1.3. Eigenfunctions are complete with the weight 
function .k  
6.1.4. 1 2 3 and lim .nn

λ λ λ λ
→∞

< < < = ∞…  

6.1.5.
1

0

for ,
( ) ( ) ( )

0 for n m.
n

n n

n m
p x x x dx

λ
φ φ

=⎧′ ′ = ⎨ ≠⎩
∫  

6.1.6. For any ,  ((0,1]).nn Cφ ∞∈ ∈`  
 
The Green’s function G  corresponding to the 
degenerate parabolic initial-boundary value problem 
(34) is determined by the following problem: let 

,x ξ  be in I and ,t τ in (0, ),T   

( )( ) ( ) ( ) ( ),
(0, , , ) 0 (1, , , ),

( , , , ) 0 for ,

t x x
k x G p x G x t

G t G t
G x t t

δ ξ δ τ
ξ τ ξ τ
ξ τ τ

− = − − ⎫
⎪= = ⎬
⎪= > ⎭

                 (37) 

where δ  is the Dirac delta function. As obtaining 
equation (25), the corresponding Green’s function 
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of (37) defined by 
( )

1
( , , , ) ( ) ( )  for ,  and 0 .n t

n n
n

G x t x e x I t Tλ τξ τ φ ξ φ ξ τ
∞

− −

=

= ∈ ≤ < ≤∑
 
The following lemma is due to properties of G  
corresponding to problem (34). 
Lemma 6.2. Assume that ( )s

n O nλ =  for some 1s >  
as .n →∞  
6.2.1. G is continuous for ,  and 0 < .x I t Tξ τ∈ ≤ <  
6.2.2. G is positive for ,  and 0 < .x I t Tξ τ∈ ≤ <  
As equation (26), the equivalent integral equation to 
the extended degenerate parabolic problem (34) is 
given by 

1

0
0

( , ) ( ) ( , , , ) ( )u x t k G x t u dξ ξ τ ξ ξ= ∫  

             
1

0 0

( ) ( , , , ) ( ( , )) .
t

k G x t f u d dξ ξ τ ξ τ ξ τ+∫ ∫           

 
Next theorem shows the existence of an unique 
solution of the extended degenerate parabolic 
problem (34) before blow-up occurs 
 
Theorem 6.3 There exists a finite time 2 0T > such 
that the extended degenerate parabolic problem (34) 
has a unique continuous solution u on the finite time 
interval  2[0, ]T  for any .x I∈  
Proof. The proof of this theorem is similar to that of 
theorem 3.3. 
 
Let imaxT  be the supremum of all  2T  such that the 
solution u  of the extended degenerate parabolic 
problem (34) is bounded. The following theorem 
says that the solution of the extended problem (34) 
blows up in finite time if imaxT is finite. 
 
Theorem 6.4 if imaxT is finite, then 

imax( , )
sup ( , )

Tx t Q
u x t

∈
 is 

unbounded as t converges to imax .T   
Proof. The proof of this theorem is similar to that of 
theorem 3.4. 
  
Furthermore we give the additional properties of a 
solution u of the extended degenerate parabolic 
problems (34). that is, positivity and increasing in 
t of .u  In order to obtain results, we need the 
following lemma. 
 
Lemma 6.5 Let v be a classical solution of the 
following problem: 

( )

0

1 ( ) ( , ) ( , ) for ( , ) ,
( )

(0, ) 0 (1, ) for (0, ),

( ,0) ( ) 0 for ,

t x Tx
v p x v B x t v x t x t Q

k x
v t v t t T

v x u x x I

− ≥ ∈

= = ∈

= ≥ ∈

   

where ( , )B x t is a nonnegative and bounded function 
on .TQ  Then ( , ) 0 for any ( , ) .Tv x t x t Q≥ ∈  
Proof.  Let η  be any positive constant. Let 

2( , ) ( , ) (1 ) ctw x t v x t x eη= + +  
where  c  is some positive constant with  

( , ) [0, ]
max ( ) max ( ) max ( ) max ( , ).

x I x I x I x t I T
c p x p x k x B x t

∈ ∈ ∈ ∈ ×
′≥ + +  

Let us consider 
( ) ( ( ) ) ( ) ( , ) ( , )t x xk x w p x w k x B x t w x t− −

2( ) ( ( ) ) ( ) ( , ) ( , ) (1 ) ct
t x xk x v p x v k x B x t v x t c x eη= − − + +  

   [ ] 22 ( ) ( ) ( ) ( , ) (1 )ct cte xp x p x k x B x t x eη η′− + − +  

[ ]{ }2 2(1 ) 2 ( ) ( ) ( ) ( , )(1 )cte c x xp x p x k x B x t xη ′≥ + − + − +  

{2 max ( ) max ( )ct

x I x I
e c p x p xη

∈ ∈

⎡ ⎤′≥ − +⎢ ⎥⎣ ⎦
 

  
( , ) [0, ]

max ( ) max ( , )
x I x t I T

k x B x t
∈ ∈ ×

−  

By the definition of ,c we have that for any 
( , ) ,Tx t Q∈  ( ) ( ( ) ) ( ) ( , ) ( , ) 0.t x xk x w p x w k x B x t w x t− − ≥  
We see that ( , ) 0w x t ≥  for 

{ } { }( , ) 0,1 (0, ) 0 .x t T I∈ × ∪ ×  We next would like to 

show that ( , ) 0w x t > for any ( , ) .Tx t Q∈  Suppose that 
there exists a point 1 1( , )x t with 1 1( , ) 0.w x t ≤  We 
define the set A  by 

{ }such that w( , ) 0 for some .A t x t x I= ≤ ∈   

Thus, the set A  is non-empty. Let inf .t A=�  Since 
2

0( ,0) ( ) (1 ) 0w x u x xη= + + >  for ,x I∈  we obtain that 
0.t >�  Furthermore, since A is closed, by the 

definition of ,t�  there exists a point 2x in I such that 

2 2 2( , ) 0,  ( , ) 0 and ( , ) 0.t xw x t w x t w x t= ≤ =� � �  
Moreover, we also get that 2( , ) 0xxw x t ≥�  because 
w attains its local minimum at the point 2.x  Then we 
have that 

2 20 ( ) ( , )tk x w x t≥ �  
  2 2 2 2 2 2( ) ( , ) ( ) ( , ) ( ) ( , )t xx xk x w x t p x w x t p x w x t′≥ − −� � �  
     2 2 2( ) ( , ) ( , )k x B x t w x t− � �  
 0.>  
Therefore, we get a contradiction. This shows that 

( , ) 0w x t >  for any ( , ) .Tx t Q∈  Since η is arbitrary, 
we let 0η +→ and then we obtain the desired result. 
 
Lemma 6.6 Let u  be a continuous solution of the 
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extended degenerate parabolic problem (34). Then 
0( , ) ( )u x t u x≥  and ( , ) 0tu x t ≥  for any

1
( , ) .Tx t Q∈  

 
To ensure that a solution u  of the extended 
degenerate parabolic problem (34) blows up in finite 
time, we give the condition to guarantee the 
occurrence for blow-up in finite time. Let 1( 0)φ >  be 
the first eigenfunction of the singular eigenvalue 
problem (35) and 1( 0)λ >  its corresponding 
eigenvalue. Moreover we suppose 
1

1
0

( ) ( ) 1.k x x dxφ =∫  

We construct the function H by 
1

1
0

( ) ( ) ( , ) ( ) .H t k x u x t x dxφ= ∫                                                 

Notice that since ( )lim ,
s

f s
s→∞

→ ∞  there exists a 

positive constant 0z  such that 

1 0( ) 0 for any .f s s s zλ− > ≥                                               
 
Theorem 6.5 Assume that 

0 1

.
( )z

ds
f s sλ

∞

< ∞
−∫                                                                 

Then, for any initial function 0u with 
1

0 1 0
0

(0) ( ) ( ) ( ) ,H k x u x x dx zφ= ≥∫  

the solution u  of the extended degenerate parabolic 
problem (34) blows up in finite time. 
Proof. By modifying the proof of theorem 4.1, this 
theorem is proven. 
 
The last theorem concern the blow-up set of the 
extended degenerate parabolic problem (34). 
 
Theorem 6.6 The blow-up set of a solution u  of the 
extended degenerate parabolic problem (34) is .I  
Proof.  The proof of this theorem is similar to that 
of theorem 5.1. 
 
7 Conclusion 
In this work, we obtain four main results for the 
degenerate parabolic problem (1) which are the 
theorem 3.3, 3.4, 4.1 and 5.1. The first main result, 
the theorem 3.3, says that there is a finite time T  
with 0T >  such that the degenerate parabolic 
problem (1) has a unique solution u on the time 
interval [0, ]T  for any x  in .I  Theorem 3.3 can be 
proven by the Banach fixed point theorem. Let 

maxT be the supremum of all T such that the solution 
u  of the degenerate parabolic problem (1) is 
bounded. Theorem 3.4 shows that the solution u  of 
our degenerate parabolic problem (1) blows up if 

maxT is finite. In fact, maxT may be not finite. This is 
the reason why theorem 4.1 is constructed. Theorem 
4.1 is the sufficient condition to blow-up in finite 
time. The last main result of problem (1), theorem 
5.1, indicates that the blow-up set of the degenerate 
parabolic problem (1) is .I  We finally extend our 
degenerate parabolic problem (1) into the general 
form: ( ) ( ( ) ) ( ) ( ( , ))t x xk x u p x u k x f u x t− =  where k  
and p are given functions. Under some conditions, 
we also obtain the same results as the previous 
problem, that is, theorem 6.3-6.6.  
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