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Abstract: In this paper spectral methods are applied to investigate the hydrodynamic instability of swirling 

flow with application to Francis hydraulic turbine. Spectral methods imply representing the problem solution 

as truncated series of smooth global functions. An 2
L - projection and the collocation methods are developed 

assessing both analytically methodology and computational techniques using symbolic and numerical 

conversions. Remarks concerning the efficiency and the accuracy of each method in this case are presented. 

The model of the trailing vortex is used to validate the numerical algorithms with existing results in the 

literature. All the results are compared to existing ones and they prove to agree quite well. The advantages of 

using this methods in flow control problems are pointed out.   
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1   Introduction 
Swirling flows behaviour has long been an intensive 

subject of research, especially in Francis 

hydropower turbine design because, at partial loads, 

the rope hydrodynamic instability appears in the 

draft tube. The amount of computational resources 

required to accurately simulate the vortex rope is 

huge, so a complementary stability analysis is a 

critical requirement to predict the flow dynamics. 

Pozrikidis [1] offer an introductory course in fluid 

mechanics, covering the traditional topics in a way 

that unifies theory, computation, computer 

programming and numerical simulation. An 

experimental investigation of the suction side 

boundary layer of a large scale turbine cascade has 

been performed by Simoni et al. in [2].  Resiga et al. 

[3] carried out an experimental and theoretical 

investigation of the flow at the outlet of a Francis 

turbine runner, in order to elucidate the causes of a 

sudden drop in the draft tube pressure recovery 

coefficient at a discharge near the best efficiency 

operating point. 

     The main goal of this paper is to develop a 

methodology for analyzing the rope instability 

downstream the Francis turbine runner by means of 

linear stability analysis. Assessing both analytically 

methodology and numerical methods, the study 

involves new mathematical models and simulation 

algorithms that translate the hydrodynamical model 

into computer code instructions immediately 

following problem formulation. Classical vortex 

problems were chosen to validate the code with the 

existing results in the literature. 

     The hydrodynamic stability model developed in 

the forthcoming sections involves spectral 

differentiation operators derived by means of shifted 

orthogonal expansions of the perturbation field. The 

sophisticated boundary conditions corresponding to 

the real flow case in a Francis turbine runner 

motivated the use of this method, suitable for non-

periodic problems with complicated boundary 

conditions. 

     Dongara [4] used the Chebyshev tau method to 

examine in detail a variety of eigenvalue problems 

arising in hydrodynamic stability studies, 

particularly those of Orr-Sommerfeld type. The 

orthogonality of Chebyshev functions was used by 

Bourne [5] to rewrite the differential equations as a 

generalized eigenvalue problem, assembling a very 

efficient projection based technique. 

     The Nobel laureate Chandrasekhar [6] presents 

in his study considerations of typical problems in 

hydrodynamic and hydromagnetic stability as a 

branch of experimental physics. Among the subjects 

treated are thermal instability of a layer of fluid 

heated from below, the Benard problem, stability of 

Couette flow, and the Kelvin-Helmholtz instability.  

      Many publications in the field of hydrodynamics 

are focused on vortex motion as one of the basic 

states of a flowing continuum and effects that vortex 

can produce. Mayer [7] and Khorrami [8] have 
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mapped out the stability of Q-vortices, identifying 

both inviscid and viscous modes of instability.  

     The main reason for using spectral methods is 

their exponential accuracy. Large classes of 

eigenvalue problems can be solved numerically 

using spectral methods, where, typically, the various 

unknown fields are expanded upon sets of 

orthogonal polynomials or functions. The 

convergence of these methods is, in most cases, easy 

to assure and they are efficient, accurate and fast.  

     The paper is structured as follows. Some stability 

concepts in vortex hydrodynamics are presented in 

Section 2. 

     The hydrodynamic model of partial derivative 

equations (PDE) presented in Section 3 is 

numerically investigated developing an 2L - 

projection method and a collocation technique, both 

by means of operator schemes. In Section 4 

considerations about these spectral methods are 

outlined. 

     The classical approaches imply a transformation 

of the physical domain onto the standard interval for 

the definition of the Chebyshev polynomials. For the 

approach presented in this paper, instead of using 

classical Chebyshev polynomials, we used shifted 

Chebyshev polynomials, directly defined on the 

physical domain of the problem ( )0, wallr , preserving 

the orthogonality properties detailed in Section 5. 

The numerical algorithms was developed to work 

automatically for any number of expansion terms, 

using symbolic and numeric conversions, the 

implementation techniques being detailed in Section 

5. In Section 6 the algorithms are validated upon the 

model of a trailing vortex and employed for 

numerical investigation of the swirl flow 

downstream a Francis hydraulic turbine. The main 

results of the paper are summarized in Section 7. 

    (1 

2 Stability Concepts In Vortex 

Hydrodynamics 
Most of the vortex stability analyses concerned 

axisymmetrical vortices with axial flow [9] in order 

to explain the vortex breakdown phenomenon 

observed experimentally for the first time in pipes 

[10] and in hydraulic turbines [11]. Obviously, the 

axial symmetry hypothesis is a major simplification 

having the main benefit of dramatically reducing the 

computational cost. On the other hand, it introduces 

important limitations as far as the three-

dimensionality and unsteadiness of the flow are 

concerned. Essentially, an axisymmetric flow solver 

provides a circumferentially averaged velocity and 

pressure fields that is why it is used as a basic flow 

for linear stability analysis.  

     One of the reasons to deal with a mathematical 

model governing the linear stability of the 

mechanical equilibria of a swirling flow is to 

investigate the evolution of the amplitudes of the 

velocity and the pressure perturbations fields, 

respectively. 

     In most cases, the spatially or temporal stability 

(classified for open flows as in [9]) under 

infinitesimal perturbations is reduced to the study of 

an algebraic eigenvalue problem which imply 

solving a dispersion relation connecting in fact the 

frequency ω  and the axial wavenumber k  as a 

consequence of the condition that nontrivial 

eigenfunctions exist. The instability of the flow is 

described by the dispersion relation in the spectral 

space ( , )k ω  corresponding to the spatio-temporal 

evolution of the most unstable mode in the physique 

space ( , )x t . Most of the investigations [8, 10, 11] 

concerned the values of the nondimensional 

parameters for which the vortex become unstable in 

the case of either a spatial stability or temporal 

stability analysis. When the complex frequency 

r iiω ω ω= + ⋅ , Re( )rω ω= , Im( )iω ω=  is determined 

as a function of the real wave number k a temporal 

stability analysis is performed. Conversely, solving 

the dispersion relation for the complex wave 

number, 
r ik k i k= + ⋅ , 

rk = Re( )k , Im( )ik k= , when 

ω  is given real leads to the spatial branches ( , )k ω Ψ  

where by Ψ  we denoted the set of all other physical 

parameters involved. In both cases, the sign of the 

imaginary part indicates the decay or either the 

growth of the disturbance.  

     Although a spatial stability analysis implies the 

investigation of a nonlinear eigenvalue problem, this 

type of analysis directly provides the frequency 

ranges of the most unstable modes. More than that, 

the spatial stability results can be directly compared 

to the experimental ones since usually, in 

experiments, an excitation is applied to a point in the 

flow and then, the effect of the excitation is studied 

as the flow evolves downstream. 

     In a spatial stability analysis, useful conclusions 

can be drawn considering 2
k  as a function of the real 

frequency ω . Since 2 0k <  implies an imaginary 

eigenvalue k , for the  flow moving downstream the 

current section the only physically acceptable case is 

the one for which the exponential factor k z
e

−  holds. 

A detailed classification of the flows with respect to 

the sign of the 2
k  term was given by Benjamin [12]. 

     Linearization of axisymmetric steady flow of 

incompressible and inviscid fluid using linearized 

Bragg -Hawthorn equation in order to analysis the 

stability of swirling flow downstream to the Francis 
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turbine was used by Resiga et al [3]. In this case, the 

problem for the streamfunction is defined then the 

eigenvalue as the axial wavenumber k is obtained. 

Applying to the real axial and circumferential 

velocity profiles downstream a Francis runner at 

different operating points the swirling flow stability 

is evaluated. Following Benjamin’s theory of finite 

transitions between frictionless cylindrical flows, an 

eigenvalue analysis of the linearized problem was 

performed. Our methods are first validated on a 

benchmark model of the Batchelor vortex and then 

applied to a real flow configuration at the outlet of a 

Francis turbine runner. In a preliminary analysis 

viscous losses can be considered negligible at the 

design operating point so the inviscid fluid 

assumption is taken. The simple stability analysis 

carried out in Resiga et al [3] can be recovered as a 

particular case here for 0m =  and 0ω = .  

 

3 Mathematical Model In Matrix 

Operator Formulation  
Swirling flows models have been assessed in 

literature with applications to various optimization 

and fluid motion control problems. The 

hydrodynamics of rotating machines where confined 

vortices are developed due to the turbine rotation 

have been investigated in various surveys [13-16].   

An experimental investigation of the suction side 

boundary layer of a large scale turbine cascade has 

been performed in [2] to study the effect of 

Reynolds number on the boundary layer transition 

process at large and moderate Reynolds numbers. 

The boundary element approach is assessed in [15] 

for the problem of the compressible fluid flow 

around obstacles. The system is analyzed with 

respect to different operating conditions, for 

understanding its behaviour. In [16] oscillations and 

rotations of a liquid droplet are simulated 

numerically using the level set method, and the 

combined effects of oscillation amplitude and 

rotation rate on the drop-shape oscillation is studied. 

     The mathematical model governing the linear 

spatial stability of the fluid system downstream the 

Francis turbine runner, corresponding to the values 

of tangential wavenumber = 1m ± , in operator form 

is 

( ) ( )1 , , , , = ,
d

k F G H P rG rk F mH
dr

Λ + +       (1) 

( )2

2
, , , , = ,

mWG WH d
k F G H P kUG G P

r r dr
ωΛ − + + − (2) 

( ) [ ]3 , , , , = ,
m WG d

k F G H P kHU H HW P G W
r r dr

ωΛ − + + + + (3) 

( )4 , , , , = ,
FmW d

k F G H P kFU F G U kP
r dr

ωΛ − + + +  (4) 

where F , G , H , P  represent the complex 

amplitudes of the perturbations, k  is the complex 

axial wavenumber, m  is the integer tangential 

wavenumber, w  represents the temporal frequency, 

U  and W  represent the axial and the tangential 

velocity, respectively, both depending only on the 

radial coordinate r . 

     For a given real ω , the system (1)-(4) is 

equivalent to the complex eigenvalue problem 

1 2 3 4= = = = 0,Λ Λ Λ Λ  on the domain ( )0, wallr  

together with the boundary conditions in axis origin 

= 0, = = 0H G F P±                       (5) 

and the wall boundary conditions 

2
= 0, = 0,rwall

wall

W H
P G

r
′−                     (6) 

( ) = 0 = 0,wall rwall rwallr H kU HW Pω− ± ±           (7)    

( ) = 0wall rwall rwall wallr F kU FW kr Pω− ± + .          (8) 

associated to the bending modes investigation. 

The hydrodynamic eigenvalue problem (1) – (4) is 

written for the inviscid case in the operator form 

  ( ),u u u
T

k F G H PΞ = Ψ =           (9) 

where the matrix operator Ξ  has the nonzero 

elements 

11 22 33 41 44, , , , 1r U rU UΞ = Ξ = Ξ = Ξ = Ξ = (10) 

and the matrix operator Ψ  is defined as 

11 12 13 140, 1 , , 0,rd mΨ = Ψ = − − Ψ = Ψ =   (11) 

21 22 23 24

2
0, , , ,r

m
W W d

r r
ωΨ = Ψ = − Ψ = − Ψ = (12) 

31 32 33 340, , , ,
dW

W r r mW m
dr

ωΨ = Ψ = − − Ψ = − Ψ = − (13) 

41 42 43 44, , 0, 0,
m dU

W
r dr

ωΨ = − Ψ = − Ψ = Ψ = (14) 

where 
rd  denotes the radial derivative operator. The 

operator notation is widely used in the control theory 

community to describe and analyze systems of 

differential-algebraic equations. In operator 

formulation described in detail in [17, 18], the 

differential radial operator is preceded by a square, 

possibly singular matrix ( )r

rd DΦ ≡ Φ , where ( )r
D is 

the spectral differentiation matrix and Φ  represents 

the modal collocated values of the unknown 

functions. The sign of the imaginary part of k  

indicates the decay or either the growth of the 

disturbance. Here the flow is considered unstable 

when the disturbance grows, i.e. the imaginary part 

of  k  is negative. 

 

4 Considerations About The Spectral 
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Methods 
Spectral methods are one of the most used technique 

for the numerical investigations in hydrodynamic 

stability problems. Started with Orszag [19], who 

first used the Chebyshev spectral methods for 

solving hydrodynamic stability problems, many 

other researchers have demonstrated the 

applicability of this technology with high degree of 

accuracy: M. Khorrami, M. Malik and R. Ash [20], 

L. Parras and R. Fernandez-Feria [21], J. Hesthaven, 

S. Gottlieb and D. Gottlieb [22], Canuto et al. [23]). 

     The pseudospectral collocation method is 

associated with a grid, that is a set of nodes and that 

is why it is sometimes referred to as a nodal method. 

The unknown coefficients in the approximation are 

then obtained by requiring the residual function to be 

zero exactly at a set of nodes. The set of the 

collocation nodes is related to the set of basis 

functions as the nodes of the quadrature formulae 

which are used in the computation of the spectral 

coefficients from the grid values.  

     Instead of representing the unknown function 

through its values on a finite number of grid points 

as doing in finite difference schemes, in spectral 

methods the coefficients { }
0..

, , ,i i i i i N
f g h p

=
 are used in 

a finite basis of known functions { }
0..i i N=

Φ  

( ) ( )
0

, , , , , ,
N

i i i i i

i

F G H P f g h p
=

= Φ∑           (15) 

     The decomposition (15) is approximate in the 

sense that { }
0..i i N=

Φ  represent a complete basis of 

finite-dimensional functional space, whereas  

( ), , ,F G H P  usually belongs to some other infinite-

dimensional space. Moreover, the coefficients 

( ), , ,i i i if g h p  are computed with finite accuracy. 

Among the major advantages of using spectral 

methods is the rapid decay of the error, often 

exponential N
e

−  for well-behaved functions.  

 

4.1 The 2L - Projection Method  
Historically, this was the first method of spectral 

type used for nonperiodic problems. 

     Considering a system of partial derivative 

equations (PDE) in operator form 

                    Lu f= ,                                (16) 

where L  is the differential operator, u  is the vector 

of unknown functions, in the interval ( ),I a b= , 

coupled with the boundary conditions 

       ( ) ( )1 2,u a u bλ λ= = .                    (17) 

the PDE system is required to be satisfied at each 

point in its domain. We introduce a finite basis 

{ }
0..i i N=

Φ  of orthogonal polynomials with respect to 

a weight function w  in the Hilbert space 2

wL , which 

satisfy deg i iΦ =  and ( ),
i j i ijw

c δΦ Φ =  ( ), 0,1,...i j =  

for suitable constants 0ic > . Examples are the 

Chebyshev system { }, 0,1,...iT i = , for which 

( ) ( )
1/ 2

21w x x
−

= − , the Legendre system 

{ }, 0,1,...iL i = , for which ( ) 1w x = , or, more 

generally, any Jacobi system ( ){ },
, 0,1,...

i
P i

λ µ
= , for 

which ( ) ( ) ( )1 1w x x x
λ µ

= − + , , 1λ µ > − . 

     The discrete solution is therefore represented as 

( ) ( )
^

0

N
N

i i

i

u x u x
=

= Φ∑                      (18) 

where the unknowns are the expansion coefficients 

of N
u  along the chosen basis, computed as 

           
( )
( )

^ ,

,

N

i w

i

i i w

u
u

Φ
=

Φ Φ
                          (19) 

     The boundary conditions (17) impose two linear 

combinations upon the coefficients of N
u , namely 

  ( ) ( )
^ ^

1 2

0 0

,
N N

i i i i

i i

u a u bλ λ
= =

Φ = Φ =∑ ∑ .         (20) 

The residual ( )N N
r u f Lu= −  is required to be 

orthogonal to all polynomials of degree up to 2N − , 

meaning that 

( ) ( ), , , 0 2N

j j ww
Lu f j NΦ = Φ ≤ ≤ − .     (21) 

At the algebraic level, this method produces a linear 

system of the form 

                  M u f=                            (22) 

where 
^ ^

0 , ..., Nu u u
 

=  
 

  is the vector collecting the 

unknowns that represent N
u , 

^ ^

0 2 1 2, ..., , ,Nf f f λ λ−

 
=  
 

 

is a known vector depending on the data f  and the 

valued on the boundary , and M  is the matrix 

corresponding to the equations defined by the 

method. 

 

4.2 The Collocation Method 
If some of the coefficients of the equation are 

variable, the projection method is much less efficient 

and the collocation method is an efficient 

alternative. 

     Consider again a system of partial derivative 

equations (PDE) in operator form 

                   Lu f= ,                               (23) 

where L  is the differential operator, u  is the vector 

of unknown functions, in the interval ( ),I a b= , 

coupled with the boundary conditions 
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         ( ) ( )1 2,u a u bλ λ= = .                   (24) 

     The collocation method is associated with a grid 

of clustered nodes jx  and weights jw  ( )0,...,j N= . 

The collocation nodes must cluster near the 

boundaries to diminish the negative effects of the 

Runge phenomenon [24]. Another aspect is that the 

convergence of the interpolation function on the 

clustered grid towards unknown solution is 

extremely fast.  

     We recall that the nodes 0x  and Nx  coincide with 

the endpoints of the interval [ ],a b , and that the 

quadrature formula is exact for all polynomials of 

degree 2 1N≤ − , i. e., 

     ( ) ( ) ( )
0

bN

j j

j a

v x w v x w x dx
=

=∑ ∫ ,               (25) 

for all v  from the space of test functions. 

     Let { }
0..N=

Φ
l

l

 a finite basis of polynomials 

relative to the given set of nodes, not necessary 

being orthogonal. If we choose a basis of non-

orthogonal polynomials we refer to it as a nodal 

basis (Lagrange polynomials for example).    

     An example of nodal basis is given by 

Lagrange’s formula 

        
( )
( )

0 ,

( )

j N

j

j j

x x
x

x x
≤ ≤

≠

−
Φ =

−
∏

l

l

l

l

                     (26) 

For numerical stability reasons, often Lagrangian 

polynomials are reformulated in barycentric form as 

 ( )
( )

11

0

1
,

N
k

k kk k

x
x x x x x x

λ λ
λ

−−

= ≠

  
Φ = =     − − −   

∑ ∏l

l l

l
l l

(27) 

     In nodal approach, each function of the nodal 

basis is responsible for reproducing the value of the 

polynomial at one particular node in the interval. 

     A different approach is obtained by taking as 

basis functions simple linear combinations of 

orthogonal polynomials. These are called bases of 

modal type, i. e., such that each basis function 

provides one particular pattern of oscillation of 

lower and higher frequency. 

     Examples of simple modal bases are the 

following 

( ) ( ) ( )2 , 0..x T x T x N+Φ = − =
l l l

l ,        (28) 

( ) ( )
( )
( )

( )
( )
( )

( )2 4

2 1
2

3 3
x T x T x T x+ +

+ +
Ψ = − +

+ +
l l l l

l l

l l

, (29) 

where ( )T x
l

 are the Chebyshev polynomials, or the 

modal basis functions 

 ( )
( ) ( ) ( )( )

3 1 1 12 3
,

2 2 3 2 5 2 1 2 1

L L L L
x + + + −

 − −+
Θ = −  + + + − 

l l l l

l

l

l l l l

(30) 

used by Melenk, Kirchner and Schwab that utilized a 

Legendre-Galerkin approximation in [25]. 

     Boundary-adapted bases of modal type are also 

useful in numerical approximations of 

hydrodynamic stability problems. From their 

construction they contains two functions that are 

nonzero at precisely one endpoint of the interval, 

which are called vertex basis functions and 1N −  

functions that vanish at both endpoints, which are 

called bubble functions or internal basis functions 

[23] . An example of boundary adapted modal basis 

is as follows 

( ) ( ) ( )( )0 0 1

1 1

2 2

x
x x xη η

−
Γ = − = , 

( ) ( ) ( )( )1 0 1

1 1

2 2

x
x x xη η

+
Γ = + = ,           (31) 

( )
( ) ( )

( ) ( )
0

1

, 2
, 2

, 3

x x even
x N

x x odd

η η

η η

− ≥
Γ = ≤ ≤

− ≥

l

l

l

l

l

l

 

where ( )xη
l

 denotes either ( )T x
l

 or ( )L x
l

. 

     A comparison of the behaviour of the members of 

the three bases mentioned in (28), (29) and (30) is 

given in Figure 1, for 3N = . 

     The efficiency of the collocation based 

algorithms was exposed in [26], for solving the 

Hartree-Fock equations of the self-consistent field in 

large atomic and molecular systems. 

 

 
Fig.1 The modal orthogonal basis { }Φ

l

 given by 

(28) (left), the modal basis { }Ψ
l

 given by (29) 

(center) and the modal basis { }Θ
l

 given by (30) 

(right), for 3N = . 
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5 Numerical Techniques For Bending 

Modes Investigation 

 
5.1 Orthogonal Basis Functions 
The numerical methods considered here are the 

Chebyshev pseudospectral methods. Finite element 

techniques reconstruct functions from a 

superposition of piecewise polynomial functions on 

subsets of triangulations of a domain or its 

boundary. In contrast to this, the pseudospectral 

techniques surveyed here will avoid triangulations 

and meshing, but the unknown functions are 

reconstructed  by the superposition of simple 

functions. 

     There are two possible approaches of the 

mathematical model at this point. The first one 

imply a transformation of the physical domain onto 

the standard interval of the definition of the 

Chebyshev polynomials [27] and in the second one, 

instead of using classical Chebyshev polynomials, 

we used shifted Chebyshev polynomials *

kT , directly 

defined on the physical interval of the problem. This 

second approach was our choice motivated by the 

form of the singular coefficients in the equations 

defining the eigenvalue problem and also on our 

previous investigation choice [28].  

     The shifted Chebyshev polynomials of the first 

kind ( )*

nT r  of degree 1n −  in r on [ ]0, wallr  are given 

by 

( ) ( )* 12 1n n wallT r T rr
−= −                     (32) 

The shifted Chebyshev class is orthogonal in the 

Hilbert space ( )2
0,w wallL r , weighted by 

( ) ( )( )
1/ 2

11 2 1
wall

w r rr
−

−= − −  and have the orthogonality 

properties 

( )* *, 0, , , 1.. ,
n m w

T T n m n m N= ≠ =           (33) 

( )* *
2 1

, , ,
4 2..

n n wallw

if n
T T r

if n N

π
λ

λ

=
= = 

=
   (34) 

with respect to the inner product ( )
0

,
wallr

w
u v u v w dr= ∫ . 

     For the implementation procedure, we define the 

derivatives by the following formulae 
*

1 0T
′ =  

* *

2 1

2

wall

T T
r

′ =  

* *

3 2

8

wall

T T
r

′ =  

* * *

4 3 1

6
2

wall

T T T
r

′  = +   

* * *

5 4 2

8
2 2

wall

T T T
r

′  = +   

* * * *

6 5 3 1

10
2 2

wall

T T T T
r

′  = + +   

* * * *

7 6 4 2

12
2 2 2

wall

T T T T
r

′  = + +   

* * * * *

8 7 5 3 1

14
2 2 2

wall

T T T T T
r

′  = + + +   

* * * * *

9 8 6 4 2

16
2 2 2 2

wall

T T T T T
r

′  = + + + 

* * * * * *

10 9 7 5 3 1

18
2 2 2 2

wall

T T T T T T
r

′  = + + + +  . 

     The four unknown components of the 

perturbation field are written as truncated series of 

orthonormal shifted Chebyshev polynomials *

kT  

( ) ( ) *

1

, , , , , ,
N

k k k k k

k

F G H P f g h p T
=

= ⋅∑           (35) 

     Since, in order to discretize our hydrodynamic 

stability problem, a much more convenient choice is 

the range [ ]0, wallr   than the standard definition 

interval of classical Chebyshev polynomials [ ]1, 1− , 

the independent variable [ ]1, 1ξ ∈ −  is maped to the 

variable [ ]0, wallr r∈  by the linear transformation 

( ) 1
1 2wallr r ξ −= +                        (36) 

Consider the one dimensional domain 0 wallr r≤ ≤ , 

where 
wallr  means the radial distance to the wall. The 

domain of interest is represented by the Chebyshev-

Gauss points in radial direction 

{ }
1

1
0

( 1)
1 cos

2 1

N
N wall

k k

i

r i N
r

N

π
−

=
=

 + −  
= +  

−   
      (37) 

clustered near the boundaries. 

     For the case = 1m ±  that we investigate here, the 

boundary conditions read 

2

1 3, 1,

22 2 2( 1)
2

N
rwall

k k

k odd r k k evenwall wall wall

N
W k

h p p
r r r = −

 −
 − − −
 
 

∑ ∑ ∑  

4, 1,

2
2( 1)

2 1 = 0,k

k even r k k oddwall

N
k

p
r = −

 −
 − +
 
 

∑ ∑            (38)  

( )
1 1 1

= 0,
N N N

rwall wall k rwall wall k kkU r h W r h pω+ ± − ±∑ ∑ ∑  (39) 

( )
1 1 1

= 0,
N N N

rwall wall k wall k rwall wall kk U r f r p W r fω
 

+ + ± − 
 

∑ ∑ ∑ (40) 

( ) ( )
1 1

1 1

1 1 = 0,
N N

k k

k kg h
+ +

− ± −∑ ∑  
1

= 0,
N

kg∑   (41) 

( ) ( )
1 1

1 1

1 = 1 = 0
N N

k k

k kf p
+ +

− −∑ ∑ .                 (42) 
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5.2 2
L -Projection Algorithm  

The 2L -projection method, also known as the 

Chebyshev tau method, have been the attention of 

much study and has been successfully applied to 

many hydrodynamic stability problems. This 

represents an efficient numerical technique to solve 

eigenvalue problems with sophisticated boundary 

conditions by translate it into a linear system of 

equations. D. Bourne in [5] is examined the 

Chebyshev tau method using the orthogonality of 

Chebyshev functions to rewrite the differential 

equations as a generalized eigenvalue problem. This 

problem is addressed here, in application to the 

Benard convection problem, and to the Orr-

Sommerfeld equation which describes parallel flow. 

J.J. Dongarra, B. Straughan and D.W. Walker in [4] 

examined in detail the Chebyshev tau method for a 

variety of eigenvalue problems arising in 

hydrodynamic stability studies, particularly those of 

Orr-Sommerfeld type. Physical problems explored 

in this study are those of Poiseuille flow, Couette 

flow, pressure gradient driven circular pipe flow, 

and Couette and Poiseuille problems for two viscous 

immiscible fluids. 

     Following [5] the difficult eigenvalue problem 

(1)-(8) is transformed into a system of linear 

equations describing the hydrodynamic context for 

the cases = 1m ± . The difference between the 

classical tau method and the modified 2
L -projection 

proposed here is given by the selected spaces 

involved in the approximation process. An 

appropriate solution is sought in the truncated 

Chebyshev series form (35). 

     The projection method is an algorithm implying 

in the first step expanding the residual function as a 

series of shifted Chebyshev polynomials. We obtain 

a set of ( )4 2N −  linear equations. The eight 

remaining equations are provided by the boundary 

conditions applied as side constraints. 

     Introducing the notations  
( )( ) ( )( )* * * *

= ( ) , , = ( ) , ,
d dU k l W k l

ijkld i j ijkld i j
w w

I r U T T I r W T T (43) 

with d the derivation order, the first truncated 

( )4 2N −  equations of the hydrodynamic model read 

( )100 2 1100

=1

2N
U U

j ij i wall i

j wall

k f I g r c g I
r

+ + +∑  

100

3, 1,

2
2( 1)

2 U

j ir

j j odd r j j evenwall

N
j

g I
r= = −

 −
 + +
 
 

∑ ∑  

 ( )100 1100

4, 1,

2
2( 1)

2 = 0,
U U

k ir i i wall

j j even r j j oddwall

N
j

g I I mhr c
r= = −

 −
 + + +
 
 

∑ ∑ (44) 

010 110

=1 =1

N N
U W

j ij i wall j ij

j j

k g I g r c m g Iω −− + +∑ ∑  

110 2 1

=1 3, 1,

2
2 2( 1)

2 2
N

W

j ij i j ir

j j j odd r j j evenwall wall

N
j

h I p A p A
r r

−
= = −

 −
 + − − −
 
 

∑ ∑ ∑  

( ) 1

4, 1,

2
2( 1)

2 = 0j ir i

j j even r j j oddwall

N
j

p A A
r= = −

 −
 − +
 
 

∑ ∑ ,   (45) 

110 100 010

=1 =1 =1

N N N
U U W

j ij j ij j ij i wall

j j j

k h I h I m h I m p r cω− + + +∑ ∑ ∑  

( )010 111

=1

= 0,
N

W W

j ij ij

j

g I I+ +∑                 (46) 

010

=1

N
U

j ij i wall i wall

j

k f I p r c f r cω
 

+ − + 
 
∑  

110 011

=1 =1

= 0,
N N

W U

j ij j ij

j j
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where the number c  is defined as 

/2, = 1
=

/4, = 2 2

j
c

j N

π

π




− K

 and 
2NA M −∈  is square  

( ) ( )2 2N N− × −  matrix, with 
11 = /2wallA r π ,                    

= /4 ,jj wallA r π = 2 2j N −K , = 0ijA , i j≠ . Similarly, 

we translate the boundary conditions in linear 

equations that complete the system. For the case 

= 1m ±  that we investigate here, the boundary 

conditions provide the seven equations set (38) - 

(42). 

     For this case, the additional relation in obtained 

from the second equation of the mathematical model 

(2), taking the inner product ( )*

2 1
,

N w
T −Λ . 

     The eigenvalue problem is written as a system of 

4N  equations with the matrix formulation 

( )= , = , , , ,
k

kM s M s s f g h p  with ( )1* = * , ..., *N , 

* , , ,f g h p≡ . The method has the obvious advantage 

that the highest degree of the Chebyshev 

polynomials multiplying the residual in the method 

inner-product is only 2N − . 

     The recurrence relation for *

nT  has the form  

( ) ( ) ( ) ( )* 1 * *

1 2= 2 2 1 , = 3,4,...n wall n nT r rr T r T r n
−

− −− ⋅ − (48) 

in which the initial conditions are 

( ) ( )* *

1 2

2
= 1, = 1.

wall

r
T r T r

r
−  The use of a recurrence 

relation significantly increases the elapsed time to 

generate the shifted Chebyshev polynomials. To 

improve the performance of the numerical 

algorithm, we introduce in our code the equivalent 

polynomial relation  

( ) ( ) ( )
1 1

2 2
* 1 2

= 1 1 , = 1
2

n n

n

wall

r
T r r r r r r

r

− −    
+ − + − − −    

     

% % % % % (49) 
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to automatically generate the shifted Chebyshev 

polynomials ( ){ }*

1n n
T ξ

≥
 on [ ]0, wallr . 

     The numerical algorithm was developed to work 

automatically for any number of expansion terms, 

using the routines of a high level language such 

Matlab.  

 

5.3 Spectral Collocation Technique 
The collocation method that we present in this 

section has the peculiar feature that can approximate 

the perturbation field for all types of boundary 

conditions, especially when the boundary limits are 

described by sophisticated expressions. 

     We assume for this approach the model and the 

boundary conditions described in Section 3. 

     This collocation method applied to stability 

investigation of swirling flows was applied 

successfully and validated in our previous study 

[28].  

     Following standard procedures, the Chebyshev 

spectral collocation method can be described as 

follows. An approximation based on Chebyshev 

polynomials to the unknown functions is first 

introduced. The set of collocation equations is then 

generated. The equation system consists of two 

parts. The first part is formed by making the 

associated residual equal to zero at the collocation 

points, while the second part is obtained by forcing 

the boundary conditions to be satisfied at the 

boundary collocation points. 

     In the radial direction, the values of relevant 

derivatives with respect to r  at the grid points are 

computed by the differentiation matrix operator 
( )r

D , that was derived in our previous study [18], as 
( ) ( )1 1 1 1, ,..., , ,..., , ,..., , ,...,

Tr

r N N N Nd s D s s f f g g h h p p≡ =   (50) 

Let us denote by [ ] ( )ir diag r= , 
1

(1/ )idiag r
r

 
=  

, 

[ ] ( ( ))iU diag U r=  , [ ] ( ( ))iW diag W r= , 2 1i N≤ ≤ − , 

[ ] 2 1,
1

( )ij i N
j N

η η ≤ ≤ −
≤ ≤

= , *
( )ij j iT rη = , [ ] ( )

2 1,
1

( )
r

ij i N
j N

D D ≤ ≤ −
≤ ≤

= , 

( )1,... Nf f f= , ( )1 ,... Ng g g= , ( )1,... Nh h h= , 

( )1,... Np p p= . 

     The eigenvalue problem (9) governing the 

inviscid stability analysis is written in the 

computational form 

[ ][ ] [ ] [ ]( ) [ ] 0k r f D g m hη η η+ + + = ,        (51) 

[ ] [ ] [ ] [ ] [ ] [ ]2 0
W W

k U m g h D p
r r

η ω η η η
    

− + + − =        
,(52) 

[ ][ ] [ ][ ] [ ]{ } [ ]W r W g m pη η η′+ + +  

[ ][ ] [ ] [ ] [ ][ ] [ ]{ } 0r m W k r U hω η η η+ − + + = , (53) 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] 0
W

k U m f U g k p
r

η ω η η η η
  

′− + + + =    
.(54) 

Solving the resulting eigenvalue problem with 

nonconstant coefficients imply imposing that 

equations (51) – (54) to be satisfied at the ( )2N −  

interior points ( ) , 2.. 1ir i N= − . The system of 4N  

equations is completed with the boundary relations 

(38) - (42), respectively. 

 

6 Numerical Results Of The Vortex 

Rope Stability Investigation 
 

6.1 Code Validation And Error Analysis 
The basic flow under consideration for the validation 

of the proposed method is the Batchelor vortex case 

or the q-vortex [29], that trails on the tip of each 

delta wing of the airplanes. The properties of the 

Batchelor vortex were pointed out in Olendradru et 

al. [29] using a shooting method. In order to 

compare our results with the ones from [29] 

numerical evaluations of the axial wavenumber k  

were obtained for various sets of parameters 

associated with the investigated modes. In Table 1 

these values are presented in comparison with the 

ones from reference [29]. The numerical results 

obtained employing the presented methods are in 

agreement with the results presented in reference 

[29]. 

 

Table 1. Comparative results of the most amplified 

spatial wave of the Batchelor-vortex: eigenvalue 

with largest imaginary part ( ),cr r ik k k= . 

1m =  1m = −  
2L  Projection method 

( )= 1.1606,0crk −  ( )0.9046, 0.783crk = −  

Collocation method 

( )0.5611,0crk =  ( )0.76146, 0.33722
cr

k = −  

Shooting method [29] 

( )0.6,0crk =  ( )0.761, 0.336crk = −  

 

     Although the collocation algorithm is a very 

efficient technique, the inclusion of the boundary 

conditions as equations in the system of the 

generalized eigenvalue problem (9) have been 

observed to be one cause of spurious eigenvalues. 

The spurious eigenvalues, which are not always easy 

to identify, may lead one to a false conclusion 

regarding the stability of the fluid system, thus the 

elimination of them is of great importance. These are 

values returned by the algorithm which do not 

satisfy the eigenvalue problem. The spurious 
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eigenvalues problems have been the attention of 

much study recently. Gardner et al. [30] describe the 

tau methods to avoid spurious eigenvalues and in 

Dongara [4] the occurrence of the spurious 

eigenvalues is assessed in application to the Benard 

convection problem. 

     We implement in our numerical procedure a code 

sequence that identifies if an eigenvalue of the 

spectra is spurious or not. First the algorithm 

provides the entire spectra, then calculates the 

residual vector of the eigenvalue problem (9) for 

each eigenvalue of the spectra. A true value of k  

must satisfy the eigenvalue problem. We evaluate 

the 2L  norm of the vector with respect to a given 

tolerance ε . If the condition           

( )( ) ( )
1/ 2

2
> ,u- u u

T
abs k F G H PεΞ Ψ =∑   (55) 

holds, the eigenvalue k  is declared spurious and 

discarded from the spectra. 

 

6.2 Algorithm Accuracy And Numerical 

Results 
We designed the stability algorithm in two stages. 

First, the algorithm solves the eigenvalue problem 

(9) and finds the critical eigenvalue with largest 

negative imaginary part, that corresponds to the most 

unstable perturbation. In the second stage, varying 

the frequency omega at different numbers of 

collocation parameters N , we retain the maximum 

growth rate and the corresponding frequency, 

denoted as the critical frequency. The question here 

is how to find the optimum value of the spectral 

parameter N  that defines the number of Chebyshev 

collocation nodes? 

     Let us define the eigenvalue problem (9) in 

operator formulation 
[ ] [ ]( ) ( )0,u u

Tk
k L L L F G H P

ωω+ + = =   (56) 

where  

[ ] [ ]

0 0 0 0 0 0 0

0 0 0 0 1 0 0
, ,

0 0 0 0 0 0

0 0 1 1 0 0 0

k

r

U
L L

rU r

U

ω

   
   

−   = =
   −
   

−   

 

0 1 0

0 / 2 /

0 /

/ / 0 0

r

r

d m

mW r W r d
L

W rdW dr mW m

mW r dU dr

+ − 
 

− =
 +
 
 

    (57) 

Let us denote by 

( ) [ ] [ ]( ){ }, 0u
k

r ik k k k L L L
ω

ω ωΛ = = + + =     (58) 

the spectra of the eigenvalue problem (56) computed 

for a given frequency, and 

( )mingr imagω ω= Λ                    (59) 

the growth rate of the most unstable perturbation at a 

given frequency. 

     Let us define the set 

( ) [ ]{ }0,0.4
N

grωχ ω ω= − ∈                (60) 

and the pair 

( ) ( )( ) ( ){ }1

max max max, max ,cr N cr Ngr gr grω χ ω ω χ −= = = (61) 

     The set ( )Nχ ω  and the pair (61) are computed 

for each mode number investigated { }1,1m = −  for an 

optimum collocation number of nodes N , 

employing both projection algorithm and collocation 

method and are  presented in Table 2. 

 

Table 2. The critical frequency and the maximum 

growth rates ( )max,cr grω  obtained for the investigated 

modes, employing projection method and 

collocation. 

Mode number 1m = −  1m =  
2

L  Projection ( )0.35,5.20004  ( )0.2,0.12340  

Collocation ( )0.3,6.93195  ( )0.3,0.54437  

 

     Following Tadmor [31], when the Chebyshev 

pseudospectral methods are used, the error 

committed is expected to decay to zero at an 

exponential rate. For this reason, we run the 

algorithm for the values of collocation parameter N  

along an interval sufficiently large to reach the 

convergence, for example, between 5 and 60. The 

output 
crω  that is returned over the optimum value 

of the collocation parameter min

crN  is expected to 

have the greatest number of occurences.  

     The convergence behaviour of the algorithms 

with respect to the number of expansion terms is 

shown in Table 3 and Table 4.   

     Clearly the numerical computation costs were 

less expansive in the projection method approach 

since the number of terms in the approximations was 

significantly reduced. In fact, in comparison with the 

collocation method this number was more than two 

times reduced. As a result, with a reduced by far 

computational time, we can obtain accurate results 

in an acceptable agreement with existing ones. 

     Let us define  

( ) [ ] [ ]( )( ) ( )
1/2

2

,u u
Tk

cr
e N abs kL L L F G H P

ωω 
= + + = 
 
∑

uuuuur

(62) 

the residual vector of the eigenvalue problem (56) 

computed for a frequency equal to the critical 

frequency 
crω  and for a spectral parameter 

min max
,cr crN N N ∈    along the optimum interval where 

the algorithm convergence is achived. Let be 
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( )( ){ }min max
max ,N cr crE e N N N N = ∈  

uuuuur

        (63) 

the set of maximum values of the residual along the 

optimum interval of collocation.  

 

Table 3. The convergence behaviour of the 

projection algorithm for the investigated mode 

numbers. 

1m = −  1m =  

N Frequency
crω  N Frequency

crω  

   3 0.05 3 0.1 

   4 0.4 4 0.1 

   5 0.25 5 0.15 

   6 0.35 6 0.25 

   7 0.35 7 0.2 

   8 0.35 8 0.2 

   9 0.35 9 0.2 

  10 0.35 10 0.2 

 

Table 4. Convergence of the collocation algorithm 

for the investigated mode numbers. 

1m = −  1m =  

N Frequency
crω  N Frequency

crω  

5 0.25 6 0.1 

6 0.1 8 0.2 

8 0.1 10 0.35 

10 0.25 15 0.25 

12 0.3 20 0.2 

16 0.3 27 0.35 

17 0.3 33 0.3 

19 0.3 36 0.3 

29 0.3 39 0.3 

31 0.3 42 0.3 

37 0.3 55 0.3 

40 0.3 57 0.3 

46 0.3 60 0.3 

61 0.3 64 0.3 

 

     For each mode number we present the set values 

(63) on a logarithmical representation in Figures 2-3. 

This proves that the convergence is reached for all 

mode numbers considered here. One may notice that 

the optimum node number varies function of mode 

number. Using the logarithmic representation is 

possible to observe the fact that, along the optimum 

interval of collocation, the error is not decreasing 

with the number of nodes as expected, having a 

rather an exponential increase. This leads to the idea 

that there is an optimum number of nodes located 

into the optimum collocation interval, which is not 

necessary be a large value. 
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Fig.3 Residual along the optimum range for mode 

1m = .   

 

7  Conclusion 
This paper reports two spectral approaches based on 

Chebyshev polynomials for numerically solving 

linear stability problems with applications to the 

swirling fluid system downstream the hydraulic 

Francis turbine. Numerical results showed that the 

use of these methods improved the computational 

time and the obtained critical values of the 

eigenparameter involved are accurate. 

     For bending modes the eigenvalue problem and 

its less simpler boundary conditions were translated 

into a linear system using a modified 2
L  projection 

method and a collocation method, both based on 

shifted Chebyshev expansions. The numerical 

approximation of the unknown perturbation field 

was searched directly in the physical space. Both 

methods have been compared with the numerical 

results obtained in some other existing spatial 

investigations [29]. The collocation method proved 

to be more accurate, however the projection method 

was less expensive with respect to the numerical 

implementation costs, i.e. numerical results were 

obtained for a much smaller number of terms in the 
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discretization. The results are very useful not only 

from their numerical values point of view, but also 

for their physical interpretation in fluid dynamics in 

flow control problems. 
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