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Abstract: - An approximate method for the vibration analysis of stepped shells accounting for the influence of 

cracks located at re-entrant corners of steps is presented. Introducing the additional compliance function it is 

shown that the flexibility of the shell near cracks can be prescribed by means of the compliance of the structure. 

The latter is coupled with the stress intensity factor, which is known from the linear elastic fracture mechanics. 

Theoretical analysis is developed for circular cylindrical shells, provided the shell wall has an arbitrary number 

of steps and circular cracks of constant depth. Various combinations of end conditions are considered. 
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1. Introduction    

     Due to the wellknown matter that repeated and 

extreme loadings cause cracks and other defects 
deteriorating operational parameters of structures 

there exists an obvious need for investigation of 

structures accounting for the influence of cracks on 
the flexibility of beams, plates and shells which are 

widely used in technology. Special attention is to be 

paid to the vibration of structural members. 
     Considerable attention has been paid to the 

investigation of vibration and stability of elastic 

beams with cracks during last decades. 

     Liang, Hu, Choy [20,21], Nandwana, Maiti [25], 

Yang, Yi, Xie [39], Kisa, Brandon, Topcu [13], 

Yang, Chen [38], Ostachowicz, Krawczuk [27], 

Rizos, Aspragathos, Dimarogonas [33] studied the 

behaviour of cantilever beams with cracks located at 

fixed positions. 

     Vibration based methods for detection of 

damages in cantilever beams and in other simple 

elements have been developed by Gillich et al [11], 

Providakis et al [30]. 

     The effect of cracks on the free vibration 

frequencies of uniform beams with arbitrary number 

of cracks was investigated by Lin, Chang, Wu [22] 
by the use of the transfer matrix method. Masoud, 

Jarrah, Al-Maamory [23] presented theoretical and 

experimental results concerning an axially loaded 
fixed-fixed beam with cracks. 

     Zheng, Fan [41] studied vibration and stability of 

hollow-sectional beams in the case of presence of 
cracks in expected cross sections. An Euler-

Bernoulli beam containing multiple opening cracks 

and subjected to the axial force is studied by Binici 

[2]. Both, stability and vibration problems are 
considered making use of the concept of additional 

compliance due to a crack by Dimarogonas [7, 8], 

also Chondros, Dimarogonas, Yao [5], also by the 
authors [15- 19].  The case of inclined edge or 

internal cracks was studied by Nandwana and Maiti 

[25].  
     Fernandez- Saez, Rubio and Navarro [9] 

presented an alternative analytical method for 

evaluation of fundamental frequencies of cracked 

Euler- Bernoulli beams. This method is based on the 

approach of representing the crack in the beam 

through an elastic hinge whereas transverse 

deflection of the cracked beam is constructed by 

adding polynomial functions to that of the 

uncracked beam. 

     De Rosa [34] and Naguleswaran [24] studied 

axially loaded segmented beams. In the latter work 

beams with different axial forces in beam segments 

are investigated whereas De Rosa has used an exact 

method to derive the frequency equation for a 

stepped beam with follower forces at each step. 

     The vibration of uniform Euler-Bernoulli beams 
with a single edge crack was investigated by 

Yokoyama, Chen [40] making use of a modification 

of the distributed line-spring method which was 
suggested earlier by Rice and Levy [32] for 

rectangular plates with part through cracks. 

     The behavior of circular cylindrical shells with 
circumferential cracks was studied by Nikpour  [26] 
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and Petroski [29];  Lellep and Roots [18]; Lellep, 
Roots, Tungel [16, 17].   

     In the present paper the method of distributed 

springs is extended to free axisymmetric vibrations 
of elastic circular cylindrical shells. The shells under 

consideration have piece wise constant thickness 

and circular cracks of constant depth are located at 

cross sections with steps of the thickness. 

 

 

2. Formulation of the problem and 

governing equations 
     Let us consider axisymmetric free vibrations of 

circular cylindrical shells of length l and radius R 

(Fig.1). 
 

 
 

Fig.1. Stepped cylindrical shell. 

 

 The material of shells is an isotropic elastic 

material. 
Let the origin of the axis Ox be at the left end of the 

tube. It is assumed that the thickness h of the shell is 

piece wise constant, e.g. 

   

                                h(x)=hj
                            

(1) 

 

 for ),a(ax 1jj +∈  , where j=0,…,n                                                                                 

Here the quantities hj (j=0,…,n) stand for fixed 

constants. Similarly, aj (j=0,..,n+1)
 

are given 
constants whereas it is reasonable to use notations 

a0=0, an-1=l. 

It is known in the linear elastic fracture mechanics 
(see Anderson, [1]; Broberg, [3]; Broek, [4]) that 

repeated loading and stress concentration at sharp 
corners entails cracks. Thus it is reasonable to 

assume that at the re-entrant corners of steps e.g. at 

jax = ,....,n)(j 1=  cracks of depth jc  are 

located. For the simplicity sake we assume that 

these flaws are stable circular surface cracks. In 

the present study like in Rizos et al. [33], 

Chondros et al. [6], Dimarogonos [7], Kukla [14] 

no attention will be paid to the crack extension 

during operation of the structure.  

     Equilibrium conditions of a shell element 
yield (see Reddy, [31]; Soedel, [35]; Ventsel and 

Krauthammer, [37])
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where N1 and N are membrane forces in the axial 

and circumferential directions, respectively, whereas 

M is the axial bending moment and Q – shear force. 

In Eqs. (2) u and w stand for displacements in the 

axial and transverse direction whereas p is the 

intensity of distributed transverse pressure, ρ is the 

material density and t stands for time. In the case of 

free vibrations when p=0 one can present the last 

two equations in the system (2) as 
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for ),a(ax 1jj +∈ , j=0,..,n.  

     Assume that the material of shells is an isotropic 
pure elastic material. A body made of a linear elastic 

material behaves according to the Hooke’s law. In 

the case of axisymmetric behaviour of circular 

cylindrical shells Hooke’s law reads as (Reddy [31], 

Ventsel and Krauthammer [37])
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for ),a(ax 1jj +∈  ,  j=0,…,n.                                                                               

Here E and ν stand for the Young’s and Poisson’s 
modulus, respectively. 

Strain components corresponding to Eq. (3) are 

(Soedel [35]) 
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     Substituting Eq. (5) with Eq. (4) in Eq. (3) yields 

the equation 
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which must be satisfied for ),a(ax 1jj +∈  , where 

j=0,..,n. 
 

When deriving Eq. (6) it was taken into account that 

according to Eq. (4) one has 

                              R
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                    (8) 

and 
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when  N1=0. 

 

 

3. The local flexibility due to the crack 
     It is well known in the mechanics of solids and 

in the fracture mechanics that   the presence of flaws 

or cracks in a structural member involves 

considerable local flexibilities. Additional local 
flexibility due to a crack depends on the crack 

geometry as well as on the geometry of the 

structural element and its loading. Probably the first 
attempt to prescribe the local flexibility of a cracked 

beam was undertaken by Irwin [12] who recognized 

the relationship between the compliance C of the 

beam and stress intensity factor K. Later on, 

Dimarogonas [7]; Chondros, Dimarogonas, Yao [5]; 

Rizos, Aspragathos, Dimarogonas [33]; Kukla [14] 

introduced so called massless rotating spring model 

which reveals the relationship between the stress 

intensity factor and local compliance of the beam. In 
the present paper we attempt to extend this approach 

for axisymmetric vibrations of circular cylindrical 

shells with circular cracks of constant depth. 

Let us consider the crack located at the cross section 

jax = and let the segments adjacent to the crack 

have thicknesses 1jh −  and jh , respectively. 

According to the current approach it is assumed that 

the slope of deflection w′  is discontinuous, e.g.     

                                      

jjj θ0,t)(aw0,t)-(aw =−′+′
 

 

where 0θj ≠ .  

     The quantity θj can be treated as an additional 

angle caused by the crack at x=aj.  If θj is a 

generalized coordinate then M(aj) can be treated as  

corresponding generalized force.  

Let Cj be the additional compliance of the beam due 

to the crack located at x=aj
 
and UT  be the extra 

strain energy due to the crack. These notations 

admit to present the relationship between the 

compliance Cj and the generalized force M(aj) as                                           
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It is wellknown in the fracture mechanics, that 
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Note that equalities (10)-(11) are used in the linear 

elastic fracture mechanics in the case when the 

generalized displacement and generalized force are 

ju  and jP , respectively (see Broek [4], Anderson 

[1], Broberg [3]). 

     The energy release rate G and the stress intensity 

factor K are related to each other as (Broek [4]) 
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where E'=E  for the plane stress state and E'=E/(1-

ν2) for the plane deformation state. It is known that 

the energy release rate due to the generalized fore 

M(aj) is     
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where Aj stands for the crack surface area.  

The stress intensity factor is defined as      
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(see Tada, Paris, Irwin, [36]). Here c is the crack 

depth and 
26M/hσ = whereas F stands for a 

function to be determined experimentally. When 

applying Eqs (10) – (14) for the cross section 

jax =  with crack depth jc  one has  
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provided j-1j hh < . Let us introduce the notation 

sj= cj/ hj. 

Thus it follows from Eq. (15) that
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After integration in (16) one obtains  
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for  the plane stress state.  

     The function )F(s j  
in Eqs. (14) – (17) is called 

the shape function as it is different for experimental 

specimens of different shape. Many researchers 

have investigated the problem of determination of 

the stress intensity factor for various specimens 

(among others Freund and Hermann, [10]; Irwin, 
[12]; Tada, Paris, Irwin, [36]). 

     In the present study we are resorting to the data 

of experiments conducted by Brown and Srawley 
which can be approximated as (see Tada, Paris, 

Irwin, [36])  
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From (17), (18) after integration one obtains  
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The function (19) is employed also in papers by 

Dimarogonas [7], Chondros and Dimarogonas [6], 

Kukla [14], also in earlier papers of the authors [15-

19]. 

     According to the concept of massless rotating 

spring  
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4. Solution of equations of motion 
     Evidently, it is reasonable to look for the general 

solution of the equation (6) in the form 
 
                                                     

                       
(x)T(t)Xw(x,t) j=                 (23) 

 

for ),a(ax 1jj +∈
 

where  (x)X j  and
 
T(t) are functions of the single 

variable. Differentiating Eq.(23) with respect to x 

and t and substituting in Eq.(6) leads to the equation  
 

        

(t)T(x)X
Eh

)ν(
ρ

(x)T(t)X
hR

)-ν(
(x)T(t)X

j

j

j

j

ΙΥ

j

&&
2

2

22

2

112

112

−
⋅−=

=+

    

(24) 

 
where the notation 
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is used. Note that Eq.(24) must be satisfied for 

),a(ax 1jj +∈ for ,....,n.j 0=
 

     Separating variables in Eq.(24) one easily obtains  
 

                    0TωT =+ 2&&                             (26) 

 

Eq. (25) gives the solution  
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α and δ  being arbitrary constants. Assume that at 
the initieal time instant 
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Substituting T(0)=0 in (27) yields δ=0. Thus it 

follows from Eq.(27) that  
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Finally, it follows from (24) that  
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whereas ω  stands for the frequency of free 

vibrations of the shell.  

     The general solution of the linear fourth order 

equation (30) can be presented as 

 

     
x)(rDx)(rC

x)(rBx)(rA(x)X

jjjj

jjjjj

coshsinh          

cossin

++

++=
.    (31) 

 

Note that Eq. (31) holds good for ,),a(ax 1jj +∈

,....,n.j 0=  

     In this paper we consider cylindrical shells 

whose ends are fixed in arbitrary manner. If, for 

instance, the left-hand end of the tube is simply 
supported, then w(0,t)=0, M(0,t)=0. Consequently, 

one has 

 

                              
.00

00

0

0

=′′

=

)(X

,)(X
                       (32) 

 

In the case of the absolutely free left hand end 
M(0,t)=Q(0,t)=0. Since according to (2) M’=Q one 

has 
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If the left hand end of the shell is clamped then 

evidently 
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 Similarily, for the supported right hand one has 
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Whereas in the case of a free right hand end  
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    5.   Intermediate conditions 
     In order to prescribe the requirements imposed 

on functions Xj(x). Let us denote one has to 

distinguish the left and right hand limits, 
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where Z(x) is a function depending on x. 
    Resorting to physical considerations one can state 

that the displacement w(x,t) , bending moment M 

and shear force Q(x,t)must be continuous at cross 
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sections ,ax j= ,....,nj 0=  
where steps of the 

thickness and cracks are located. 
According to the Hooke’s law the bending moment 

M reads
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provided ),a(ax jj 1+∈ . The last equality shows that 

M(x,t) is continuous, if (x,t)wh3 ′′ is continuous. 

Similarly we can conclude that the shear force is 

continuous if the quantity (x,t)wh3 ′′′ is continuous 

when passing the cross sections jax = . However, 

the quantity (x,t)w′ has finite jumps at x=aj, as 

showm above. Finally one obtains the system of 

intermediate conditions at ,ax j= ,....,nj 0=   
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In  the system (39) the notation 

  

         

j

j

j
)Kν(

Eh
-p

2

3

112 −
=                      (40) 

 

is used. 
 

     It follows from Eq. (30) that 
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reasonable to introduce a real number k so that  
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for  each ,....,n.j 0=   

     In order to determine the deflected shape of a 

shell generator one has to specify functions (x)X j  

for each ,....,n.j 0= So far, functions (x)X j are 

given by Eq. (31) which involves unknown 

constants  ,A j ,B j ,C j ,D j e.g. totally 4n+4 

unknowns. These constants can be determined from 

boundary and intermediate conditions, e.g. Eqs. (32) 

– (36). Since the number of equations in Eq. (40) is 

4n the total number of available conditions is also 

4n+4, as might be expected. In order to demonstrate 

the solution procedure in a greater detail let us 

consider the shell clamped at the left hand end and 

simply supported at right hand end. The end 
conditions entail the boundary conditions (32), (35) 

for functions X0(x) and Xn(x). Making use of (31), 

(32), (35) one obtains 
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     Evidently, Eq. (43) can be converted into the 
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for ,....,n.j 0=
 

     It is worthwhile to emphasize that equations 

(42)-(45) serve for determination of unknowns 

,B j ,C j jD ( ,....,nj 0= ). However, this is an 

algebraic linear homogeneous system of equations

It is well known that a non-trivial solution of
system exists if the determinant of this system 

vanishes. 

      The problem is solved up to the end 

numerically. 

 

 

6. Numerical results 
      Calculations have been carried out for shells 

with one and two steps. Special attention is paid to 

shells with unsymmetric end conditions. 
    

Fig.2: Cylindrical shell clamped at the left 

simply supported right hand end, constant thickness 

(γ=1,0). 
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Fig.2: Cylindrical shell clamped at the left end with 

simply supported right hand end, constant thickness 

The results calculations presented in Figs. 2, 4, 6, 9 

are obtained for shells clamped at the left hand and 

simply supported at the right hand end whereas 

Figs. 3, 5, 7, 9 are associated with cantilever shells. 

 

Fig.3: Cylindrical shell clamped at the left 

free right hand end, constant thickness (γ=1,0).

 

In the latter case the right hand end of the 

absolutely free. 
     Figs. 2-7 correspond to shells with a unique step, 

e.g. to shells with thicknesses 0h

of shells with two cracks and two stepped shells are 

considered in Figs. 8-9. 

Fig.4: Cylindrical shell clamped at the left 

simply supported right hand end, the case 

 
It is assumed herein that the material of the shell is a 
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simply supported at the right hand end whereas 

Figs. 3, 5, 7, 9 are associated with cantilever shells.  

 
Fig.3: Cylindrical shell clamped at the left end with 

free right hand end, constant thickness (γ=1,0). 

In the latter case the right hand end of the shell is 

correspond to shells with a unique step, 

0 and 1h . The cases 

of shells with two cracks and two stepped shells are 

 
Fig.4: Cylindrical shell clamped at the left end with 

simply supported right hand end, the case γ=0.5. 

It is assumed herein that the material of the shell is a 

In calculations cylindrical shells of length 
clamped at the left hand end are considered. 

0,6 0,8 1,0

c/h

0,6 0,8 1,0

c/h
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The largest thickness has been taken 

Whereas the notation γ=h1/h0, β=a1/l is used.

 

 

Fig.5: Cylindrical shell clamped at the left end
free right hand end,  the case γ=0,8. 

 

The influence of the non-dimensional crack depth 
c/h on the characteristic number k is depicted in 

Fig.2. Here and henceforth we take h=min(h

     In Fig.2 the sensitivity of the number 

the eigen frequency ω) with respect to crack length 

c and with respect to the location of the crack 

is shown. Here h0= h1, e.g. the shell is of constant 

thickness. It can be seen from Fig.2 that the number 

k depends on the crack length in a complicated 

manner. For instance, the lowest eigen
(the smallest number k) corresponds to the case 

( the crack is located at the root section) until 

h1. If c >0,8h1 in Fig.2 then minimum of 
achieved when β>0.  

In Fig.3 the same situation as in Fig.2 is presented in 

the case of a cylindrical shell clamped at the left 

hand with free right hand end. It can be seen from 

Fig.3 that the larger the number β the higher the 

value k. 
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0,120
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0,140

0,150

0,160

0,0 0,5

k

has been taken h0=0,009m. 

is used. 

 

l shell clamped at the left end with 

dimensional crack depth 
is depicted in 

h=min(h0, h1).  

In Fig.2 the sensitivity of the number k (and thus 

) with respect to crack length 

the location of the crack a1=βl  

shell is of constant 

It can be seen from Fig.2 that the number 

depends on the crack length in a complicated 

manner. For instance, the lowest eigen frequency 
) corresponds to the case β=0 

( the crack is located at the root section) until c< 0,8 

in Fig.2 then minimum of k is 

the same situation as in Fig.2 is presented in 

ll clamped at the left 

hand with free right hand end. It can be seen from 

the higher the 

Fig.6. Cylindrical shell clamped at the left 
simply supported right hand end, the case 

 

In Fig.4 the number k is shown for stepped shells 

with h1=0,5h0  for  shell clamped at the left hand 

with simply supported right hand end.

results for cantilever shells with 
presented in Fig.5.    Here different curves 

correspond to different locations of the step, e.g. to 

different values of  β=a1/l. It can be seen from Fig.4
that the number k decreases when the crack length 

increases in the case of a fixed value of 

interesting to note that in the range of small cracks 
the number k is almost unsensitive with respect to 

small changes of the crack length. However, in the 

range of larger cracks when c>0,6

is more obvious. Similar matters can be observed in 

Fig.5. Here the number k is weakly sensitive with 

respect to the crack growth, if β>0,7.

     In Figs. 6-7 the dependence between the 

characteristic number k and the crack length 

shown for stepped shells with step coordinates 
a1=0,7l and simply supported right hand end and 

with step coordinates a1=0,2l and 

end, respectively. Here different curves correspond 
to different values of  γ=h1/h0 . 

     In Figs. 8-9 shells with two steps and two cracks 

are considered. In Figs. 8 and 9 the ratios of 
thicknesses are denoted γj=hj/h0; j=

3, 4 in Figs.8-9 are associated with the crack 

locations at a2=0,3l; a2=0,4l; 

respectively, whereas a1=0,1l. 

In Fig.8 the results corresponding to 

shells with two cracks are presented (the case 
γ1=0,2;  γ2=0,5).  
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c/h
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0,240
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Fig.6. Cylindrical shell clamped at the left end with 
simply supported right hand end, the case β=0.5 

is shown for stepped shells 

shell clamped at the left hand 

with simply supported right hand end. Similar 

results for cantilever shells with h1=0,8h0 are 
Here different curves 

correspond to different locations of the step, e.g. to 

. It can be seen from Fig.4 
decreases when the crack length c 

increases in the case of a fixed value of β. It is 

hat in the range of small cracks 
is almost unsensitive with respect to 

small changes of the crack length. However, in the 

0,6 h1 this sensitivity 

matters can be observed in 

is weakly sensitive with 

respect to the crack growth, if β>0,7. 

the dependence between the 

and the crack length c is 

shown for stepped shells with step coordinates 
and simply supported right hand end and 

and free right hand 

Here different curves correspond 

9 shells with two steps and two cracks 

8 and 9 the ratios of 
; j=1,2. Curves 1, 2, 

9 are associated with the crack 

; a2=0,7l; a2=0,9l, 

In Fig.8 the results corresponding to cantilever 

shells with two cracks are presented (the case 

1,0

c/h
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Fig.7: Cylindrical shell clamped at the left 

free right hand end,  the case β=0,2. 

 

In Fig.9 the results corresponding to shells with two 

cracks are presented (the case γ1= γ2=

case the shell is clamped at the left end and simply 

supported at the right hand end. 

 

Fig.8: Cylindrical shell clamped at the left 

free right hand end,  two stepped. 

 

     Thus the numerical results show that for fixed 
values of geometrical parameters the number 

decreases when crack length c increases.
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Fig.7: Cylindrical shell clamped at the left end with 

the results corresponding to shells with two 

=1,0). In this 

case the shell is clamped at the left end and simply 

 
Fig.8: Cylindrical shell clamped at the left end with 

Thus the numerical results show that for fixed 
ometrical parameters the number k 

increases. 

 Fig.9: Cylindrical shell clamped at the left 
simply supported right hand end,two cracks

 
     The results of calculations for simply supported 

shells are compared with those obtained by 

Pellicano [28] in Table 1. Here the shell of constant 

thickness without any crack is studied whereas 

first five natural frequencies of axisymmetric modes 

are presented in Table 1. The parameters of the shell 

are following: E=2,1·1011N/m2; ν

ρ=7800kg/m3; l=0,2m; R=0,2m and 

 

Table 1.Natural frequencies: present theory vs. exact 

and finite-elements results. 

 

Mode Natural frequencies (Hz)

n Present 

method 

Exact by 

F.Pellicano

1 4,162·10
3
 4140,74

2 4,794·103 4788,34

3 6,895·10
3
 6890,30

4 1,066·104 10655,3

5 1,591·10
4
 15900,6

 

     It is seen from Table 1 that the natural 

frequencies corresponding to the current

method are in good agreement with the natural 

frequencies obtained by F.Pellicano.

 

 

7. Concluding remarks 
     Free vibrations of circular cylindrical
piece wise constant thickness are treated under the 

condition that at re-entrant corners of steps circular 

cracks of constant length are located. Cracks are 
considered as stationary surface cracks, problems 
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Fig.9: Cylindrical shell clamped at the left end with 

two cracks. 

The results of calculations for simply supported 

compared with those obtained by 

in Table 1. Here the shell of constant 

thickness without any crack is studied whereas the 

first five natural frequencies of axisymmetric modes 

. The parameters of the shell 

ν=0,3; 

=0,2m and h=R/20.  

atural frequencies: present theory vs. exact 

Natural frequencies (Hz) 

Exact by 

F.Pellicano 

F.Pellicano 

[28] 

4140,74 4140,77 

4788,34 4788,66 

6890,30 6891,43 

10655,3 10657,7 

15900,6 15904,7 

that the natural 

corresponding to the current analytical 

agreement with the natural 

F.Pellicano. 

 
Free vibrations of circular cylindrical shells of 

piece wise constant thickness are treated under the 

entrant corners of steps circular 

cracks of constant length are located. Cracks are 
stationary surface cracks, problems 
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related to re-distribution of stresses and strains due 
to extension of crack are not treated herein. 

     However, the attention is paid to the 

determination of vibration characteristics of 
cylindrical shells in the cases of various 

combinations of end conditions. 

     Calculations showed that the support conditions 

as well as crack parameters have essential influence 

on vibration characteristics. It was established that if 

the crack location is fixed then the maximal value of 
the characteristic number k is achieved if the crack 

length is equal to zero. On the other hand, for fixed 

crack length and variable ratio of thicknesses 
maximum of the number k is achieved if the shell 

has constant thickness. For the fixed ratio of 

thicknesses and fixed other parameters the number k 
decreases when the crack length increases. 
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