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Abstract: - Graph theory has many real-world applications and is rich in theoretical results, especially for 

studying interconnection among elements in natural and man-made systems.   In recent studies of complex 

control system, directed graph was introduced to define and interpret the interconnection structure underlying 

the dynamics of the interacting subsystems.  Similarly, Fuzzy State Space Model (FSSM) was developed for 

solving inverse problem in multivariable control system. Thus, this paper aims to describe the transformation 

of FSSM of a Boiler system using a graph theoretic approach. The main subsystems of the Boiler system are 

furnace, superheater, drum, riser and reheater. These subsystems are transformed into vertices whereas the 

interconnections between subsystems are associated with edges of the graph.  Here, the Autocatalytic Set 

(ACS) is a subgraph, whereby each of the nodes has at least one incoming link from a node belonging to the 

same subgraph.  The concept of ACS is integrated to reveal some properties of the new graphical 

representation of FSSM such that irreducible graph, adjacency matrix and the relationship of an ACS to Perron 

Frobenius Eigenvector. These properties indicate initial findings that will lead to further exploration in Fuzzy 

Graphical representation. 
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1   Introduction 
Graphical representation is extremely useful to 

illustrate complex structure in a direct and intuitive 

way, and such they are widely used in many fields. 

Graph theory provides a mathematical modeling for 

studying interconnection among elements in natural 

and man-made systems [1,3]. In recent studies of 

complex control system, directed graphs were 

introduced to define and interpret the interconnection 

structure underlying the dynamics of the interacting 

subsystems. The subsystems were associated with 

vertices while interconnection with edges of the 

graph [2]. Theorems and algorithm of graph theory 

represent the behavioral properties of the system as 

the properties of the vertices or edges of the graph [3, 

20].  

      The concept of autocatalysis comes from 

chemistry. An Autocatalytic Set (ACS) is a set of 

reactions that are not individually autocatalytic, but 

whose products catalyze one another [4]. The 

underlying idea of this concept is that a set of 

molecular species that contain, within itself, a 

catalyst for each of its member species. In term of 

graph theoretic approach, ACS is a subgraph, each of 

the nodes has at least one incoming link from a node 

belonging to the same subgraph [5]. Our interest in 

this study is to transform the Fuzzy State Space 

Model of a boiler system to Fuzzy Graph using the 

graph theoretic approach. The subsystems will be 

transformed into vertices and interconnection 

between subsystems will be associated with edges of 

the graph. Initially, the input-output variables are 

identified using state space approach. The state space 

approach is based on time domain analysis and 

synthesis using state variables. It is a unified method 

for modeling, analyzing and designing a wide range 

of systems [6]. This approach is well studied and it 

provides a good approximation in modeling 

engineering and biological systems [8-11]. Further 

discussion will focus on integrating the concept of 

ACS to reveal some properties of the graphical 

representation of FSSM. 

 

 

2   A Boiler System 
Boiler system consists of five main subsystems 

namely furnace, riser, drum, reheater and superheater 

[7]. Based on the typical drum-type boiler, the  
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feedwater is supplied to the drum where the water is 

evaporated. The water flows into downcomers, then 

furnace is used to increase the water temperature and 

eventually to cause evaporation. Thus the circulation 

of water, steam, and water and steam mixture takes 

place in the drum, the downcomers and the risers. 

Steam generated in the risers is separated in the drum 

where it flows through the superheater on to the high 

pressure turbines. It may be recycled to the boiler in 

the reheater where its energy content is increased. 

Desuperheating spray water is introduced in the 

superheater for control of main steam temperature. 

As for the combustion process path, the risers absorb 

radiant heat in the furnace. The hot gases leaving the 

furnace transfer the heat by radiation and convection 

to the superheater. The heat then transferred by 

convection to the reheater and the economizer, before 

exiting the boiler via the stack. The burner tilt is used 

to change radiation heat distribution between the 

risers and the superheater. Block Diagram of a Boiler 

System is shown in Fig. 1[7]. 

3 Graphical Representation of Boiler 

System 
Graph theory is a useful representation because the 

elements of the graph can be defined so as to have a 

one to one correspondence with the elements of 

many kinds of engineering systems [3]. In addition, a 

graph is a symbolic of network and of its 

connectivity which implies an abstraction of the 

reality that can be simplified as set of linked nodes 

[12]. Each link represents a relationship between 

pairs of elements. A directed graph ( )E,VG = ,  often 

referred as a graph, is defined by a set V of ‘nodes’ 

and E  of ‘links’ (or ‘arcs’). The set of nodes and 

edges can be conveniently labeled by 

{ }sv,......,v,v,vV 321=  and { }ne,.....,e,e,eE 321=   

respectively. A graph with s nodes is an s x s, 

denoted by ( )ijcC =  called the adjacency matrix of a 

graph.  

 

 

 
 

Fig. 1. Block Diagram of a Boiler System 
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The boiler system can be visualized in the form of a 

graph as shown in Fig. 2. Initially, the state space 

model is used to determine the input and output 

parameters for each subsystem as shown in Table 1 

[10, 13]. All the subsystems except economiser and 

the input-output variables involve in the process are 

grouped into two distinct sets namely the set of 

vertices, V and the set of edges, E. An ‘environment’ 

is used to represent the systems outside the boiler. 

Each subsystem in the Boiler and the environment 

will be represented by a vertex while parameter 

sources will be the edge. These two sets are listed 

below:  

 

  { }654321 v,v,v,v,v,vV =     

 and, 

  { }144321 e.....,e,e,e,eE =
 

 

The construction of the graphical representation of 

boiler system can be regarded as the proof by 

construction of the following proposition.
 

       

Proposition 3.1
 

The boiler system of a combined cycle power plant in 

[7] can be presented by a graph { }:E,VGcc = where 

a set )G(V of vertices corresponds to the subsystems 

related to the boiler and a set  )G(E of edges 

corresponds to the input-output variables associated 

with the components. 

 

However, the above graphical representation of a 

boiler system is static. Therefore, a more 

comprehensive graphical representation of the 

system is needed and outlined in the following 

section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Graphical Representation of a Boiler System 

 

 

 

Vertex Subsystem Edge 

 

Source for  

Input and output

Parameter: 

  1v  Furnace ( )1gFS  1e  irQ  

  2v  Superheater ( )2gFS  2e  rsQ  

  3v  Reheater ( )3gFS  3e  gsQ  

  4v  Riser ( )4gFS  4e  GA,F w,ww  

  5v  Drum ( )5sFS  5e  esisG Q,Q,P  

  6v  Environment ( )*
gFS 6  6e  sw  

  7e  ss T,P  

  8e  ror P,T  

  9e  irh  

  10e  dw w,h  

  11e  rw,x  

  12e
 vw  

  13e
 re w,w
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Table 1. State Space Representation of a Boiler System 
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4  Fuzzy State Space Model 
The fuzzy systems, developed by based on specific 

items of fuzzy logic such as rule bases, fuzzy values 

and others are nonlinear transfer elements, with 

multivariable inputs and single variable output 

[15,18]. Fuzzy State Space Model (FSSM) of a 

furnace was introduced and followed by Fuzzy State 

Space algorithm with the purpose of solving the 

inverse problem where the input parameters that 

achieve the desired outcome can be deduced [10]. In 

this algorithm, the uncertainties in the parameters are 

presented by fuzzy numbers [14] which are 

integrated in the state space model of the system. The 

algorithm is flexible as the input parameter can be 

described as approximately as desired at the initial 

stages of the control process. The development of the 

algorithm is based on the three phases of the fuzzy 

system, namely, fuzzification, fuzzy environment 

and defuzzification. The fuzzy algorithm has been 

shown to give good parameter estimation for a 

superheater system [13,17]. Based on [14], the 

definition of FSSM of a multivariable dynamic 

system  is given as follows: 

 

Definition 4.1 

A Fuzzy State Space Model of a multivariable 

dynamic system is defined as 

 

  gFS :     ( ) ( ) ( )tu~BtxAtx
.

+=  

        ( ) ( )txCty~ =   

 

where u~ denotes the fuzzified input vector [ ]Tnu,....u,u 21  

and y~ denotes the fuzzified output vector 

[ ]Tmy,....y,y 21  with initial conditions as 00 =t  and 

( ) 000 == txx  . The elements of state matrix p pA × , 

input matrix p nB ×  , and output matrix m pC ×  are 

known to specified accuracy. The multi-connected 

systems of FSSM can be viewed as a system of 

FSSM, gFS  which is a collection of subsystems 1gFS , 

2gFS ,…, gFjS ( ).j,....,,21 The system is  based on the 

source of input parameters; either the input 

parameters are directly from one system or from 

multiple systems. 

 

 
Fig. 3. A multiconnected System 

 

For each of gFS  in multi-connected system, it can be 

transformed into a point in the Euclidean n-space 

where the elements of A, B and C matrices can be 

written as coordinates of a point in a finite 

dimensional space. Thus, Fuzzy state space model 

can be embedded in Euclidean space by using the 

following transformation: 
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In other words,  
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( ) ( )*
gFgF SS θθ =  where θ  is a function 
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Since r is arbitrary thus θ  is onto.  

Therefore, 
*
gFgF SS =

 
θ∴  is one to one 

 

 

                   Table 2. FSSM to Euclidean n-space 
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k Vertex ( )*iS in Euclidean n-space 

Super-

heater 

 
23

2222

×
××

C
,B,A
 

14  








−= 000

1
0

1
00000222112113 ,,,

v
,,

CM
,,,,,,a,a,a,aS

ssts

*

 

Riser 

21

2222

×
××

C
,B,A
 

10  









−= 0000

1
00000222112112 ,,,

V

h
,,

CM
,,,,,,a,a,a,aS

rr

w

rts

*

ρ
 

Reheater 

22

2222

×
××

C
,B,A
 

12  









−= 0000

1
00000222112114 ,,,

V

w
,,

CM
,,,,,,a,a,a,aS

rh

ri

rhs

*  

Drum 

22

2222

×
××

C
,B,A
 

12  ( ) ( ) 







−−−−= 0011100000005 ,,hx,h,x,,,,,,,

V

v
,,,

V

v
S wre

L

dow

L

dow*  

 

Furnace 
1591

11

××
×

C,B
,A

 
15  









−= 000

111
000000001 ,,,

V
,

V
,

V
,,,,,,,,,

V

TRk
S

FFFF

GEGF*  
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By using this transformation, the Fuzzy State Space 

Model of the boiler system can be embedded in 

Euclidean space. The detailed is shown in Table 2. 

The Euclidean k-space for each vertex is determined 

by the total size of A, B and C matrices in each 

subsystem of FSSM. These vertices will be 

embedded into the same Euclidean n-space. 15 is the 

maximum value of k which will represent the size of 

the n-space. The mapping of FSSM to Euclidean 

space will be the initial stage for further exploration 

view of FSSM. A new concept of Autocatalytic set 

will be adopted to define some properties of the new 

graphical representation of FSSM. 

 

 

5   Autocatalytic Set (ACS)  
The concept of autocatalysis comes from chemistry. 

A catalyst is a substance that facilitate a chemical 

reaction. In autocatalysis, a product of reaction 

serves as a catalyst for the same reaction. The 

concept of Autocatalytic Set (ACS) was introduced 

particularly in understanding the construction of 

molecules in the chemical compound in a substance 

[4,5,19]. The underlying idea of this concept is that a 

set of molecular species that contain, within itself, a 

catalyst of its member species. Such a set of 

molecular species can collectively self-replicate 

under certain circumstances even if none of its 

component molecular species can individually self 

replicate. In general, it is a collection of entities 

(molecules, people, nations, institutions) that 

produces as outputs the same elements which are 

necessary inputs for expanding the collection. Stuart 

Kauffman theory adopted this property in 

understanding the origin of life [23].  Jain & Krishna  

initiated the ACS in term of graph theoretic 

approach, They imagined that a node in a directed 

graph is to represent a molecular species and a link 

from j to i as signifying that j is a catalyst for i. 

Based on this idea, ACS for any directed graph is 

define  as below [5]: 

 

Definition 5.1 

An autocatalytic set (ACS) is a subgraph, each of 

whose nodes has at least one incoming link from a 

node to the same subgraph. 

 

 

 

 

 

 

 
 

Fig. 4 (a) A 1-cycle, the simplest ACS (b) A 2-cycle 

ACS (c) An ACS, but not cycle 

 

Fig. 4 shows examples of ACS [12]. By using the 

above definition and proposition 3.1 we can state the 

following: 

 

Proposition 5.1 

 The graph  ccG is an autocatalytic set 

 

This proposition has inspired to explore further 

features of the graph. This led to the following 

discussion of related properties of the graph in the 

next section.   

 

 

6  Related Properties of the Graph 

 

 

6.1 Irreducible Graph 
The first property to look at is to determine whether 

the graph is reducible or irreducible. Irreducible 

graphs are, by definition, strongly connected graph. 

[23]. A graph is said to be irreducible if each node in 

the graph has access to every other node [1]. In 

addition, an irreducible graph is always an ACS [5]. 

Therefore, the graphical representation of Boiler 

System, ccG   shown in fig. 2 is an ACS hence, it is 

irreducible graph. If a graph is irreducible then its 

adjacency matrix is also irreducible[23] thus, we can 

conclude that in any dynamical system such as 

boiler, the matrix C is irreducible means that the 

system cannot be reduced. In other words, the system 

must be treated as a whole in studying its behavior. 

 

 

6.2  The Adjacency Matrix 
The network of interactions between the parameters 

and the subsystems in the boiler system shown in 

Fig. 2, can be specified using the 6 x 6 matrix C 

called adjacency matrix. The rows and the columns 

of the matrices represent the nodes in the graph and 

1 

1 

2 

1 

2 

3 
a) b) c) 
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the entries ijC represent the link between the ith node 

and jth node [1]. A directed weighted link from node 

i to node j is denoted by the following values. 

 

         
jtoifromlinknoisthereif

jtoilinkaexistthereif
Cij





=
0

1
 

 

This gives the following adjacency matrix C of the 

graph, ccG . 

 

 





















=

010111
101000
010000
100000
110001
101110

ccGC  

 

The special feature denoted by the adjacency matrix 

shows that the autocatalytic set of the graph is that 

the every row must contain at least one non-zero 

other element of the jth  column. This relate to the 

ACS of the graph whereby any node can have at least 

one incoming link from any other nodes in the graph. 

All the elements of the principle diagonal are zeros 

showing that there is no self-replicating of any of the 

elements or there is no self-cycle link within a 

subsystem.  

 

 

6.3 Relationship of an ACS to Perron 

Frobenius Eigenvector (PFE) 
The ACS is a useful graph-theoretic construct in its 

connection with the PFE. The Perron–Frobenius 

eigenvalue of a graph is an indicator of the existing  

ACS in a graph [22, 23]. Let x be a PFE of a graph 

where the set of all nodes i for which ix is non zero. 

The subgraph induced by these nodes is known as the 

subgraph of the PFE x. Thus, if all the component of 

the PFE are none-zero then the subgraph of the PFE 

is the entire graph . Finally, if 11 ≥λ  , then the 

subgraph of any PFE of C is an ACS [5,24] . By 

using the same adjacency matrix, 
ccGC , further 

investigation to determine the relationship of ACS 

and PFE was carried out. 

Here the eigenvalues λ  and their respective 

eigenvectors x were calculated using mathlab version 

7. The following are the result,  

 

 





















−
−
−
−
−
−

==

57500
25410
09620
21770
51520
53160

64122 11

.

.

.

.

.

.

x,.λ , 

 





















−

−

−

=−=

60570
49950

28130
34110

16600
40090

77571 22

.
.
.
.
.
.

x,.λ , 

 





















−
−

−

=−=

13170
11890
20180
22350

67590
64880

58920 33

.

.
.
.
.
.

x,.λ , 

 

 




















−

==

00000
00000
00000
70710
70710

00000

00000 44

.

.

.

.
.
.

x,.λ , 

      

 





















−

==

31450
47800

66050
43460
06240
20870

72370 55

.
.
.
.
.
.

x,.λ , 

 

 





















−

−

=−=

00000
00000
00000
00000
70710

70710

00001 66

.
.
.
.
.
.

x,.λ  

 

For any non-negative irreducible matrix, the PF 

theorem  states that there exists an eigenvalue, which 

is real and larger than or equal to all other 

eigenvalues in magnitude [22]. The largest value 

eigenvalue is called PF eigenvalue of the matrix, 

which is denoted by ( )Cλ . The PF eigenvalue of 

matrix 
ccGC  is, 

 

( ) 641221 .C
ccG =λ    
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Further, the theorem also states that there exist an 

eigenvector of C corresponding to the value of 

( )
ccGC1λ  referred to as PF eigenvector (PFE), whose 

all the components are real and non-negative. The 

PFE of ( )
ccGC1λ   is given as : 

 

  PFE





















=

57500
25410
09620
21770
51520
53160

.

.

.

.

.

.

 

 

The PFE above, shows that all the components of PFE 

are none-zero. Therefore, the subgraph of PFE is the 

entire graph ccG . Based on the result above, and by 

the proposition by [5, 24], it is confirmed that the 

graph ccG is an ACS. 

 

The discussion on the algebraic properties (the 

structure of the eigenvectors of its adjacency matrix)  

highlighted in this section provide a good 

understanding of the graph representing the system. 

 

 

7 Conclusion 
The static graphical representation of the boiler 

system has been successfully modeled using the basic 

graph theoretical concept. We finally outlined general 

procedure in construction of graphical presentation for 

fuzzy state space model of a system. A sample 

construction of a boiler system and related properties 

is presented. This new approach will simplify the 

schematic diagram of interconnection of subsystems 

in a boiler. Thus, the graphical representation will lead 

to the development of fuzzy graphical representation 

of a boiler where the method to determine the 

membership values will be discussed in future papers. 
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