
Evaluation of Steady State Vector of Fuzzy Autocatalytic 
Set of Fuzzy Graph Type-3 of an Incineration Process 

 
1SUMARNI ABU BAKAR, 2TAHIR AHMAD & 3SABARIAH BAHARUN 

Department of Mathematics &  Theoretical & Computational Modeling for Complex 
Systems (TCM), 

 Faculty of Science, UTM, 81310 Skudai, Johor, MALAYSIA. 
1sumarni@gmail.com, 2tahir@ibnusina.utm.my, 3sabariahb@utm.my 

  
 

Abstract: - Fuzzy Autocatalytic Set (FACS) of Fuzzy Graph of Type-3 incorporates the concept of fuzzy, 
graph and autocatalytic set. It was initially defined and used in the modeling of a clinical waste incineration 
process which has produced more accurate results than using crisp graph. As it is a newly developed theory, 
FACS seems to have great potentials in generating new mathematical theory. This paper employs Markov 
chain to the evaluation of steady state of an incineration process. Novel definition of transition probability 
matrix of FACS is presented. Steady state vector of Markov chain for incineration process is determined and 
graph of convergence of its norm difference is presented. This study led to some relation of Markov process 
and Perron-Frobenius Theorem.    
  
Key-Words: - Fuzzy Autocatalytic Set, Fuzzy Graph, Incineration Process, Perron-Frobenius Theorem, 
Transition Probability Matrix, Markov process. 
  
 
1   Introduction 
The emergence of fuzzy graph to autocatalytic sets 
has instigated a new concept named Fuzzy 
Autocatalytic Set (FACS) [1,2]. A clinical waste 
incineration process in Malacca (schematic diagram 
given in Fig. 2) is modeled formally using crisp 
graph as below. 
 

 
 
Fig. 1. Crisp Graph for clinical waste incineration 
process 
 
 
 

 
V1: Waste (particularly clinical waste) 
V2: Fuel 
V3: Oxygen 
V4:Carbon Dioxide 
V5:Carbon Monoxide 
V6: Other gases including water 
 
However the interpretation of the graph at the end of 
the process did not signify the product of the process 
[1]. This led us to use the new concept, FACS [1, 2], 
and in particular using fuzzy graph of type-3 [3]. 
Several new results of FACS which linked to Perron 
Frobenius Theorem have been discussed in previous 
studies [2, 4, 5, 6, 7]. In this paper, we focus on the 
study of FACS of an incineration process from a new 
perspective by using Markov chain and evaluate its 
steady state vector.  
 
2   A Fuzzy Graph Type 3 
Rosenfeld [8] has defined fuzzy graph in which he 
has considered fuzzy graph to consist both fuzzy set 
for vertices as well as for the edges. Yeh and Bang 
[9] also coined a special case of graph fuzziness 
where only the edges are fuzzy and the vertices 
remain as a crisp set. After the pioneering work of 
Rosenfeld and Yeh and Bang in 1975, where some 
cases of graph fuzziness have been defined and basic 
theoretic concepts have been formulated, Blue et. al 
[3] further generalized the catalog of various 
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fuzziness possible in graph where five types of fuzzy 
graphs are introduced. However, Sabariah [1] and 
Tahir et. al [2] have formalized the five types of 
fuzzy graphs described by Blue et. al in the 
following. 
Definition 2.1 
Fuzzy graph is a graph FG  satisfying one of the 
fuzziness ( i

FG of the ith type) or any of its 
combination: 
1) { }

FFFF nF GGGGG ,...,,, 321
1 =  where fuzziness is 

on i
FG  for i = 1,2,3,…,n. 

2) ii. { }FEVG
F

,2 =  where the edge set is fuzzy. 

3) iii. ( ){ }FFF htEVG ,,3 = where both the vertex 
and edge sets are crisp, but the edges have fuzzy 
heads and tails. 

4) iv. { }EVG FF ,4 = where the vertex set is fuzzy. 
5) v. ( ){ }FF wEVG ,5 = where both the vertex and 

edge sets are crisp but the edges have fuzzy 
weights. 

 
3   Autocatalytic Set 
The concept of autocatalytic set (ACS) was first 
introduced in the context of catalytically interacting 
molecules, Kauffman [10]; Rossler [11]. However, 
Jain and Krishna [12] have been formalized the 
autocatalytic set in terms of graph theoretical concept 
(see Fig.3 ) as follows: 

Definition 3.1 
An autocatalytic set is a subgraph, each of whose 
nodes has at least one incoming link from a node 
belonging to the same subgraph. 

 
Fig. 3. (a) A 1-cycle, the simplest ACS (b) A 2-cycle 
ACS (c) An ACS, but not cycle 
 
A graph with s nodes is completely specified by an 

ss×  matrix, ( )ijcC =  called the adjacency matrix of 
the graph. 
 
 
 

Definition 3.2. 
The adjacency matrix of a graph G = G(V, E) with s 
nodes is an s × s matrix, denoted by ( )ijcC = , where 
cij=1 if E contains a directed link ( )ij,  (arrow 
pointing from node j to node i), and cij=0 otherwise. 
 
Below are the examples of adjacency matrix drawn 
for Fig. 3. 
 
(1) �0 1

1 0� �
0 1 0
1 0 0
0 1 0

� 

(a)               (b)                             (c) 
 
4   FACS of Fuzzy Graph Type-3  
The main idea of the definition of FACS is the 
merger of fuzzy graph of type-3 to autocatalytic set 
[1]. The formal definition of FACS is given below. 

Definition 4.1 ([1,2]) 

Fuzzy autocatalytic set (FACS) was defined as a 
subgraph where each of whose nodes has at least one 
incoming link with membership value  

( ) ( ] Eee ii ∈∀∈ ,1,0µ         (1) 

The membership values for fuzzy edge connectivity 
for fuzzy graph are in the interval (0,1]. These values 
constitute the entries of the adjacency matrix for 
FACS as follows: 

( ) ( ]
( )









≠∈

∉=
= 2

1,0

0

jifore

Eeandjifor
C

i

i

Fij

µ

   
 

As for incineration process, the membership values 
are determined through the chemical reaction taken 
place between six variables that play its vital roles in 
the clinical waste incinerator, namely waste, fuel, 
oxygen, carbon dioxide, carbon monoxide and other 
gases including water. The set of vertices in the graph 
of FACS of the incineration process, { }621 ,...,, vvvV =
is represented by these six variables. 

When a fuzzy graph of type-3 is considered in the 
construction of FACS, the description of its fuzzy 
head, fuzzy tail and fuzzy edges connectivity of the 
edges are given as in [1,2]. 

From the explanation given in [1,2] pertaining to the 
construction of FACS of Fuzzy Graph of Type-3 for 
the incineration process, the graph is represented as 
in Fig. 4. and its adjacency matrix using (2) is 
represented as in Fig. 5. The different color signifies 

1 

1 

2 

1 

2 

3 
a) b) c) 
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the different range of membership value for the fuzzy 
edge connectivity. The greater the value of 
connectivity between the vertices, the thicker is the 
link between them. The graph is strongly connected 

where each node in the graph has access to every 
other node. 
 

 

 
Fig. 2. The shematic diagram of clinical waste incinerator. 

 
 

 
 

 
 
V1: Waste (particularly clinical waste) 
V2: Fuel 
V3: Oxygen 
V4:Carbon Dioxide 
V5:Carbon Monoxide 
V6: Other gases including water 

 
Fig. 4.  Fuzzy Graph of Type 3 for the clinical waste incineration process 
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



















=

0000001.029906.031995.032752.0
00000002.000001.000001.0
099999.0063563.068004.051632.0
0000015615.0
0000000001.0

13401.00006529.000

ijFC
 

 
Fig. 5.  Adjacency Matrix representing FACS for clinical waste incineration process 

 
 

5 Markov Chains and Transition 
Probabilities for Directed Walk 

Let ( )EVG ,=  be a directed graph with { }nV ,...,1= . 
Pick any node to be the initial node. Suppose that at 
each time step, we choose at random a child of the 
current node and move towards this node. The 
resulting sequence of nodes is called a random walk. 
Recall that the transition probability matrix for a 
random walk on weighted directed graph is given as 
follows: 

( ) )3(
0

,




 →

=
otherwise

Ginedgeanisvuif
d
w

vuP u

uv

where ud  denotes the out-degree of vertex u and 

uvw  denotes the weight of edge from vertex u to v.    
 
The probability of moving from a node u to a node v 
is propotional to the weight of the edge vu → . 
According to Rubinfeld [13], the concept of a 
random walk with weighted edges is equivalent to 
the concept of finite Markov chain. Here, a random 
process is defined by a finite set of states, 

{ }nN ,...,1=  and a sequence ,...,, 210 XXX  of 
random variables. This process is a (finite) Markov 
chain if the transition probabilities at step (k+1) 
depend only on the state at step k, that is 

( ) ( ) )4(,..., 1001 kkkkkk iXjXiXiXjX ==Ρ====Ρ ++

 

Markov chain is also often described by transition 
probability matrix [ ]

NjiijPP
∈

=
,

 defined as  

=ijP P ( )kkk iXjX ==+1  for all )5(, Nji ∈   

Next, the transition probability matrix is a (row) 
stochastic matrix, that is, a square nonnegative 
matrix with all row sums equal to 1 and no value of 
its entries is negative. Note that every stochastic 

matrix represent a Markov chain. Since it is a 
nonnegative matrix, Perron-Frobenius theorem gives 
useful information about the eigenvalues of such 
matrices as described below. 

Let nnP ×
≥ℜ∈ 0  be a stochastic matrix. Then 

(a) ( ) 1=Pρ  is an eigenvalue of P; 
(b) P has at least one invariant measure; 

If P is irreducible, then 

(c) P has exactly one invariant measure Tx , and    
Tx  is positive; 

Moreover, if P is primitive, then 

(d) Tk
k xP 1lim =∞→ . 

Note that invariant measure of a stochastic matrix 
correspond exactly to its left Perron vector. 
 
6 Transformation of FACS to 

Transition Probability Matrix 
Since the concept of random walk with weighted 
edges is equivalent to the concept of finite Markov 
chain; i.e. it is a special case of Markov chain [13]. 
We can then apply the concepts in eq. (3), (4), (5) to 
the incineration process with the assumption that 
population size and the possible state are both 
constants. Here, population size denotes the six 
variables that plays vital role in the process whereas 
the possible states denote the possible condition or 
form of the variables in the system at a particular 
time. We assume that it takes the same amount of 
time to move from one state to another. Thus, the 
Markov chain is homogeneous and its dynamics are 
described by the transition probability matrix, P 
which is given in the following definition. 

Definition 6.1 (Transition Matrix for FACS)  

Suppose 𝐺𝐹𝑇3(𝑉,𝐸) is a no loop FACS of Fuzzy 
Graph Type-3. The transition matrix of FACS of 
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Fuzzy Graph Type-3 is P*, with 𝑃∗(𝑢, 𝑣) is fuzzy 
value of moving from 𝑢 to 𝑣 as 

𝑃∗(𝑢, 𝑣) =

⎩
⎨

⎧
𝜇(𝑢, 𝑣)
𝑑𝑜𝑢𝑡(𝑢) 𝑖𝑓  (𝑢, 𝑣)  ∈ 𝐸

0
          (6)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� 

 
where for a vertex 𝑢, the out-degree of 𝑢 is 
𝑑𝑜𝑢𝑡(𝑢) = ∑𝜇(𝑢, 𝑡) and 𝜇(𝑢, 𝑣) is the ordinary 
membership value of an edge from 𝑢 to 𝑣.  

This matrix is not an ordinary transition matrix 
defined in [14-19] since it integrates the membership 

value of an edge into the calculation of its entries. 
Calculation of the membership value for every edges 
in the graph is formulated in [1] through several 
assumptions such as chemical reaction of the 
formation of the variables namely waste, fuel, 
oxygen, carbon dioxide, carbon monoxide and other 
gases including water or the relation between them. 
It takes values in the interval of [0,1]. Probability 
and fuzziness are two different concepts [20,21,22]. 

In our case, however, a membership value of an 
edge is regarded as the weight of the edge. Hence, 
the transition matrix for FACS formulated in eq. (6) 
of the incineration process is given as in Fig. 6: 

 























=

000001
001000
100000

2990600.00000200.06356300.00006529.0
3199500.00000100.06800400.0000
00001.1

32752.0

00001.1

00001.0

00001.1

51632.0

00001.1

15615.0

00001.1

00001.0
0

*P

 
 

Fig. 6. Transition Probability Matrix representing FACS for clinical waste incineration process 
 
Next, mapping of no-loop FACS of Fuzzy Graph 
Type-3, G(V, E) to transition probability matrix, P* 

is established and as follows. 
 
Corollary 1  
Let )EV,（

3FT
kG  be a no loop fuzzy graph 

Type-3 which is autocatalytic; i.e FACS 
defined by  
 

( ) ( ]



∈≠∈
∉=

=
Eeandjiwhene
Eeandjiwhen

G
ii

i

FT
k 1,0

0

3 µ
 
 for k = 1,2,3,4…,n. 

Next define 








== nkGG
FT
kFT ,.....,3,2,1;

3
3 be 

finite set of all fuzzy graph type-3. Define 

[ ]
( )
( ) ( )





















∈== ××

otherwise

Evvif
vd
vv

ppP ji
iout

ji

ij
nn

ij
nn

F

0

,
,

:
µ

 and  ( ) [ ]iji
nn

FFT pGPG
FT

=∋→ ×
33: σσ  then 

nn
FFT PG ×→3:σ  is onto and one-to-one 

function. 
 

Proof: 
1) Let ( ) ( )'''

33 ,, EVGEVG FTFT =  

{ } { }

( ){ } ( ){ } '
,...,3,2,1,

'''
,...,3,2,1,

'''
3

'
2

'
1321

,,

,.....,,,,....,,,

EvvvvE

and
VvvvvvvvvV

njijinjiji

nn

===

===⇒

==
µµ

( ) ( )
[ ] [ ] '

''' ,,

ijij

jiijijji

pp

vvPPvv

=⇒

===⇒ µµ
  

∴σ  is a function. 
 
2) BAf →:  is onto if ,Bb∈ then Aa∈∃  

baf =∋ )( . So pick [ ] ,nn
Fij Pp ×∈ then 

( ) [ ]ijii pGG
FTFT

=∋∃
33

σ  and 
( )

( )iout

ji
ij vd

vv
p

,µ
=  for 

( ) 3, FTiji Gvv ∈   

∴σ  is onto. 
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3) In the case of 

 

( ) ( )

























=























⇒

=

0........
.....

........0

........0
.......0

0........
.....

..........0
........0
.......0

),(),(

'
3

'
2

'
1

'
3

'
32

'
31

'
2

'
23

'
21

'
1

'
13

'
12

321

33231

22321

11312

21

nnn

n

n

n

nnn

n

n

n

ppp

ppp
ppp
ppp

ppp

ppp
ppp
ppp

EVGEVG

















σσ

 
 
It is the same matrix if 

( )
( )

( )
( )'1

'
2

'
1

1

21'
1212

,,

vd

vv
vd
vv

pp
outout

µµ
=⇒=  

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

'
22

'
11

'
2

'
1211

'
1

'
2

'
1121

'
1

,,

,,

vvandvv

vvvvvdvdif

vvvdvvvd

outout

outout

==⇒

=⇒=

=⇒

µµ

µµ

 

 

Generally, 
( ) ( )'1

'
1

'
)1()1( ,, −−−− =⇒= nnnnnnnn vvvvpp  

nnvv nn ,....,3,2,1,' =∀=⇒  
⇒ ( ) ( )EVGEVG ,, 21 =  
∴σ  is one-to-one. 

 
 
7 Characteristics of Transition 

Matrix of FACS of Fuzzy 
Graph of Type-3. 

The above transition matrix P* provides some basic 
facts or characteristics of FACS. There are: 

Fact 1: For a strongly connected graph of FACS, the 
transition matrix is (row) stochastic matrix since the 
sum of the entries on each and every row is 1 and no 
value of its entries is negative. 

Fact 2: For a strongly connected graph of FACS, the 
transition matrix is irreducible. 

Eventhough transition matrix is not symmetric, we 
still can deduced some useful properties of the 
matrix since all of its entries are nonnegative. 
The eigenvalues, λ  and their respective 
eigenvectors, x of P* using MATLAB version 7.0 is 
computed and given as below. 

 
=λ 1.00000000000000,-0.40154987138365+0.58558458293596i , -0.40154987138365-0.58558458293596i, 

         -0.19686879108908, -0.00003146614362, 0.00000000000000 
 



























−

−



























−

−



























+−

−−
−
−
−



























−

−



























−−

+−
+
+
+



























−
−
−
−
−
−

=

00000000000000.0
00000000000000.0
00000000000000.0
86100000640409.0
49389999999979.0

00000000000000.0

,

30930000000009.0
07129402179638.0
33480000295850.0

23690000157997.0
90083405733098.0
00030000000000.0

,

98902974149958.081251148893563.0
06026324172992.0

97053703338203.056972539470851.0
78330913191158.094193185267922.0
52351184809601.038613488136531.0
10470521495175.010602202954426.0

81000292438443.0
43347545373028.0
42381485448466.0

43084370154007.0
29354655502968.0
90080057572002.0

,

98902974149958.081251148893563.0
06026324172992.0

97053703338203.056972539470851.0
78330913191158.094193185267922.0
52351184809601.038613488136531.0
10470521495175.010602202954426.0

,

63864082482904.0
63864082482904.0
63864082482904.0
63864082482904.0
63864082482904.0
63864082482904.0

i

i
i
i
i

i

i
i
i
i

x

 

 

For any nonnegative irreducible matrix, Perron-
Frobenius (PF) theorem guarantees that there exists 
an eigenvalue which is real and larger than or equal 
to all other eigenvalues in magnitude. Here, 

 ( ) 1*
1 == Pρλ  

 

Fact 3: The largest eigenvalue of transition matrix 
of FACS is real and equal to 1 with algebraic 
multiplicity one. 

Fact 4: Since ( ) 1*
1 == Pρλ , then the strongly 

connected graph of FACS is aperiodic.  
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This fact follows from Lemma 2 by Costello [23]. 
Further, this matrix has a truly dominant eigenvalue 
using primitive matrix [24] since 0)( * >kP  for k = 
6. Moreover, it is a regular transition matrix since 
for 6=k , ( ) njiP ji

k ,...,1,,0)( ,
* =∀> . 

Fact 5: The regular transition matrix of FACS is 
primitive since 
 



























=



























=

1
1
1
1
1
1

63864082482904.0

63864082482904.0
63864082482904.0
63864082482904.0
63864082482904.0
63864082482904.0
63864082482904.0

x

 

and 𝑃∗𝒙 = 𝜆1𝒙 = 𝟏𝒙 = 𝒙.  Thus the ‘all 1’ vector is 
a right eigenvector of P* with eigenvalue equal to 1. 

Fact 6: The right eigenvector of transition matrix of 
FACS is column vector with all entries equal to 1. 

We can also calculate the unique left Peron 
vector, xT for matrix P* given as 

(
)358421916.01075200599.4222912591.0

056543479.010362110019.036211364.0
6

6

−

−

×

×=Tx  

Note that 1
6

1
1 =∑

=j
j

Tx . 

Fact 7: The left eigenvector ( )61 ,..., xxxT =  
corresponds to the largest eigenvalue of transition 
matrix of FACS is a row vector which is unique and  

1
6

1
1 =∑

=j
j

Tx . 

 
8 Steady State Vector for FACS of 

Fuzzy Graph Type-3. 
The fundamental Ergodic Theorem for Markov 
chains in [25] states that the Markov chain represent 
by transition matrix. P has a stationary distribution 

vector under three conditions: 

i. P is stochastic 
ii. P is irreducible 

iii. P is aperiodic 

Thus, FACS of fuzzy graph type-3 of incineration 
process, P* as discussed in Section 7 is an Ergodic 
Markov chain. It ensures the existence of steady 
state vector which in turn can be described the long 
term conditions of the system. 

Two well-known methods were used in finding 
steady state vector for FACS.  One of them by using 
standard matrix multiplication 

1**12* )()()( −− = nnn PPP .  
For 𝑛 = 109 we obtained the entries of our matrix 
as in Fig. 7: 
Each entry of every column in this matrix is identical 
showing that the numbers in each column converges 
to a particular number. Elements in the row represent 
the steady state vector of P*, that is 

(
)358421916.01075200599.4222912591.0

056543479.010362110019.036211364.0
6

6*

−

−

×

×=Λ  

We interpret the ith entries to be the the relative 
concentration of the variables at the end of the process 
as: waste (v1) has relative concentration with the 
highest fuzziness as 0.36211364 and water and other 
pollutions (v6) with second highest fuzziness as 
0.358421916. This particular result consistent with 
Sabariah’s [1] whereby only two variables left at the 
end of the the clinical waste incineration process 
namely waste (v1) and other pollutions (v6). 

Similarly, we used Theorem 1 (pg.89) in [14] where 
QXPn

n
=

∞→
lim  

In our case, the state vectors Q*(n) for n = 0, 1, 2,…., 
109 can be calculated using initial relative  

 



















=

358421916.0

358421916.0

358421916.0

358421916.0

358421916.0

358421916.0

05990000047520.0

05990000047520.0

05990000047520.0

05990000047520.0

05990000047520.0

05990000047520.0

222912591.0056543479.000190000036211.036211364.0

222912591.0056543479.000190000036211.036211364.0

222912591.0056543479.000190000036211.036211364.0

222912591.0056543479.000190000036211.036211364.0

222912591.0056543479.000190000036211.036211364.0

222912591.0056543479.000190000036211.036211364.0

109

*

P

 

Fig. 7: Transition probability matrix of FACS after n= 109 iteration  
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concentration, of ith variable at initial time t = 0 
where ( )055.000645.0031.0269.0=X  as 
given in Sabariah [1]. The result is shown in Table 
1. The result is given in Table 1 shows that regular 
markov chain of FACS of Fuzzy Graph Type-3 for 
incineration process converges to a steady state 
vector 
 

(
)358421916.01075200599.4222912591.0

056543479.010362110019.036211364.0)(
6

6109*

−

−

×

×=Q  

This steady state vector of P* is equivalent to the 
unique left Perron vector as discussed in Section 5.0.  

The convergence of vector Q* is also visualized 
through its norm difference for 109 iterations as in  
 

Fig. 8. The graph indicated that the system is stable 
and no chemical reaction taken place at that 
particular time.  Hence, the steady state vector of P* 
of FACS is equivalent to the dominant left 
eigenvector of P* of FACS. 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Convergence of a state vectors for clinical waste incineration process 

n 
 

 
( )nQ  

 
1 

 
60 

 
100 

 
109 

( )nq1  
0.097112050000000 0.362113640171713 0.362113639969257 0.362113639969258 

( )nq2  0.000002689973100 0.000003621100176 0.000003621100189 0.000003621100189 

( )nq3  0.042003929960700 0.056543479254075 0.056543479446405 0.056543479446405 

( )nq4  0.569951281113089 0.222912590800916 0.222912591281958 0.222912591281957 

( )nq5  0.000015899973100 0.000004752005981 0.000004752005989 0.000004752005989 

( )nq6  0.290914148980010 
 

0.358421916667139 0.358421916196203 0.358421916196202 

 
 

 
                  Fig. 8: Convergence of norm difference of vector Q* 
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9   Conclusion 
In this paper, Markov chain of FACS of fuzzy 
graph type-3 represented by transition matrix, P* 
is defined. This definition leads to the 
construction of transition matrix of FACS for the 
clinical waste incineration process. Fundamental 
characteristics of the matrix are highlited 
including its dominant eigenvalue and its right 
and left eigenvector (Perron vector). The Markov 
chain of FACS of fuzzy graph type-3 converged 
to a steady state vector. 
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