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2Str. Pestalozzi, nr 16 A, Timişoara, Romania
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Abstract: The aim of this paper is to extend the study done by [5]. Here, we will analyze two mathematical models
associated to some economic growth processes with endogenous population depending on the current fertility. The
first model is a version of the Ramsey model in continuous and infinite time with the Cobb-Douglas production
function. In the second model we consider the AK production function. The mathematical models of these eco-
nomical growth processes lead to two optimal control problems with an infinite horizon. The necessary conditions
for optimality are given for both economic problems. Using the optimality conditions we prove the existence, the
uniqueness and the stability of the steady states.
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1 Introduction

The Ramsey growth model is a neoclassical model
of economic growth based on the work of Ramsey,
whose idea was to determine the saving rate endoge-
nously, through a dynamic maximization process.

In this paper, based on the Ramsey growth model
[1], we consider two versions of this model with en-
dogenous population. In the standard Ramsey growth
model, the growth rate of population is constant and
exogenous, yielding an exponential behavior of the
population size over time. This type of time behavior
is unrealistic. A more realistic approach would be to
consider a logistic law for the population growth as in
[2] or a growth rate of population which depend on
the current level of per capita income as in [9]. In [2],
Brida and Accinelli analyzed how the Ramsey model
is affected by the choice of a logistic growth of popu-
lation, considering that the society’s welfare is mea-
sured by a utility function of per capita consumption.
As in [2], Guerrini in [10] analyzed how the Ramsey
model is affected by the choice of a logistic growth of
population, assuming that the society’s welfare over
time is measured by weighting the utility index of per

capita consumption by numbers, i.e multiplying the
utility function of the representative men by the to-
tal population. In [9], Fanti analyzed the Solow-type
model with endogenous population depending on the
current income, taking into account a Malthusian rela-
tion between fertility and income. They consider that
the population growth rate is a function of the current
level of per capita income. In this paper we consider
two Ramsey type models with endogenous population
depending on the current income as in [9]. In the first
model we consider that the output is determined with
a Cobb-Douglas production function and in the se-
cond model we assume that the output is determined
with a AK production function. These economical
growth models lead to two optimal control problems.
In order to position the present paper in the current
literature on economic growth, we note that our mo-
dels are Ramsey-type models of balanced growth with
endogenous population. The present paper is orga-
nized as follows. In Section 2, we present the model
that we use in this article with the Cobb-Douglas pro-
duction function. In Section 3, we give necessary
conditions for the optimal solution of the economical

WSEAS TRANSACTIONS on MATHEMATICS Olivia Bundau, Mihaela Neamtu

ISSN: 1109-2769 648 Issue 8, Volume 9, August 2010



growth problem with the endogenous population de-
pending on the current fertility and the Cobb-Douglas
production function. In Section 4, we determine the
steady state of the optimal control problem and we
show that it is a saddle point. Also, we examine the
qualitative dynamic behavior of the optimal solution.
In Section 5, we present the model with the AK pro-
duction function. In Section 6, we give necessary
conditions for the optimal solution of the economical
growth problem with endogenous population depend-
ing on the current fertility and with the AK produc-
tion function. Also, we determine the steady state of
the optimal control problem and we show that there is
a saddle point. We examine the qualitative dynamic
behavior of the optimal solution, as well. Some con-
clusions are given in section 7.

2 The economical growth model
with the Cobb-Douglas production
function
In this paper, based on [1], [3], [4], [7], [13],

[11], we consider an economical growth model with
endogenous population depending on the current in-
come. The economy consists of a fixed number of
identical infinitely lived households that, for simplic-
ity, is normalized to one. The representative house-
hold is populated by identical and infinitely lived
agents. The size of population (identified with the
size of labour force) at moment t is denoted by L(t),
which grows at a rate that depends on the current fer-
tility. Time is taken to be continuous. Also, we as-
sume the economy closed (i.e. all of the stock capital
must be owned by someone in economy and the net
foreign debt is zero.)

The representative household has access to a tech-
nology described by a neoclassical production func-
tion. Thus, we consider that the output is determined
by the following Cobb-Douglas production function
([12])

Y (t) = Kα(t)L1−α(t) (1)

where Y (t) and K (t) denote the aggregate output
and the aggregate capital stock spent producing goods
and α ∈ (0, 1).

The output can be used either for consumption or
investment.

Therefore, the household’s budget constraint is

Y (t) = I(t) + C(t) (2)

where C(t) is the aggregate consumption, I(t) is the
gross investment.

Capital is accumulated in the economy by the in-
vestment. The capital accumulation equation is given
by

·
K(t) = Kα(t)L1−α(t)− C(t)− δK(t), (3)

where δ ∈ (0, 1) is the depreciation rate of the capital
stock.

In what follows, expressing all the model vari-
ables in per capita units, we obtain new variables of
the model:

y(t) = Y (t)
L(t)− the output per unit of labour,

c(t) = C(t)
L(t)− the consumption per unit of labour,

k(t) = K(t)
L(t)− the capital stock per unit of labour,

k0 = K0
L(0)− the initial capital stock per unit of

labour.
Contrary to most subsequent developments,

where the growth rate of the labour force, ns =

·
L

L
,

was treated as exogenously determined, in this paper
we consider that it is endogenous.

Taking into account the Malthusian relation bet-
ween fertility and income, in this paper we will con-
sider the growth rate of the labour force as a function
of the current level of per capita income:

ns = ns(y),

which becomes in the Cobb-Douglas case

ns = ns(kα).

Following Fanti and Manfredi [9], we assume that
the function ns is linear and increasing. Thus we con-
sider

ns = nkα

and we have ·
L(t)
L(t)

= nkα(t) (4)

where n > 0 is a constant parameter, tuning the re-
action of the growth rate of the labour force to change
in per-capita income.

Proposition 1 The capital accumulation equation (3)
in per capita terms is given by

·
k(t) = kα(t)− c(t)− nkα+1(t)− δk(t), (5)

and the initial capital stock is k(0) = k0 > 0.
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Proof. If we differentiate the ratio k (t) =
K (t)
L (t)

with respect to t, we obtain

·
k(t) =

·
K (t)
L (t)

− K (t)
L (t)

·
L (t)
L (t)

. (6)

Using the relation (4) in the equation (6), we have

·
K(t)
L(t)

=
·
k(t) + nkα+1(t). (7)

Dividing the capital accumulation equation by the
labour force size, L (t) we obtain

·
K (t)
L (t)

=
(

K(t)
L (t)

)α

− δ
K (t)
L (t)

− C (t)
L (t)

(8)

From (7) and (8), we have the capital accumulation
equation in per capita terms given by

·
k(t) = kα(t)− c(t)− nkα+1(t)− δk(t).

In this economy, the objective of a social plan-
ner is to choose at each moment in time the level of
consumption c(t) so as to maximize the household’s
global utility taking into account the budget constraint
for the household, relation (5), and the initial stock of
capital k0.

The household’s global utility is defined as

U =

∞∫

0

e−ρtu(c(t))dt (9)

where u(·) is the instantaneous utility function which
depend on per capita consumption, c(t).

The function u : R+ → R+ is of class C2 and
satisfies

u(0) = 0, u′(c) > 0, u′′(c) < 0,∀c ≥ 0,

lim
c→0

u′(c) = ∞, lim
c→∞u′(c) = 0

and the parameter ρ > 0 is the time preference rate.
The capital initial stock that is available for a

household is K0. Thus, the capital initial stock per
worker is k0.

Therefore, we can formulate the optimization
problem such as

max
c(t)

∞∫

0

e−ρtu(c(t))dt (10)

subject to

·
k(t) = kα(t)− c(t)− nkα+1(t)− δk(t) (11)

k(0) = k0. (12)

3 Determination of optimality con-
ditions for the economic problem
with the Cobb-Douglas production
function
The economic problem is to choose in every mo-

ment t, the size of consumption so as to maximize the
global utility taking into account the budget constraint
for household and the capital initial stock k0. This
economic problem leads us to the following mathe-
matical optimization problem (P ) :

Problem P. Determine (k∗, c∗) which maximize
the following functional

∞∫

0

e−ρtu(c(t))dt (13)

with k ∈ AC ([0,∞),R+) , c ∈ X ={c : [0,∞) →
R+, c−measurable}, which verifies:

k̇(t) = kα(t)− c(t)− nkα+1(t)− δk(t),(14)

k (0) = k0, (15)

where AC([0,∞),R+) is the class of absolutely con-
tinuous functions.

This problem can be solved using Pontryagin’s
maximum principle as in [14], [8]. The state variable
in this problem is k(t) and the control variable is c(t).

We denote by µ(t) the co-state variable corre-
sponding to k(t).

We will continue to determine the necessary con-
ditions for optimality problem P . Thus, we define the
function of Hamilton-Pontryagin given by

H (k, c, µ, t) = e−ρtu(c) + µ(kα− c−nkα+1− δk).

Theorem 1 Let (k∗(t), c∗(t)) be an optimal solution
which solves problem P. Then, there exists the adjoint
absolutely continuous function q(t) such that for all
t ∈ [0,∞), the relations

q(t)= u′(c∗(t)) (16)

q̇(t)=q(t)(ρ+δ+ n(α + 1)k∗α(t)−αk∗α−1(t)) (17)

hold.
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Proof. Let (k∗ (t) , c∗ (t)) be an optimal solution for
P. The Hamilton function associated to problem (P )
is

H(k(t), c(t), µ(t), t)= e−ρtu(c (t)) +
+µ (t) (kα (t)− c (t)− nkα+1 (t)− δk (t)). (18)

From the Pontryagin’s principle there exists the ad-
joint absolutely continuous function µ (t) such that

µ̇(t)= −∂H

∂k
=−µ(t)(αk∗α−1(t)−n(α+1)k∗α(t)−δ))

(19)
and c∗(t) is value c ∈ [0,∞) that maximizes

H(k∗(t), c, µ(t), t) = e−ρtu(c) +
+µ(t)(k∗α (t)− c− nk∗α+1 (t)− δk∗ (t)). (20)

Using the transformation µ (t) = e−ρtq (t), the
Hamilton function becomes

H(k∗(t), c, q(t), t)=e−ρt[u(c) +
+q(t)(k∗α (t)− c− nk∗α+1 (t)− δk∗ (t)]. (21)

The first and second derivatives of function H with
respect to c are given by

H ′
c (k∗ (t) , c, q (t) , t) = e−ρt

(
u′(c)− q (t)

)
(22)

H ′′
cc (k∗ (t)), c, q (t) , t) = e−ρtu′′(c). (23)

From (23) and the properties of the utility function,
we obtain that H is a concave function of c.

Because c∗(t) ∈ [0,∞) maximizes (21) and H is
a concave function of c we have

H ′
c (k∗ (t) , c∗ (t) , q (t) , t) = 0, (24)

thus
q (t) = u′(c∗(t)). (25)

Using again the transformation µ (t) = e−ρtq (t) , re-
lation (19) becomes

q̇(t) = q(t)(ρ+δ+n(α+1)k∗α(t)−αk∗α−1(t)). (26)

Remark 2 If we differentiate the condition (16) with
respect to t and we use (17), then we obtain

ċ(t)=
u′(c(t))
u′′(c(t))

(ρ+δ+n(α+1)kα(t)−αkα−1(t)). (27)

Remark 3 The optimal trajectory of problem (P) is
a solution of the following system of differential equa-
tions

k̇(t) = kα(t)− c(t)− nkα+1(t)− δk(t) (28)

ċ(t) =
u′(c(t))
u′′(c(t))

(ρ+ δ+ n(α+ 1)kα(t)− αkα−1(t)).

(29)

4 Qualitative analysis of the optimal
solution for the economic problem
with the Cobb-Douglas production
function

Generally, system (28)-(29) is not analytically
solvable, but we can state some qualitative properties
of the solution. First, we determine the steady states
(k∗, c∗) of the differential equation system (28)-(29).

We recall that in the steady state both per capita
capital stock k(t) and the level of consumption per
capita c(t) are constant.

Note that our analysis is restricted to the interior
steady states only, i.e. we exclude the economically
meaningless solutions such as k∗ = 0, c∗ = 0.

Proposition 4 (Stationary state). The nonlinear dif-
ferential equations system (28)-(29) has a unique
steady state (k∗, c∗), where the capital-labour ratio
k∗ is the root of the following equation

αkα−1 − n(α + 1)kα = ρ + δ (30)

and the per capita consumption c∗ is given by

c∗ = (k∗)α − n(k∗)α+1 − δk∗.

Proof. To determinate the steady state of the above
system we choose the stationary solutions k (t) = k∗,
c (t) = c∗.

From ċ (t) = 0 we obtain

αkα−1 − n(α + 1)kα = ρ + δ. (31)

Next, we consider

g(k) = αkα−1 − n(α + 1)kα

and

g′(k) = α(α− 1)kα−2 − n(α + 1)αkα−1.

Since k > 0, n > 0 and α ∈ (0, 1) we get
g′(k) < 0, lim

k→0
g(k) = ∞ and lim

k→∞
g(k) = −∞.

Therefore, the conditions lim
k→0

g(k) = ∞,

lim
k→∞

g(k) = −∞ and g′(k) < 0 ensure that equation

(31) has a unique positive solution k∗.
Hence, the steady-state of per capita capital stock

k∗ exists, and it is unique.
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Consequently, using (28), there is a unique c∗ sa-
tisfying the identity

c∗ = (k∗)α − n(k∗)α+1 − δk∗.

Proposition 5 The steady state of the nonlinear dif-
ferential equations system

k̇(t) = kα(t)− c(t)− nkα+1(t)− δk(t)

ċ(t) =
u′(c(t))
u′′(c(t))

(ρ+ δ+ n(α+ 1)kα(t)− αkα−1(t)).

is a saddle point with a one dimensional stable mani-
fold.

Proof. To investigate the stability of the steady state,
we linearize system (28)-(29) in the steady state.

For there, we denote

p =
u′(c∗)
u′′(c∗)

(n(α+1)α(k∗)α−1−α(α−1)(k∗)α−2) < 0.

Thus, we obtain

k̇(t) ' (α(k∗)α−1−n(α+ 1)(k∗)α−δ)(k(t)−k∗)−
− (c(t)− c∗) (32)

ċ (t) ' p (k (t)− k∗) (33)

The Jacobian matrix of the linearized system in
the steady state is

J =
(

α (k∗)α−1 − n(α + 1) (k∗)α − δ −1
p 0

)

In order to characterize the local stability of the
system, we need to compute the eigenvalues of the
Jacobian matrix.

The eigenvalues of the above matrix are the solu-
tions of the characteristic equation

λ2 − λ(α(k∗)α−1 − n(α + 1)(k∗)α − δ) + p = 0. (34)

From equation (34) we have

∆ = (α(k∗)α−1 − n(α + 1)(k∗)α − δ)2 − 4p > 0

p =
u′(c∗)
u′′(c∗)

(n(α+1)α(k∗)α−1−α(α−1)(k∗)α−2)< 0.

Because the determinant of the equation is positive,
∆ > 0 and the product is negative, p < 0, then the
equation (34) has two real roots with contrary signs

λ1,2 =

(
α (k∗)α−1 − n(α + 1) (k∗)α − δ

)
±√∆

2
.

(35)

Using (30), it results that relation (35) which gives the
eigenvalues, can be written as

λ1,2 =
ρ±√∆

2

The eigenvalues of the linearized system, being the
real numbers with contrary signs, lead to the fact that
the steady state (k∗, c∗) is a saddle point.

Because the steady state (k∗, c∗) is a saddle point,
there are two manifolds passing through the steady
state: a stable manifold Ws and an instable manifold
Wi.

Theorem 2 i) The eigenvector, corresponding to the
eigenvalue

λ1 =

(
α (k∗)α−1 − n(α + 1) (k∗)α − δ

)
−√∆

2
,

tangent in the steady state (k∗, c∗) to the stable
manifold Ws is given by v = α(1, v2), α ∈ R

v2 =

(
α (k∗)α−1 − n(α + 1) (k∗)α − δ

)
+
√

∆

2
;

ii) The eigenvector, corresponding to the eigen-
value

λ2 =

(
α (k∗)α−1 − n(α + 1) (k∗)α − δ

)
+
√

∆

2
,

tangent in the steady state (k∗, c∗) to the stable
manifold Wi is given by ω= α(1, ω2), α∈ R where

ω2 =

(
α (k∗)α−1 − n(α + 1) (k∗)α − δ

)
−√∆

2
.

Proof. The matrix of the linearized system is given
by :

J =
(

α (k∗)α−1 − n(α + 1) (k∗)α − δ −1
p 0

)
.

Its eigenvalues are the roots of the characteristic
equation

λ2 − trJλ + detJ = 0

where

trJ = α (k∗)α−1 − n(α + 1) (k∗)α − δ

and
detJ = p.
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Thus, the eigenvalues are given by

λ1 =

(
α (k∗)α−1 − n(α + 1) (k∗)α − δ

)
−√∆

2
<0

and

λ2 =

(
α (k∗)α−1 − n(α + 1) (k∗)α − δ

)
+
√

∆

2
>0.

Next, we shall determine the eigenvector v =
(v1, v2)

T associated to the eigenvalue λ1. This vector
is tangent in the steady state (k∗, c∗) to the optimal
trajectory.

The eigenvector is the solution of the equation

Jv = λ1v, v = (v1, v2)
T .

Therefore,

(α(k∗)α−1− n(α + 1)(k∗)α − δ− λ1)v1 − v2 = 0
pv1 − λ1v2 = 0.

Normalizing v1 = 1, we obtain v = (1, v2),
where

v2 =

(
α (k∗)α−1 − n(α + 1) (k∗)α − δ

)
+
√

∆

2
>0.

The slope of the stable manifold Ws in the steady state
(k∗, c∗) will be given by v2.

In the same way for the eigenvalue λ2 we obtain
the associated eigenvector ω= (1, ω2), where

ω2 =

(
α (k∗)α−1 − n(α + 1) (k∗)α − δ

)
−√∆

2
<0.

The slope of the instable manifold Wi in the steady
state (k∗, c∗) will be given by ω2.

5 The economic growth model with
the AK production function

In this section, we present the mathematical
model of the economic process described in section 2,
where we consider the AK production function and
the population growth rate that depend on the current
income.

We will consider the same setup as in Section 2,
but the production function is a linear one that depend
only on the capital stock. Thus, we assume that the

output is determined by the AK production function,
given by

Y (t) = AK(t) (36)

where Y (t) and K (t) denote the aggregate output
and the aggregate capital stock spent producing goods
and A > 0.

In this case the capital accumulation equation is
given by

·
K(t) = AK(t)− C(t)− δK(t), (37)

where C(t) is the aggregate consumption and δ ∈
(0, 1) is the depreciation rate of the capital stock.

Let L(t) be the population size at moment t,
(identified with the labour force size). Denoting by
y(t) = Y (t)

L(t) the output per capita, the production func-
tion can be expressed in intensive form as

y(t) = Ak.

The same as in Section 2, the growth rate of the

labour force, ns =

·
L

L
, is assumed endogenous. Ta-

king into account the Malthusian relation between fer-
tility and income, we will consider the growth rate of
the labour force as a function of the current level of
per capita income:

ns = ns(y),

which becomes in the AK case

ns = ns(Ak).

Following Fanti and Manfredi [9], we assume that
the function ns is a linear one:

ns = nAk

where n > 0 is a constant parameter, tuning the re-
action of the growth rate of the labour force to change
in per-capita income.

The initial capital stock that is available for a
household is K0 and the initial capital stock per capita
is k0.

Let c(t) = C(t)
L(t) and k(t) = K(t)

L(t) denote con-
sumption and capital stock per capita.

Therefore, capital accumulation equation (37) in
per capita terms is given by

·
k(t) = Ak(t)− c(t)− nk2(t)− δk(t), (38)
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and the initial capital stock is k(0) = k0 > 0.

In this economy, the objective of a social plan-
ner is to choose at each moment in time the level of
consumption c(t) so as to maximize the household’s
global utility taking into account: the budget con-
straint for the household, relation (38), and the initial
capital stock k0.

The household’s global utility is defined as

U =

∞∫

0

e−ρtu(c(t))dt (39)

where u(·) is the instantaneous utility function which
depends on per capita consumption, c(t).

The function u : R+ → R+ is a C2 class function
and satisfies

u(0) = 0, u′(c) > 0, u′′(c) < 0,∀c ≥ 0,

lim
c→0

u′(c) = ∞, lim
c→∞u′(c) = 0

and the parameter ρ > 0 is the time preference rate.
Therefore, we can formulate the optimization

problem such as

max
c(t)

∞∫

0

e−ρtu(c(t))dt (40)

subject to

·
k(t) = (A− δ)k(t)− nk2(t)− c(t) (41)

k(0) = k0. (42)

6 Qualitative analysis of the optimal
solution for the economic problem
with the AK production function
In this section, the economic problem is to choose

in every moment t, the consumption size so as to ma-
ximize the global utility taking into account the budget
constraint for household and the initial capital stock
k0. This leads to the following mathematical opti-
mization problem (P ) :

Problem P. Determine (k∗, c∗) which maximizes
the following functional

∞∫

0

e−ρtu(c(t))dt (43)

in the class of functions k ∈ AC([0,∞), IR+), and
c ∈ X, where
X = {c : [0,∞) → [0, A] , c−measurable, A < ∞}
which verifies:

·
k(t) = (A− δ)k(t)− nk2(t)− c(t) (44)

k(0) = k0. (45)

In our problem P, k is the state variable and c is
the control variable.

Definition 6 A trajectory (k(t), c(t)) is called an ad-
missible trajectory, with initial capital k0, for problem
(P ) if it verifies the relations (44)-(45).

Definition 7 An admissible trajectory, (k∗(t), c∗(t)) ,
is called optimal trajectory if:

∞∫

0

e−ρtu(c(t))dt ≤
∞∫

0

e−ρtu(c∗(t))dt.

for every admissible trajectory (k(t), c(t)) of problem
(P ).

As in [4], [6] we have the following theorem:

Theorem 3 If (c(t), k(t)) is an optimal trajectory
of problem (P ), then it verifies the Euler-Lagrange
equation:

− d

dt

[
u′

(
φ(k(t))−

·
k(t)

)
e−ρt

]
=

= u′(φ(k(t))−
·
k(t))φ′(k(t)) · e−ρt,

where

φ(k(t)) = (A− δ)k(t)− nk2(t)

and
c(t) = φ(k(t))−

·
k(t).

Using the above Euler Lagrange equation we ob-
tain

[−u′′ (c(t))
·
c(t) + ρu′ (c(t))]e−ρt

= u′(c(t))φ′(k(t))e−ρt
(46)

which is equivalent with

−u′′ (c(t))
·
c(t) + ρu′ (c(t))

= u′(c(t)) (A− δ − 2nk(t)) .
(47)

Finally, we have the evolution equation of consump-
tion given by:

·
c(t) =

u′(c(t))
u′′ (c(t))

(ρ + δ −A + 2nk(t)) .
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Remark 8 The optimal trajectory of problem (P) is
the solution of the following system

·
k(t) = (A− δ)k(t)− nk2(t)− c(t) (48)
·
c(t) =

u′(c(t))
u′′ (c(t))

(ρ + δ −A + 2nk(t)) . (49)

In what follows, we will make a qualitative analy-
sis of the optimal solution using an exponential utility
function. Thus, we will assume that the instantaneous
utility function is an exponential function, given by

u(c(t)) =
1
θ
(1− e−θc(t)), (50)

the global utility function is given by

1
θ

∞∫

0

e−ρt(1− e−θc(t))dt,

and the parameter θ is positive.
Next, we can rewrite system (48)-(49) taking into

account the exponential utility function, thus we have:
·
k(t) = (A− δ)k(t)− nk2(t)− c(t) (51)
·
c(t) = −1

θ
(ρ + δ −A + 2nk(t)) . (52)

Proposition 9 The system of differential equations
·
k(t) = (A− δ)k(t)− nk2(t)− c(t)
·
c(t) = −1

θ
(ρ + δ −A + 2nk(t))

exhibits saddle-path stability.

Proof. In order to determinate the steady state of
the above system we choose the stationary solutions
k (t) = k∗, c (t) = c∗. From

·
c (t) = 0 we obtain

k∗ =
A− ρ− δ

2n
. (53)

Using k∗ in equation
·
k (t) = 0 we can determine

c∗ = (A− δ)k∗ − nk∗2. (54)

The point (k∗, c∗) represents a steady state for the sys-
tem of differential equations.

In order to investigate the stability of the steady
state (k∗, c∗) we linearize the system in the steady
state (k∗, c∗) and we obtain
·
k(t) ≈ (A− δ − 2nk∗) (k(t)− k∗)− (c(t)− c∗)
·
c (t) ≈

−2n

θ
(k (t)− k∗)

The matrix of the linearized system is

(
A− δ − 2nk∗ −1

−2n

θ
0

)

The eigenvalues are solutions of equation

λ2 − λ (A− δ − 2nk∗)− 2n

θ
= 0. (55)

The discriminant of the equation (55) is given by

∆ = (A− δ − 2nk∗)2 +
8n

θ

= ρ +
8n

θ
> 0

and the product of the roots is given by

p =
−2n

θ
< 0.

Because equation (55) has the positive discriminant
and the negative product, it results that equation (55)
has two real roots of opposite signs

λ1,2 =
(A− δ − 2nk∗)±√∆

2
. (56)

By (53), relation (56), which gives the eigen-
values, can be written thus

λ1,2 =
ρ±

√
ρ2 +

8n

θ
2

.

The eigenvalues of the linearized system being real
numbers with contrary signs, the steady state (k∗, c∗)
is the saddle point.

Because the steady state (k∗, c∗) is a saddle point,
there are two manifolds passing through the steady
state: a stable manifold Ws and an instable manifold
Wi. The dynamic equilibrium follows the stable ma-
nifold

Remark 10 By comparing with the AK standard
model [1], which has no transitional dynamics, the
AK economic growth model with endogenous popu-
lation has the transitional dynamics. The transitional
dynamics are similar to those of Ramsey’s standard
model.
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7 Conclusions

In this paper we have analyzed two economic
growth models with endogenous population. In the
first model we have considered a Cobb-Douglas pro-
duction function and in the second model we have as-
sumed that the output is determined by a AK produc-
tion function.

The mathematical models of these economical
growth processes lead to two optimal control pro-
blems with an infinite horizon. The necessary con-
ditions for optimality are given for both economic
problems. Using the optimality conditions we have
proved the existence, the uniqueness and the stability
of the steady states.

In the model with endogenous population de-
pending on the current income and the Cobb-Douglas
production function, the transitional dynamics are
similar to those of Ramsey’s standard model.

In the AK model with endogenous population de-
pending on the current income, the transitional dy-
namics are similar to those of the Ramsey’s standard
model.
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