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Abstract: - This paper presents the Kaldor-Kalecki nonlinear business cycle model of the income. It will take 

into consideration the investment demand in the form suggested by Rodano. We will analyze the deterministic, 

uncertainty and stochastic Kaldor-Kalecki models. The dynamics of the mean values and the square mean 

values of the model’s variables are set. Numerical examples are given in the end, to illustrate our theoretical 

results. 
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1 Introduction 
The model proposed by Kaldor [4] is one of 

earliest and simplest nonlinear models of business 

cycles. This model cannot be considered as a 

satisfying description of actual economies. 

Nevertheless, it continues to generate a considerable 

amount of economic, pedagogical and 

methodological interest, both from the point of view 

of the economist and of the applied dynamicist.  

Kalecki introduced the idea that there is a time 

delay for investment before a business decision. 

Krawiek and Sydlowski [3] incorporated Kalecki’s 

idea into Kaldor’s model and proposing the Kaldor-

Kalecki model of business cycles. In recent 

literature, it has been proved that information delay 

makes dynamic economic models unstable. In 

situations where delay is important, models with 

stochastic perturbation are framed by stochastic 

differential delay equations. In this paper, we will 

investigate the effects of the random perturbation for 

Kaldor-Kalecki model analyzing the steady state of 

the model with stochastic perturbation. 

The reminder of the paper develops as follows. 

In Section 2, we describe a deterministic Kaldor-

Kalecki model using the investment demand 

proposed in Rodano [1]. In Section 3, we analyze 

the deterministic Kaldor-Kalecki model, setting the 

conditions for the existence of the delay parameter 

value for which the model displays a Hopf 

bifurcation. In Section 4 we analysis the uncertainty 

Kaldor-Kalecki model. In Section 5, the stochastic 

system is presented and the locally asymptotic 

stability is analyzed by the variables’ mean and the 

square mean. Numerical simulations are carried out 

in Section 6. Finally, concluding remarks are given 

in Section 7.  

 

2 Deterministic and stochastic 

models of a Kaldor Kalecki business 

cycle with delay 

In the last decade, the study of delayed 

differential equations that arose in business cycles 

has received much attention. The first model of 

business cycles can be traced back to Kaldor [4], 

who used a system of ordinary differential equations 

to study business cycles in 1940 by proposing 

nonlinear investment and saving functions so that 

the system may have cyclic behaviors or limit 

cycles, which are important from the point of view 

of economics. Kalecki [3] introduced the idea that 

there is a time delay for investment before a 

business decision. Krawiec and Szydlowski [3] 

incorporated the idea of Kalecki into the model of 

Kaldor by proposing the following Kaldor-Kalecki 

model of business cycles: 
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where Y  is the gross product, K  is the capital 

stock, 0>α  is the adjustment coefficient in the 

goods market, )1,0(∈β  is the depreciation rate of 

capital stock, ),( KYI and ),( KYS are investment 

and saving functions, and 0≥τ  is a time lag 

representing delay for investment due to the past 

investment decision. 

Considering that past investment decisions also 

influence the change in the capital stock, in [14] we 

extended the model by imposing delays in both the 

gross product and capital stock. Thus, adding of 

same delay to the capital stock  K  in the investment 

function ),( KYI in the second equation of system 

(1), the following Kaldor-Kalecki model business 

cycles is obtained: 

)())(),((
)(

)))(),(())(),(((
)(

tKtKtYI
dt

tdK

tKtYStKtYI
dt

tdY

βττ

α

−−−=

−=

        (2) 

 

As usual in a Keynesian framework, savings are 

assumed to be proportional to the current level of 

income:  

,),( YKYS δ=                                          (3) 

where coefficient δ , )1,0(∈δ represents the 

propensity to save. 

As usual, the investment demand is assumed to 

be an increasing and sigmoid-shaped function of the 

income. Without loss of generality, in the following 

we shall consider the form proposed in Rodano [1]: 

)(),( uYfK
u

ruKYI −+







−+=

β

δ
δ                (4) 

where 
β

δu
  is the “normal” level of capital stock. In 

(4), two short-run investment components are 

considered: the first one is proportional to the 

difference between normal capital stock and current 

stock, according to a coefficient  r  )0( >r , usually 

explained by the presence of adjustment costs; the 

second one is an increasing, but not linear, function 

of the difference between current income and its 

normal level.  

This second component of the short-run 

investment function is a convenient specification of 

the sigmoid-shaped relationship between investment 

and income proposed by Kaldor. We note that this 

analytic specification does not compromise the 

generality of the results. 

From (2) with (3) and (4) we obtain the 

following system: 
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  (5)  

System (5) with the initial conditions: 

]0,[),()(),()( 21 τθθφθθφθ −∈== KY               (6) 

and R→− ]0,[:, 21 τφφ  of 
1

C class functions, 

represent a system of differential equations with 

delay. 

           

3   The analysis of Kaldor-Kalecki 

deterministic model  
The equilibrium point of system (5) is the 

solution of the following system: 
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From (7) we obtain the equilibrium point 

β

δu
KuY == 00 , . By carrying out the translation 

,)()(1 utYtu −=
β

δu
tKtu −= )()(2  from (5) we get 

the system: 

].0,[,)()(,)()(

)),(()()(
)(

))(()()(
)(

2211

122
2

121
1

τθ
β

δ
θφθθφθ

ττβ

αααδ

−∈−=−=

−+−−−=

+−−=

u
uuu

tuftrutu
dt

tdu

tuftrutu
dt

tdu

  (8) 

 

We assume that  )(xf  is a nonlinear 4
C  

function with 0)0(1 ≠′= fρ .  

The linearized system of (8) is given by: 
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dt
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The characteristic function for (9) is given by: 
λταδλλδραβλτλ −++−−+= errf )())((),( 1

2   (10) 

From (11) we have: 
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Proposition 1: 

If 0=τ , the characteristic equation 0)0,( =λf  

has the roots with negative real part, if and only if, 
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In this case system (8) is asymptotically stable. 

 

Proposition 2: 

If 
r

r

α

ββ
δ

)( +
< , and ),0( 0ττ ∈ , the 

characteristic equation 0),( =τλf  has the roots 

with negative real part, where 0τ  is given by:  
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and 0ω  is a positive root of  the equation: 
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Proof: 

For 0≠τ , let ωλ i=  be the root of the equation 

0),( =τλf . By replacement, we obtain: 
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where  ωτθ = . From (13), by squaring each relation 

and their addition, we obtain equation (12).  

From condition 
r

r

α

ββ
δ

)( +
<  we get 

α

β
δ
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δ
δρ

rr +
+<

+
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Thus 0)( 222
1

2 <−− rδδρβ . Equation (12) has a 

positive root 0ω . Relation (13) yields:  
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the normal form, the limit cycle and the Lyapunov 

coefficient that characterizes this cycle, for the 

system (8) are obtained with the method from [9], 

[10], [11]. 

 

 

4 The analysis of the uncertainty 

Kaldor-Kalecki model 
In what follows we present some concepts of the 

uncertainty theory introduced by Liu in [6], [7], [8]. 

Classical measure and probability measure belong to 

the class of “completely additive measure”, i.e., the 

measure of union of disjoint events is just the sum of 

the measures. In contrast, capacity, belief measure, 

plausibility measure, fuzzy measure, possibility 

measure and necessity measure belong to the class 

of “completely nonadditive measures”. Since this 

class of measures does not assume the self-duality 

property, all of those measures are inconsistent with 

the law of contradiction and law of excluded middle, 

which dominate human thinking logic. 

Uncertainty theory was founded by Liu [6] in 

2007 and refined by Liu [8] in 2010. Nowadays 

uncertainty theory has become a branch of 

mathematics based on normality, monotonicity, self 

duality, countable subadditivity, and product 

measure axioms.  
The first fundamental concept in uncertainty 

theory is uncertain measure that is used to measure 

the belief degree of an uncertain event.  

The second one is uncertain variable that is used 

to represent imprecise quantities.  

The third one is uncertainty distribution that is 

used to describe uncertain variables in an incomplete 

but easy-to-use way. 

Uncertainty theory is thus deduced from those 

three foundation stones, and provides a 

mathematical model to deal with uncertain 

phenomena. 

Let Γ be a nonempty set. A collection L  of 

subsets of Γ is called a L-algebra if:  
(a) L∈Γ ;  

(b) if L∈Λ , then Lc ∈Λ ;  

(c) if L∈ΛΛΛ ,....,, 321 , then 

L∈∪Λ∪Λ∪Λ ...321 .  

 

Each element Λ  in the σ -algebra L is called an 

event. Uncertain measure is a function from L to 

]1,0[ . In order to present an axiomatic definition of 

uncertain measure, it is necessary to assign to each 

event Λ a number M{ Λ } which indicates the belief 

degree that Λ will occur. In order to ensure that the 

number M{ Λ } has certain mathematical  properties, 

Liu [6] proposed the following four axioms: 
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Axiom 1. (Normality Axiom)  

M{ Γ } = 1 for the universal set Γ . 

 

Axiom 2. (Monotonicity Axiom)  

}{}{ 21 Λ≤Λ MM  whenever 21 Λ⊂Λ . 

 

Axiom 3. (Self-Duality Axiom)  

1}{}{ =Λ+Λ c
MM  for any event Λ . 

 

Axiom 4. (Countable Subadditivity Axiom)  

For every countable sequence of events }{ iΛ , 

we have ∑
∞

=

∞

=

Λ≤Λ
11

)(}{
i

i

i

i MM U . 

Let Γ be a nonempty set, L a  σ -algebra over Γ , 

and M an uncertain measure. Then the triplet 

),,( MLΓ  is called an uncertainty space. 

 

An uncertain variable is a measurable function 

psi from an uncertainty space ),,( MLΓ  to the set of 

real numbers, i.e., for any Borel set B of real 

numbers, the set: 

  })(|{}{ BLB ∈ΓΨ∈Λ=∈Ψ  is an event. 

 

 The uncertainty distribution θ  of an uncertain   

variable Ψ is defined by: 

}{)( xMx ≤Ψ=θ . 

 

 An uncertain variable Ψ  is called normal if it 

has a normal  uncertainty distribution: 

1

)(

)1()(
3 −

−

+= σ

π

θ

xe

ex  

denoted by ),( σeN  where e  and σ  are real 

numbers with  0>σ .  

 

Let Ψ  be an uncertain variable. Then the 

expected value of Ψ is defined by:  

∫ ∫
∞

∞−

≤Ψ−≥Ψ=Ψ

0

0

)()()( drrMdrrME  

provided that at least one of the two integrals is 

finite. 

 

The normal uncertain variable Ψ  has e as 

expected  value. 

 

Let Ψ  be an uncertain variable with finite 

expected value e. Then the variance of Ψ  is defined 

by ( ) ][][
2

eEV −Ψ=Ψ . 

 

Let T be an index set and let ),,( MLΓ  be an 

uncertainty space. An uncertain process is a 

measurable function from ),,( MLT Γ×  to the set of 

real numbers, i.e., for each Tt ∈  and any Borel set B 

of real numbers, the set: 

})(|{}{ BXLBX tt ∈Λ∈Λ=∈  is an event. 

 

An uncertain process tX  is said to have 

independent increments if 

112010
,...,,,

−
−−−

kk ttttttt XXXXXXX  

are independent uncertain variables where 0t is the 

initial time and kttt ,..., 21  are any times with 

kttt <<< ...10 .  

 

An uncertain process tC  is said to be a canonical 

process if: 

(i) 00 =C , and almost all sample paths are 

Lipschitz continuous; 

(ii) tC  has stationary and independent 

increments; 

(iii) every increment sts CC −+  is a normal 

uncertain variable with expected value 0 and 

variance 2
t , whose uncertainty distribution 

is  13 )1()( −+= t

x

ex

π

θ . 

    

Uncertain differential equation was proposed by 

Liu [6] in 2008 as a type of differential equation 

driven by canonical process. After that, an existence  

and uniqueness theorem of solution of uncertain 

differential equation was proved by Chen and Liu 

[2] in 2010. 

 

 Suppose tC  is a canonical process, and f  and 

g  are some given functions. Then 

tttt dCXtgdtXtfdX ),(),( +=                       (16) 

is called an uncertain differential equation. A 

solution is an uncertain process tX  that satisfies 

(16) identically in  t . 

 

It is almost impossible to find analytic solutions 

for general uncertain differential equations. This fact 

provides a motivation to design numerical methods 

to solve uncertain differential equations. 

 

Let a be a number with 10 << a . An uncertain 

differential equation (16) is said to have an a-path 

),( atX  if it solves the corresponding ordinary 

differential equation:  
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dt
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where 1)( −Φ a  is the inverse uncertainty distribution 

of standard normal uncertain variable, i.e., 

a

a
a

−
=Φ −

1
ln

3

3
)( 1

                       (17) 

       The uncertainty Kaldor-Kaleki model is given 

by 
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By carrying out the translation 

,)()(,)()( 21
β

δu
tKtuutYtu −=−= from (18) we 

get the system: 
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For 10 << a , −a path, 

)),(),,((),( 21 atuatuatU = for (19) is given by: 
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a

a
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The linearized system of (20) is given by: 
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The characteristic function for (21) is given by: 
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where 

),( τλf  is given by (10). 

The characteristic function (22) is given by: 
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From (23) we have: 

 

Proposition 3: 

a) If 5.0=a , then ),()5.0,,( τλτλ fg = . 

b) If 0=τ  and },min{1
α

δ
δ

α

β
δρ

rr
+

+
+< then 

the characteristic equation 0),0,( =ag λ  has the 

roots with negative real part for ]1,51.0[∈a and 

has one root with positive real part for 

)5.0,0[∈a . 

c) If 
r

r

α

ββ
δ

)( +
<  and ))(,0()( 0 aa ττ ∈ , 

]1,5.0[∈a  the characteristic equation 

0),0,( =ag λ  has the roots with negative real 

part, where )(0 aτ  is given by 
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and )(0 aω  is a positive root of the equation: 
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aaaa

aaaaaaaa ωω
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Proof: The results are obtained like as from the 

proof of proposition 2. 

 

For  )(0 aτ  given by (25), the limit cycle and the 

Lyapunov coefficient that characterizes this cycle, 

for the system (20) are obtained with the method 

from [9], [10], [11]. 
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5 The analysis of the stochastic 

Kaldor-Kalecki model  

 
Let ),,( PFΩ  be the given probability space and 

Rtw ∈)(  be a scalar Wiener process on Ω , having 

independent stationary Gaussian increments with 

,0)0( =w 0))()(( =− swtwE and 

),min())()(( stswtwE = , where E  is the 

mathematical expectation. The sample trajectories 

of )(tw  are continuous, nowhere differentiable and 

have infinite variations on any finite time interval 

[4]. 
 

For dynamical system (5), we are interested in 

knowing the effect of the noise perturbation on the 

equilibrium point ),( 00 KY . The stochastic 

disturbance model of system (5) is given by a 

system of stochastic differential equations with 

delay in the following way: 
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σ

τ
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δ
δ

σ

δ
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where .0,0 21 >> σσ   

 

The solution of (27) is a stochastic process 

denoted by ),,()( ωtYtY = Ω∈= ωω),,()( tKtK . 

From the Chebyshev inequality, the possible range 

of KY ,  at a time t  is “almost” determined by its 

mean and variance at time t . So, the first and second 

moments are important for investigating the solution 

behavior.  

 
Let the stochastic systems given by (27). 

Linearizing (27) around the equilibrium ),( 00 KY  

yields the linear stochastic differential delay 

equation: 

)()())()(()( tdwtCydttBytAytdy −−+= τ       (28) 
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Let )(tY  be the fundamental solution of the 

system: 

)()()( τ−+= tBytAyty .                              (30) 

The solution of (24) is a stochastic process given 

by: 

∫ −−−=

t

sdwtCystYtyty

0

)(),()()(),( φτφ φ     (31) 

where )(tyφ  is the solution given by: 

∫
−

−−+=

0

)()()0()()(

τ

φ φτφ dssstYtYty     (32) 

and 2]0,[: R→−τφ  is a family of continuous 

functions.  

The existence and uniqueness theorem for the 

stochastic differential delay equations has been 

established in [5]. 

The solution ),( φty  is a stochastic process with 

distribution at any time t  determined by the initial 

function )(θφ . From the Chebyshev inequality, the 

possible range of y , at time t  is “almost” 

determined by its mean and variance at time t . Thus, 

the first and second moments of the solutions are 

important for the investigation of the solution’s 

behavior. 

We have used E  to denote the mathematical 

expectation and we denote ),( φty  by )(ty . From 

(16) we obtain: 

 

Proposition 4: 

The moment of the solution of (24) is given by: 

))(())((
))((

τ−+= tyBEtyAE
dt

tydE
.         (33) 

The mean of the solution for (28) behaves 

precisely like the solution of the unperturbed 

deterministic equation (10).  

The proof results from taking into account the 

mathematical expectation of both sides of (28) as 

well as the properties of the Ito calculus. 

To examine the stability of the second moment of 

)(ty for linear stochastic differential delay equation 

(28) we use Ito’s rule to obtain the stochastic 

differential of T
tyty )()(  where 

Ttytytyty ))()()(()( 321= : 

 

  

{ }
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TTT

TTTT

TT
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+−++=
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τ
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Let { })()(),( sytyEstR
T=   be the covariance 

matrix of the process )(ty  so that ),( ttR  satisfies: 
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From (34) and CBA ,,  given by (29), we get: 

 

Proposition 5: 

1. The differential system (35) is given by: 
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),(
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ttrRttR

ttRttrR
dt

ttdR

ttR

ttrRttR
dt

ttdR

ttrRttR
dt

ttdR

(36) 

 

2. The characteristic function of (30) is given by: 

)2)(24(2

))(2(

)22)()(22(),(

1
2
2

2
11

211

2
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2
11

λτ

λτ
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δρασσβλρα

βσσδραλ

σβλσδραλτλ

−

−

−

+−−−−++

+++−−−

+−+−−−=

rer

re

reh

 (37) 

 

Proof: 

1. The system (36) is obtained from (31) by taking 

into account that ),(),( stRstR jiij = , .2,1, =ji                           

2. Let, ij
st

ij KestR )(),( += λ , .2,1, =ji  where 

ijK are constants. Replacing ),( stRij  in (35) and 

setting the condition that the system we obtain 

should accept nontrivial solution, we get 

0),( =τλh . 

The stability of the second moment is done by 

analyzing the roots of the characteristic equation 

0),( =τλh . 

 

Proposition 6: 

If  21 σσ =  then the characteristic function (34) is 

given by: 

 ))(44)((),( 2121
2

1
λτλτ λλλλτλ −− ++++++= eccaareah  (38) 

where   

2
12

1

2
11

2
12

111

24

4

))(2(

)(

σαδ

σδρασ

σδραβ

rrc

rc

a

a

−=

=

+−=

+−−=

             (39) 

 

 

 

 

Proposition 7: 

If  0=τ , the characteristic equation 0)0,( =λh  

has roots with negative real parts if and only if 

,0,04,0 22111 >+>+<+ cacara where 

2121 ,,, ccaa  are given by (39). 

In this case the equation system that described 

the square mean is asymptotically stable. 

 

Proposition 8: 

If  0≠τ  and the equation: 

0)816(16 2
2

2
2

2
12

2
1

4 =−+−−+ caccaω                  (40) 

has a positive root 2ω , then for ),0( 2ττ ∈  the 

characteristic equation 0),( =τλh  has roots with 

negative real parts. 

Therefore, the square mean values are 

asymptotically stable and 

221122

2211221

2
2

)(4

)44(1

cacac

ccaca
arctg

−−

+−
=

ω

ωω

ω
τ . 

For 2ττ =  the system (36) has a limit cycle.  

 

The proof is similar as the one in the case of 

Proposition 1.  

 

6 Numerical simulations 
For the numerical simulation, the following 

values were taken into consideration: 8.0=α , 

2.0=β , 3.0=δ , 2=r , 3=u , and the function 

5.0
)1(

3.0
)(

4
−

+
=

− xe
xf . The value of 0τ  given by 

(16) is 77.00 =τ . 

Therefore, for ),0( 0ττ ∈  the differential 

system (5) is asymptotically stable. At the same 

time, the mean values of system (29) are 

asymptotically stable.  
For  8.0=α , 02.0=β , 3.0=δ , 2=r , 3=u , 

51 =c , 22 =c  and the function 

5.0
1

3.0
)(

4
−

+
=

− x
e

xf , the equation 

025)0.28706915,0,( =λg , has the roots 

932662454.31 =λ , 024189682.22 −=λ  The 

equation 026)0.52491609,0,( =λg , has the roots 

7741029691.01 −=λ , 876402949.12 −=λ l. 

 

For  ]1,5.0[∈a  figures  Fig.1, Fig.2, Fig.3, 

represents the orbits of )),(,( 1 atyt , )),(,( 2 atyt , 

)),(),,(( 21 atyaty  of systems (21). 
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Fig.1 The orbit )),(,( 1 atyt  

 

 
Fig.2 The orbit )),(,( 2 atyt  

 

 
Fig.3 The orbit )),(),,(( 21 atyaty  

 

If 283239697.021 == σσ  and ),0( 2ττ ∈  

where 7585959136.02 =τ  the system of the square 

mean’s values is asymptotically stable. 
  

Because 12 ττ <  for ),0( 2ττ ∈ , the variances  

given by: 

 
))(())(())((

))(())(())((

2
2

2
22

2
1

2
11

tyEtyEtyD

tyEtyEtyD

−=

−=
 

are asymptotically stable. 

 

Figures Fig.4, Fig.5 represent the orbits of the 

mean values ))((,( 1 tyEt  and ))((,( 2 tyEt : 

 

 

 

 

 

Fig.4 The orbit     ))((,( 1 tyEt  

 

 

 

                        Fig.5 The orbit ))((,( 2 tyEt                                            
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Figures Fig.6, Fig.7 represent the orbits of the 

square mean’s values ))((,( 2
1 tyRt  and ))((,( 2

2 tyRt : 

 

 

Fig.6 The orbit  ))((,( 2
1 tyRt  

 

 

             Fig.7 The orbit   ))((,( 2
2 tyRt  

 

Figures Fig.8, Fig.9 represent the orbits of the 

dispersions’ ))((,( 1 tyDt  and ))((,( 2 tyDt : 

 

 

Fig.8  The orbit ))((,( 1 tyDt  

      

  
Fig.9 The orbit ))((,( 2 tyDt  

                                                                
     

Figures Fig.10, Fig.11 represent the orbits of 

the mean values )),(,( 1 ωtyt  and )),(,( 2 ωtyt : 

 

 
Fig.10 The orbit  )),(,( 1 ωtyt  

           

 
Fig.11 The orbit )),(,( 2 ωtyt  
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A similar analysis can be carried out for the 

following functions:  

)tan(2.0)(1 xxf = , )(arctan2.0)(2 xhxf = , 

)sin(2.0)(3 xxf = , 
x

x

e

e
xf

+
=

1
)(4 . 

 

 

7 Conclusion 

The analysis of a Kaldor-Kalecki business cycle 

model in this paper allowed us to obtain some new 

dynamic scenarios which may be interesting both for 

the applied dynamicist and the economist.  

The paper has analyzed the Kaldor-Kalecki 

model and the steady state of model with uncertainty 

and stochastic perturbation. For the uncertainty 

model we have analyzed a -path solutions associated 

to the model. For the stochastic model, we have 

analyzed the square mean and the depression of the 

model’s variables. 

We have determined the values of the delay for 

which Kaldor-Kalecki system is asymptotically 

stable and for which the system displays a limit 

cycle. We have determined the values of τ  for 

which the square mean’s values and the variances 

are stable. 
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