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Abstract: - The aim of this study is to solve the optimization problems of different engineering designs by using 
nonlinear mixed integer programming mode.  In the past, this type of engineering design optimization problem 
has been widely studied and discussed.  They are usually solved through mathematical programming method or 
heuristics.  However, there are more constraints and more constraints that cannot be satisfied.  In solving this 
type of problems, we used a penalty guided cooperative particle swarm optimization to avoid the disadvantage 
of decreased efficiency from the increase of search spatial dimension and to raise the efficiency.  In resolving 
some engineering design problems, the results shows that the solutions found by cooperative particle swarm 
optimization are equal or better than the best-known solutions from past literature.  Thus, the results of this study 
indicate that cooperative particle swarm optimization is another effective method to find solutions to 
optimization problems. 
 
Key-Words: - Engineering optimization, Nonlinear mixed integer programming, Cooperative particle swarm 
optimization. 
 
1   Introduction 
 
Many optimization problems and their solutions are 
related to satisfying many constraints.  Therefore, 
these constraints are focused on to search 
optimization and to find better target values, which 
must also satisfy the constraints.  Often, optimization 
problems with constraints are listed as follow: 

Min.  f(x) 
subject to  gi(x)≤ b, i = 1, 2, …, n.   
 hj(x)= 0, j =1, 2, …, p. 

     In this minimization problem, a decision vector 
can be expressed as x=[x1, x2, …xd]T and n is referred 
as the number of unequal constraints, while p refers 
to the number of equal constraints. Traditional 
mathematical procedures such as Lagrange multiplier 
method, usually requires some target functions and 
derivative information of constraints.  However, the 
outcomes are often partial best solution.  In recent 
years, as evolutionary algorithms have the best 
ability in full search for best solutions, many 
optimization problems have also begun to utilize the 
advantages of evolutionary algorithms to conduct 
problem exploration and development. 

     Some approaches have been considered to deal 
with the above problems. For example, mathematic 
programming relative approaches are applied [Hikita 

et al. 1993] [Nakagawa and Miyazaki 1981] [Xu et al. 
1990]. However, most of those require derivatives for 
all nonlinear constraint functions. It makes the exact 
optimal solutions to this problem hard to be derived 
easily because of the highly computational 
complexity. For overcome this difficulty, Hsieh et al. 
(1998) and Yokota et al. (1996) applied genetic 
algorithms (GAs) and Chen (2005) applied immune 
algorithms (IAs) to solve these problems more 
effectively.  

     Recently, particle swarm optimization (PSO), 
which was originally proposed by Kennedy and 
Eberhart (1995), have been widely studied and 
applied to a variety of optimization problems. The 
main concept of PSO is based on the food-searching 
behavior of birds flocking or fish schooling. When 
PSO is adopted to solve problems, each particle has 
its own location and velocity, which determine flying 
direction and distance respectively. The fitness value 
is evaluated by the optimization function. Compared 
with other  meta-heuristic evolutionary approaches 
such as GAs and IAs, the PSO has the following 
advantages (i) less parameters (ii) easy 
implementation (iii) fast constringency. The 
advantages are good for solving the mixed-integer 
programming problems because a population of 
particles in PSO can operate simultaneously so that 
the possibility of paralysis in the whole process can 
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be reduced. In this article a penalty guided PSO is 
applied to solve the engineering design problems. 

    Particle Swarm Optimization (PSO) is a method 
inspired from observing the social behavior of bird 
flocks. Due to the simplicity of the concept, easily 
executable, and fast convergence, PSO has been 
successfully applied in many optimization fields. 
Potter et al. (1994) proposed applying the method of 
partitioning the vector in search space on genetic 
algorithm, proving significant improvement on 
execution efficiency.  Furthermore, Van den Bergh et 
al. (2004) utilized the technique of search space 
segmentation proposed by Potter et al. (1994) on PSO 
and proposed cooperative particle swarm 
optimization (CPSO). In order to solve the 
constraints in optimization, penalty function method 
(Chen, 2006) can be used to effectively search for 
feasible solutions. 

     This study uses cooperative particle swarm 
optimization (Van Den Bergh et al., 2004) (He and 
Wang, 2007)to search the solution for optimization in 
engineering design (including system reliability 
design and machine parts design problem) through 
comparing the solution from cooperative particle 
swarm optimization and best-known solutions from 
past literature. 
 
 
2 Introduction of Particle Swarm 

Optimization 
 
Particle swarm optimization (PSO) is a type of 
evolution algorithm proposed by J. Kennedy and R.C. 
Eberhart in 1995.  Random optimization of PSO can 
be described as the behavior of a flock of birds or the 
social behavior of a group of human.  Searching for 
the best position in a specific space means the best 
solution.  PSO and genetic algorithm (GA) both 
produce the same set of initial position.  The best 
solution is derived through evolution.  The difference 
from GA is that there is no crossover and mutation in 
PSO.  In the swarms of PSO, each particle represents 
a possible solution.  Each particle decides the 
direction and speed it travels based on its own 
experiences and the information exchanged between 
the swarms.  The above description of the evolution 
is expressed as the mathematical model below: 
Vi(t+1)=wvi(t)+c1 × rand()×(PBest-xi)+c2×rand()×(GBest-xi) 

( 1) ( ) ( 1)i i ix t x t v t+ = + +  
     If s represents the swarm size then ix  expresses 
the position of particle i in a specific search space, 

1 2( , ,..., )i sx x x x=  while ( )ix t  represents the current 

position of particle i.  ( 1)ix t +  represents the position 
of particle i in the next iteration.  ( )iv t  is the current 
velocity of particle i.  ( 1)iv t +  is the velocity of 
particle i in the next iteration.  Therefore, the new 
position of each particle is calculated with current 
position ( )ix t  plus the new velocity ( 1)iv t +  from 
equation (4) to determine the position ( 1)ix t +  of the 
particle in the next iteration.  Equation (4) can be seen 
in three parts.  The first is the previous habits of the 
particle.  The second part is cognition, and the third 
part is social.  The so-called “cognition” represents 
the thinking and experience of the particle itself, 
while “social” means the sharing of information 
among the particles. 

     Moreover, w in equation (4) represents inertia 
weight.  c1 and c2 are positive constant called 
acceleration coefficients.  rand() is the uniform 
distribution of a random number in [0, 1].  PBest and 
GBest are the best positions of particle and the swarm, 
respectively.  Usually, the velocity vi of each particle 
is constrained by Vmax to fall within [-Vmax,Vmax].  If it 
is out of bounds, vi will be revised as -Vmax or Vmax. 
 

3 Research Approach 
3.1 Cooperative Particle Swarm Optimization 
In this study, the cooperative particle swarm 
optimization (CPSO) is applied to solve the nonlinear 
engineering optimization problems.  The differences 
in the mathematical model with regard to updating 
velocity and position in the original PSO are as 
follow: 

vi,j(t+1) = wvi,j(t) + c1×rand()×( jiBestP , -  xi) + c2 

×rand()×( jBestG -  xi,j) 

xi,j(t+1) = xi,j(t) + vi,j(t+1) 

     As CPSO utilizes multi-swarm search method, 
xi,j(t) represents the current position of particle i in jth 
swarm.  xi,j(t+1) represents the position of particle i in 
jth swarm in the next iteration.  vi,j(t) represents the 
current velocity of particle i in jth swarm.  vi,j(t+1) 
represents the velocity of particle i in jth swarm in the 
next iteration.  

jiBestP
,

is the best position of particle i 

in jth swarm.  
jBestG is the best position in population 

in jth swarm.  The steps of CPSO are explained as 
follow: 
 
Step 1 According to n, the dimension of the problem, 

produce n groups of particle swarms with m 
particles and random positions and velocity. 
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Step 2 Use different combinations of n swarms and 
personal best solutions of n swarms and 
substitute appropriate functions to find the 
fitness value of the following combination and 
assess the result. 

Step 3 In particle swarm, if a new personal best 
solution is better than the previous one, the 
position of the particle will replace the 
previous best position (PBest). 

Step 4 In particle swarm, if a new best solution is 
better than the previous one of the population, 
the position of the particle will replace the 
previous best position (GBest). 

Step 5 Update the velocity and position of particle 
according to equations (4) and (5). 

Step 6 Assess whether stop condition is satisfied.  If 
not, return to step 2. 

 

     The following is a description of the differences 
between PSO and CPSO, expressed in matrices.  In 
CPSO, there are mainly three matrices: particle 
swarm matrix, personal best matrix, and global best 
matrix.  Particle swarm matrix produces n groups of 
swarms according to the dimensions of the problem 
and defines the number of particles m in each group.  
Thus, particle swarm matrix is a m × n matrix.  
Personal best matrix records the best position of each 
particle in every swarm group up to the moment; 
therefore, it is also a m × n matrix.  Global best matrix 
records the best positions found by each swarm group 
up to the moment.  The matrices are illustrated as in 
Figure 1. 

     For each iteration, the position found by each 
particle is assessed through fitness function, and a 
fitness value is derived.  This decides whether to 
update or save the positions.  The following is an 
introduction of the difference in the update process 
between CPSO and PSO: 

(1) Take the first particle of the first group in particle 
swarm matrix and substitute it for the first particle of 
the first group in personal best matrix.  Plug in the 
appropriate function and assess whether it is better 
than the best fitness value of previous personal best 
and the fitness value of group best before deciding 
whether P1.x1 substitutes P1.y1 and P1. ŷ (as shown in 
Figure 2). 

      
Fig.1 Three matrices of CPSO: particle swarm matrix, 

personal best matrix, and global best matrix. 
 
 

P1.x1 P2.y1 … Pn-1.y1 Pn.y1 →
f(temp

1) 
 

if f(temp1) is better than f(y1) then
 P1.y1 = P1.x1 

 f(y1) = f(temp1) 
end 
 
if f(temp1) is better than f(ŷ) then
 P1. ŷ = P1.x1 

 f(ŷ) = f(temp1) 
end 

Fig. 2 The individual particle updating process in 
CPSO 

 
(2) Follow the assessment and update as described in 
(1) until the condition is no longer satisfied (as shown 
in Figure 3). 
 
 

P1.y1 P2.x1 … Pn-1.y1 Pn.y1 → f(temp2)
： 

Fig. 3 New individual particle 
 
 
3.2 Constrained Optimization 
     In order for particles to quickly move to the 
correct positions in each iteration, by allowing the 
movement of particles in unfeasible solution 

Particle Swarm Matrix  

P1.x1 P2.x1 … Pn-1.x
1 

Pn.x1 → f(x1)

∶  ∶  ∶  ∶  ∶  → ∶  

P1.xm P2.xm … Pn-1.x
m Pn.xm → f(xm)

Pj.xi : Position of ith particle in jth swarm 
Particle Swarm Matrix  

P1.x1 P2.x1 … Pn-1.x
1 

Pn.x1 → f(x1)

∶  ∶  ∶  ∶  ∶  → ∶  

P1.xm P2.xm … Pn-1.x
m Pn.xm → f(xm)

Pj.xi : Position of ith particle in jth swarm 
Particle Swarm Matrix  

P1. ŷ P2. ŷ … Pn-1.ŷ Pn.ŷ → f(ŷ) 
Pj.xi : Position of ith particle in jth swarm 
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positions to feasible solution positions, reducing the 
occurrences of constraint violations, best solution or 
the position closest to best solution is more easily 
obtained.  Through penalty function, constraint 
violations can be dealt with and unfeasible solutions 
are given penalty value to guide particles to feasible 
areas.  According to equation (2), when constraint 
function g(x)i violates constraints, it is dealt with 
according to the following: 

( , ) ,  ( , )
0,                  i

g r n b if g r n b
Penalty

Otherwise
− >⎧

= ⎨
⎩

　 　

 

     After defining penalty function, the fitness of each 
particle are adjusted through fitness function.  The 
fitness function is defined as follow: 

1

( )

1
n

i
i

f xFitness
Penalty

=

=
+∑  

where n represents the number of constraints in the 
problem.  Penaltyi is applicable in problems of 
maximization.  When penalty occurs, the fitness 
value should be lower.  Conversely, in solving 
minimization problems, to give penalty is to raise the 
fitness value as shown in Fitness. 

1

( ) (1 )
n

i
i

Fitness f x Penalty
=

= × +∑  

 
4   Numerical Results 
 
To evaluate the performance of the proposed CPSO 
approach for the mixed-integer nonlinear engineering 
design problems, six test problems (P1 ~ P6) from 
previous literature are solved.  They are compared 
how CPSO and other methods find solutions.  Please 
refer to Table 1 for parameter settings.  This study 
includes six problems described and illustrated in the 
table. 
 
Table 1 Initial setting of parameters 

parameters value 

Acceleration coefficient (c1, c2) 1.41 
Inertia weight (w) 0.729 
Maximum velocity (Vmax) 1 
Swarm size 80 
Iiterations 500 

 
The determination of the parameters in evolutionary 
algorithm is a significant problem for the 
implementation. However, no formal methodology 

can be used to solve the problem because various 
value-combinations of the parameters result to 
different characteristics as well as different 
performance. Therefore, one should note that the best 
values for the parameters in the algorithm are 
case-dependent and based upon the experience from 
preliminary runs. 
 
4.1 Series-parallel system 
The series-parallel system is made up of five 
sub-systems as shown in Figure 4.  It is a problem of 
non-linear mixed integer programming with three 
non-linear and inseparable constraints.  The system 
total reliability is Rs.  The reliability of sub-systems 
is expresses as Rj=Rj(nj)=1- ( ) jn

jr−1 .  Failure rate is 
Qj=1-Rj, where Qj=1-Rj.  Rj represents the reliability 
of jth sub-system.  nj represents the number devices 
used by jth sub-system.  rj is the reliability of device 
used by jth sub-system.  The goal of the problem is to 
maximize the reliability of the system; therefore, the 
number and reliability of the device of each 
sub-system are distributed.  
 

 
 

Fig. 4 Series-parallel system 
 

 The mathematical model is as followed: 
 

Max. 
5

1
( , ) [1 (1 ) ]jn

j
j

f r n r
=

= − −∏  

Subject to
5

1
1

( , ) ( )( exp( ))
4
j

j j Q
j

n
g r n C r n c

=
= + ≤∑  

 
5

2
2

1
( , ) j j Q

j
g r n v n v

=
= ≤∑  

 
5

3
1

( , ) exp
4
j

j j Q
j

n
g r n w n w

=

⎛ ⎞
= ≤⎜ ⎟⎜ ⎟

⎝ ⎠
∑  

 
1 10 : integer, 1, 2,...,5jn j≤ ≤ =    

60.5 1 10 : real, 1,2,...,5jx j−≤ ≤ − =    
 

1 2 

3 

4 

5 
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     C(rj) in g1(r , n) in the model above represents the 
cost for each sub-system for using device.  Related 
parameter and resource constraints for 

[ ] iB
iii rTrC )ln(/)( −= α  are shown in Table 2. 

 
Gen et al. (2006) used hybrid genetic algorithm and 
calculated system total reliability to be 0.931676.  
After the evolution of CPSO, the result is 0.931679, 
slightly better than the result from the literature (as 
shown in Table 3). 
 
 
Table 2 Series-parallel system parameters and 
constraints 

Sub
syst
em 

105αj βj vj wj cQ vQ wQ 

1 2.33 1.5 1 7 175.0 110.0 200.0
2 1.45 1.5 2 8    
3 0.541 1.5 3 8    
4 8.050 1.5 4 6    
5 1.950 1.5 2 9 Operation time T 1000h

      

Table 3 Comparison of CPSO, Series-parallel system 
reliability, and other method 

 Prasad et 
al. (2000) 

Gen et al. 
(2006) CPSO 

n* (3,2,2,3,3) (3,2,2,3,3) (3,2,2,3,3) 
r1 0.779780 0.780874 0.780532 
r2 0.872320 0.871292 0.871654 
r3 0.902450 0.902316 0.902962 
r4 0.710810 0.711945 0.711181 
r5 0.788160 0.786995 0.787213 

f(x) 0.931678 0.931676 0.931679 
 

 
4.2 Bridge Circuit System 
Bridge circuit system is also a problem that considers 
the optimization of system reliability distribution.  
The aim is to maximize system reliability.  The 
constraints of the bridge system are the same as 
series-parallel system in 4.1.  The target is expresses 
as followed: 

Max. 1 2

1 2 3 4

2 3 1 4 5

1 4 2 3 5

( , ) ( , ) ( , )
(1 ( , ) ( , )) ( , ) ( , )
(1 ( , ))(1 ( , )) ( , ) ( , ) ( , )
(1 ( , ))(1 ( , )) ( , ) ( , ) ( , )

f r n R r n R r n
R r n R r n R r n R r n
R r n R r n R r n R r n R r n
R r n R r n R r n R r n R r n

= +
− +

− − +

− −

  
  
  

　　　　

　　　　

　　　　

 
 
Gen et al. (2006) used hybrid genetic algorithm and 
calculated system total reliability to be 0.999889.  
After the evolution of CPSO, the result is 0.999890, 
slightly better than the result from the literature (as 
shown in Table 4) 
 
Table 4 Comparison of CPSO and other methods in 
bridge system reliability distribution 

 Gen et al. (2006) CPSO 

n* (3,3,3,3,1) (3,3,2,4,1) 
r1 0.808258 0.829535 
r2 0.866742 0.859574 
r3 0.861513 0.913151 
r4 0.716608 0.645054 
r5 0.766894 0.703808 

f(x) 0.999889 0.999890 
Although, the improvement seems not be very large, 
it is not easy to get the better feasible improved 
solution in a reasonable cpu time. 
 
4.3 HS System  
The hierarchical series-parallel system is made up of 
a group of series and parallel systems (see Figure 5).  
It is a non-linear and inseparable structure.  Therefore, 
the HSP system has 10 sub-systems.  The target 
function is expressed with pivotal decomposition 
method (Kuo et al., 2002). 

     Refer to Table 5 for the reliability and parameters 
of each device.  b1 and b2 represent maximum usable 
resources, 120 and 300, respectively.  System total 
reliability is Rs and the reliability of sub-system is 

( ) 1 (1 ) jx

j j jjR R rx= = − − .  The failure rate is 
Qj=1-Rj，j=1,…,10, where Rj is the reliability of jth 
sub-system.  xj is the number of device used by jth 
sub-system.  rj is the reliability of device used by jth 
sub-system. 
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 Fig. 5 HSP system 
 
 
The mathematical model is as followed: 
Max. ( ) ( ){ }( )3 1 2 4 5 6 7 8 9 101 1 1 1 1 1sR Q R R R R R Q Q Q R⎡ ⎤= − − − − − −⎣ ⎦  

Subject to 
2 33 5 101

1 2 2 3 4 4 5 5 6 7 6 8 7 9 1exp exp exp exp
2 2 4 2

x x xxc x c c c c x c x x c x c x b
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞

+ + + + + + + ≤⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

2 33 4 6 9 10
1 1 2 2 3 5 4 7 8 5 9 6 2 2exp exp exp( )

6 4 2 4
x x x x x

w x x w w w w x x w x w x b
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ + + + + + ≤⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

j j jl x up p  
 
Table 5 HSP system parameter distribution 
j 1 2 3 4 5 6 7 8 9 10

rj 0.83 0.89 0.92 0.85 0.89 0.93 0.83 0.94 0.82 0.91

cj 8 4 2 2 1 6 2 8 - - 

wj 16 6 7 12 7 1 9 - - - 

lj 1 1 1 1 1 1 1 1 1 1

uj 4 5 6 7 5 5 3 3 4 4
 
 
     He et al. (2006) found that when u10 is set to 2, the 
outcome of x10 is 4.  Therefore, u10 is revised as 4.  
The system total reliability obtained by He et al. 
(2006) using multi-branch procedure is 0.999876, 
while the result obtained with CPSO is 0.999881.  
Compared with the results from past literature, the 
result obtained by CPSO is superior to that from 
previous method (as shown in Table 6). Again, it can 
show that CPSO is another good approach to solve 
the engineering optimization problems. 
 
 
Table 6 Comparison of HSP system with CPSO and 
other method 

Gopal et al. (1978) Ha et al. (2006) CPSO 

x* (1,1,1,2,2,2,1,2,1,4) (1,1,3,4,2,1,1,3,1,4) (1,2,3,6,4,3,3,1,1,4)

Rs 0.999097 0.999876 0.999881 
 
 

4.4 Spring design 
Spring design problem (Singiresu et al., 2005) is 
described as in Figure 6.The aim of this problem is to 

solve the problem of minimizing the volume of 
spring material.  There are three design variables to 
consider: 

X=[x1, x2, x3]T=[N, d, D]T 

of which, N represents the number of spring coils and 
d is the diameter of metal wire.  D is the diameter of 
the spring. 
 

d

D

 
Fig. 6 Spring design (Singiresu et al., 2005) 

 
The mathematical model is as follow: 

Min. ( ) ( )2 2
3 2 1 2 / 4f X x x xπ= +  

Subject to 

( ) ( )3
1 max 3 28 / 0sg X S K P x xπ= − ≥  

( ) ( )( )2 max 1 21.05 2 0g X l x xδ= − + + ≥  

( )3 2 min 0g X x d= − ≥  

( )4 max 3 0g X D x= − ≥
 

( )5 3 0g X C= − ≥  

( )6 0pmg X δ δ= − ≥  

( ) ( ) ( )7 max load 1 2/ 1.05 2 0fg X l P P K x xδ= − − − − + ≥

         ( )8 max load( ) / 0wg X P P K δ= − − ≥  
 
where, C=x3/x2, Ks = (4C-1)/(4C-4) + 0.615/C, 
K=(G 4

2x )/(8 3
3x x1), 5≤ x1 ≤20,   x1 =5+k,  k =0,1,…,15, 

0.207≤ x2 ≤0.500, x2∈{0.207, 0.225, 0.244, 0.263, 
0.283, 0.307, 0.331, 0.362, 0.394, 0.4375, 0.5000}, 
1.0≤ x3 ≤3.0 
 
The settings of other parameters are as follows: 

max max min

max

1000, 1.89 5, 1.15 7, 14, 0.2,
3, 6, 300, 6.6, and 1.25pm load f w

P S e G e l d
D P lδ δ

= = = = =
= = = = =

    
     

     Also, x1 must be an integer and x2 is a discrete 

value.  x3 is a continuous variable.  The following are 

possibilities for x2: 0.207, 0.225, 0.244, 0.263, 0.283, 

0.307, 0.331, 0.362, 0.394, 0.4375, 0.500.  
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     The smallest volume of the material obtained by 
hybrid genetic algorithm proposed by Singiresu et al. 
(2005) is 2.66342, while the result obtained with 
CPSO is 2.65856.  Compared with the results from 
past literature, the result obtained by CPSO is 
superior to those of two earlier methods (as shown in 
Table 7). 
 
 
Table 7 Comparison of best spring design and other 
methods 
 Salajegheh 

et al. 
(1993) 

Singiresu 
et al. 

(2005) 
CPSO Remarks 

x1 10 9 9 integer 
x2 0.283 0.283 0.283 discrete 
x3 1.180701 1.22528 1.22304 continuous

f(x) 2.7995 2.66342 2.65856  
 
 
4.5 Pressure vessel design 
Pressure vessel is a cylindrical container with one 
end as a semi-sphere as shown in Figure 7.  It is a 
storage tank for pressurized gas.  The aim of problem 
is to minimize total material cost.  Below are four 
design variables to consider: 

X=[x1, x2, x3, x4]T=[Ts, Th, R, L]T 

of which, Ts represents the thickness of the outer shell 
and Th is the thickness of the semi-spherical outer 
shell.  R is the radius of the outer shell, while L is the 
length. 

 
The mathematical model is as followed: 
Minimize 

( ) 2 2 2
1 3 4 2 3 1 4 1 30.6224 1.7781 3.1611 19.8621f X x x x x x x x x x= + + +

Subject to 

( )1 1 30.0193 0g X x x= − ≥  

( )2 2 30.00954 0g X x x= − ≥
 

( ) 2 3
3 3 4 3

4 750 1728 0
3

g X x x xπ π= + − × ≥
 

( )4 4240 0g X x= − ≥
 

( )5 1 1.1 0g X x= − ≥  
( )6 2 0.6 0g X x= − ≥  

 

L

RR

sThT

Fig. 7 Pressure vessel      
 
     Moreover, x1 and x2 must be integral multiples of 
0.0625.  x3 and x4 are continuous variables.  As the 
upper and lower limits of x1, x2, x3, and x4 were not 
mentioned in earlier literature, here the upper and 
lower limits of x1, x2, x3, and x4 are set as below: 
 

10 10x≤ ≤ ； 20 10x≤ ≤ ； 30 100x≤ ≤ ； 40 100x≤ ≤  
 
Table 8 Comparison of best pressure vessel design 

 Sandgren 
(1990)

Shih et 
al. 

(1995) 

Fu et al. 
(1991) 

Singiresu 
et al. 

(2005)
CPSO

x1 1.125 1.125 1.125 1.1875 1.125

x2 0.625 0.625 0.625 0.625 0.625
x3 48.97 47.448 48.3807 61.4483 58.269
x4 106.72 119.98 111.7449 27.4037 43.81

f(x) 7982.5 8160.80 8048.619 7284.02 7200.67
 
 
     The smallest material cost obtained by hybrid 
genetic algorithm proposed by Singiresu et al. (2005) 
is 7284.02, while the result obtained with CPSO is 
7200.667.  Compared with the results from past 
literature, the result obtained by CPSO is superior to 
those in past literature (as in Table 8). 
 
4.6 Decelerator design 
The aim of this problem as described in Figure 8 is to 
minimize the total weight of the decelerator.  Below 
are the seven design variables: 

1 2 3 4 5 6 7 1 2 1 2, , , , , , , , , , , ,T TX x x x x x x x b m n l l d d= =⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦  
of which, b is the width of the front side, while m is 
parts of the saw tooth.  n is the number of small gears 
on the saw tooth.  l1 is the distance between axial 1 
and bearings.  l2 is the distance between axial 2 and 
bearings.  d1 is the diameter of axial 1, while d2 is the 
diameter of axial 2. 
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1 4l x=

1 5l x=

1 6d x=

1 3z x= 2z

2 7d x=

Fig. 8 Decelerator design 
 
Minimize f(x)=0.7854x1

2
2x (3.33333 2

3x +14.9334x3 - 

43.0934) - 15.08x1( 2
6x + 2

7x ) + 7.477 

( 3
6x + 3

7x ) + 0.7854 (x4
2
6x +x5+ 2

7x ) 
Subject to 

( ) 1 2 1
1 1 2 327 1g X x x x− − −= ≤  

( ) 1 2 2
2 1 2 3397.5 1g X x x x− − −= ≤  

( ) 1 1 3 4
3 2 3 4 61.93 1g X x x x x− − −= ≤  

( ) 1 1 3 4
4 2 3 5 71.93 1g X x x x x− − −= ≤  

( ) ( ) ( )
0.52

6 34
5 6

2 3

745 16.9 10 0.1 1100xg X x
x x

⎡ ⎤⎛ ⎞⎢ ⎥= + ≤⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦  

( ) ( ) ( )
2

6 3
6 7

2 3

745 157.5 10 0.1 850xg X x
x x

⎡ ⎤⎛ ⎞⎢ ⎥= + ≤⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦  

( )7 2 3 40g X x x= ≤  

( )8 1 2 5g X x x= ≥  

( )9 1 2 12g X x x= ≤
 

( ) ( ) 1
10 6 41.5 1.9 1g X x x−= + ≤  

( ) ( ) 1
11 7 51.1 1.9 1g X x x−= + ≤  

12.6 3.6x≤ ≤  

20.7 0.8x≤ ≤  

317 28x≤ ≤  

47.3 8.3x≤ ≤  

57.3 8.3x≤ ≤  

62.9 3.9x≤ ≤  
     Furthermore, x1, x2, x4, and x5 must be integral 
multiples of 0.1.  x6 and x7 must be integral multiples 
of 0.01, and x3 must be an integer. The smallest 
weight obtained by hybrid genetic algorithm 
proposed by Singiresu et al. (2005) is 3000.83, while 
the result obtained with CPSO is 2998.27.  Compared 
with past literature, the result obtained by CPSO is 
superior to those in past literature (as shown in Table 
9). 
 
Table 9 Comparison of best decelerator design and 
other methods 

 Singiresu et al. 
(2005) CPSO Remarks 

x1 3.5 3.5 discrete 
x2 0.7 0.7 discrete 
x3 17 17 integer 
x4 7.3 7.3 discrete 
x5 7.8 7.8 discrete 
x6 3.36 3.35 discrete 
x7 5.29 5.29 discrete 

f(x) 3000.83 2998.27  
 
 
5   Conclusions 

 
As cooperative particle swarm optimization raises 
the effectiveness of the execution dealing with 
multiple dimension problems, this study uses it to 
solve the problems of non-linear mixed integer 
programming. These problems include series-parallel 
reliability system, bridge circuit system, hierarchical 
series-parallel reliability system, spring design 
problem, pressure vessel problem, and Decelerator 
design problem. Totally, these six engineering 
problems are with highly complexity and difficult to 
be solved. This study has proven that through CPSO 
search, the solutions found are better than or tie the 
well-know best solutions by other heuristic methods 
in previous literature.  While the improvement may 
be too small to be insignificant, our limited 
experience suggests that the penalty guided CPSO 
find solutions which are of a quality and are 
comparable to that of other heuristic algorithms. The 
proposed method achieves the optimal/near optimal 
solution for all problems in this work more 
effectively and efficiently. Furthermore, guided by 
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penalty function, it allows particles to move to more 
appropriate search area, thus improving some 
drawbacks in some studies by using PSO related 
approach. 
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