
Using CPSO for the Engineering Optimization Problems

Ching-Long Su1, Shutan Hsieh 2,
1Department of Information Management, Chang Jung Christian University

396 Chang Jung Rd., Sec.1,Kway Jen, Tainan 71101, Taiwan
clsu@mail.cjcu.edu.tw

2Department of Accounting, National Kaohsiung University of Applied Sciences

415 Chien Kung Road, Kaohsiung 807, Taiwan
shutan@cc.kuas.edu.tw

Abstract: - The aim of this study is to solve the optimization problems of different engineering designs by using
nonlinear mixed integer programming mode. In the past, this type of engineering design optimization problem
has been widely studied and discussed. They are usually solved through mathematical programming method or
heuristics. However, there are more constraints and more constraints that cannot be satisfied. In solving this
type of problems, we used a penalty guided cooperative particle swarm optimization to avoid the disadvantage
of decreased efficiency from the increase of search spatial dimension and to raise the efficiency. In resolving
some engineering design problems, the results shows that the solutions found by cooperative particle swarm
optimization are equal or better than the best-known solutions from past literature. Thus, the results of this study
indicate that cooperative particle swarm optimization is another effective method to find solutions to
optimization problems.

Key-Words: - Engineering optimization, Nonlinear mixed integer programming, Cooperative particle swarm
optimization.

1 Introduction

Many optimization problems and their solutions are
related to satisfying many constraints. Therefore,
these constraints are focused on to search
optimization and to find better target values, which
must also satisfy the constraints. Often, optimization
problems with constraints are listed as follow:

Min. f(x)
subject to gi(x)≤ b, i = 1, 2, …, n.
 hj(x)= 0, j =1, 2, …, p.

 In this minimization problem, a decision vector
can be expressed as x=[x1, x2, …xd]T and n is referred
as the number of unequal constraints, while p refers
to the number of equal constraints. Traditional
mathematical procedures such as Lagrange multiplier
method, usually requires some target functions and
derivative information of constraints. However, the
outcomes are often partial best solution. In recent
years, as evolutionary algorithms have the best
ability in full search for best solutions, many
optimization problems have also begun to utilize the
advantages of evolutionary algorithms to conduct
problem exploration and development.

 Some approaches have been considered to deal
with the above problems. For example, mathematic
programming relative approaches are applied [Hikita

et al. 1993] [Nakagawa and Miyazaki 1981] [Xu et al.
1990]. However, most of those require derivatives for
all nonlinear constraint functions. It makes the exact
optimal solutions to this problem hard to be derived
easily because of the highly computational
complexity. For overcome this difficulty, Hsieh et al.
(1998) and Yokota et al. (1996) applied genetic
algorithms (GAs) and Chen (2005) applied immune
algorithms (IAs) to solve these problems more
effectively.

 Recently, particle swarm optimization (PSO),
which was originally proposed by Kennedy and
Eberhart (1995), have been widely studied and
applied to a variety of optimization problems. The
main concept of PSO is based on the food-searching
behavior of birds flocking or fish schooling. When
PSO is adopted to solve problems, each particle has
its own location and velocity, which determine flying
direction and distance respectively. The fitness value
is evaluated by the optimization function. Compared
with other meta-heuristic evolutionary approaches
such as GAs and IAs, the PSO has the following
advantages (i) less parameters (ii) easy
implementation (iii) fast constringency. The
advantages are good for solving the mixed-integer
programming problems because a population of
particles in PSO can operate simultaneously so that
the possibility of paralysis in the whole process can

WSEAS TRANSACTIONS on MATHEMATICS Ching-Long Su, Shutan Hsieh

ISSN: 1109-2769 628 Issue 8, Volume 9, August 2010

be reduced. In this article a penalty guided PSO is
applied to solve the engineering design problems.

 Particle Swarm Optimization (PSO) is a method
inspired from observing the social behavior of bird
flocks. Due to the simplicity of the concept, easily
executable, and fast convergence, PSO has been
successfully applied in many optimization fields.
Potter et al. (1994) proposed applying the method of
partitioning the vector in search space on genetic
algorithm, proving significant improvement on
execution efficiency. Furthermore, Van den Bergh et
al. (2004) utilized the technique of search space
segmentation proposed by Potter et al. (1994) on PSO
and proposed cooperative particle swarm
optimization (CPSO). In order to solve the
constraints in optimization, penalty function method
(Chen, 2006) can be used to effectively search for
feasible solutions.

 This study uses cooperative particle swarm
optimization (Van Den Bergh et al., 2004) (He and
Wang, 2007)to search the solution for optimization in
engineering design (including system reliability
design and machine parts design problem) through
comparing the solution from cooperative particle
swarm optimization and best-known solutions from
past literature.

2 Introduction of Particle Swarm

Optimization

Particle swarm optimization (PSO) is a type of
evolution algorithm proposed by J. Kennedy and R.C.
Eberhart in 1995. Random optimization of PSO can
be described as the behavior of a flock of birds or the
social behavior of a group of human. Searching for
the best position in a specific space means the best
solution. PSO and genetic algorithm (GA) both
produce the same set of initial position. The best
solution is derived through evolution. The difference
from GA is that there is no crossover and mutation in
PSO. In the swarms of PSO, each particle represents
a possible solution. Each particle decides the
direction and speed it travels based on its own
experiences and the information exchanged between
the swarms. The above description of the evolution
is expressed as the mathematical model below:
Vi(t+1)=wvi(t)+c1 × rand()×(PBest-xi)+c2×rand()×(GBest-xi)

(1) () (1)i i ix t x t v t+ = + +
 If s represents the swarm size then ix expresses
the position of particle i in a specific search space,

1 2(, ,...,)i sx x x x= while ()ix t represents the current

position of particle i. (1)ix t + represents the position
of particle i in the next iteration. ()iv t is the current
velocity of particle i. (1)iv t + is the velocity of
particle i in the next iteration. Therefore, the new
position of each particle is calculated with current
position ()ix t plus the new velocity (1)iv t + from
equation (4) to determine the position (1)ix t + of the
particle in the next iteration. Equation (4) can be seen
in three parts. The first is the previous habits of the
particle. The second part is cognition, and the third
part is social. The so-called “cognition” represents
the thinking and experience of the particle itself,
while “social” means the sharing of information
among the particles.

 Moreover, w in equation (4) represents inertia
weight. c1 and c2 are positive constant called
acceleration coefficients. rand() is the uniform
distribution of a random number in [0, 1]. PBest and
GBest are the best positions of particle and the swarm,
respectively. Usually, the velocity vi of each particle
is constrained by Vmax to fall within [-Vmax,Vmax]. If it
is out of bounds, vi will be revised as -Vmax or Vmax.

3 Research Approach
3.1 Cooperative Particle Swarm Optimization
In this study, the cooperative particle swarm
optimization (CPSO) is applied to solve the nonlinear
engineering optimization problems. The differences
in the mathematical model with regard to updating
velocity and position in the original PSO are as
follow:

vi,j(t+1) = wvi,j(t) + c1×rand()×(jiBestP , - xi) + c2

×rand()×(jBestG - xi,j)

xi,j(t+1) = xi,j(t) + vi,j(t+1)

 As CPSO utilizes multi-swarm search method,
xi,j(t) represents the current position of particle i in jth
swarm. xi,j(t+1) represents the position of particle i in
jth swarm in the next iteration. vi,j(t) represents the
current velocity of particle i in jth swarm. vi,j(t+1)
represents the velocity of particle i in jth swarm in the
next iteration.

jiBestP
,

is the best position of particle i

in jth swarm.
jBestG is the best position in population

in jth swarm. The steps of CPSO are explained as
follow:

Step 1 According to n, the dimension of the problem,

produce n groups of particle swarms with m
particles and random positions and velocity.

WSEAS TRANSACTIONS on MATHEMATICS Ching-Long Su, Shutan Hsieh

ISSN: 1109-2769 629 Issue 8, Volume 9, August 2010

Step 2 Use different combinations of n swarms and
personal best solutions of n swarms and
substitute appropriate functions to find the
fitness value of the following combination and
assess the result.

Step 3 In particle swarm, if a new personal best
solution is better than the previous one, the
position of the particle will replace the
previous best position (PBest).

Step 4 In particle swarm, if a new best solution is
better than the previous one of the population,
the position of the particle will replace the
previous best position (GBest).

Step 5 Update the velocity and position of particle
according to equations (4) and (5).

Step 6 Assess whether stop condition is satisfied. If
not, return to step 2.

 The following is a description of the differences
between PSO and CPSO, expressed in matrices. In
CPSO, there are mainly three matrices: particle
swarm matrix, personal best matrix, and global best
matrix. Particle swarm matrix produces n groups of
swarms according to the dimensions of the problem
and defines the number of particles m in each group.
Thus, particle swarm matrix is a m × n matrix.
Personal best matrix records the best position of each
particle in every swarm group up to the moment;
therefore, it is also a m × n matrix. Global best matrix
records the best positions found by each swarm group
up to the moment. The matrices are illustrated as in
Figure 1.

 For each iteration, the position found by each
particle is assessed through fitness function, and a
fitness value is derived. This decides whether to
update or save the positions. The following is an
introduction of the difference in the update process
between CPSO and PSO:

(1) Take the first particle of the first group in particle
swarm matrix and substitute it for the first particle of
the first group in personal best matrix. Plug in the
appropriate function and assess whether it is better
than the best fitness value of previous personal best
and the fitness value of group best before deciding
whether P1.x1 substitutes P1.y1 and P1. ŷ (as shown in
Figure 2).

Fig.1 Three matrices of CPSO: particle swarm matrix,

personal best matrix, and global best matrix.

P1.x1 P2.y1 … Pn-1.y1 Pn.y1 →
f(temp

1)

if f(temp1) is better than f(y1) then
 P1.y1 = P1.x1

 f(y1) = f(temp1)
end

if f(temp1) is better than f(ŷ) then
 P1. ŷ = P1.x1

 f(ŷ) = f(temp1)
end

Fig. 2 The individual particle updating process in
CPSO

(2) Follow the assessment and update as described in
(1) until the condition is no longer satisfied (as shown
in Figure 3).

P1.y1 P2.x1 … Pn-1.y1 Pn.y1 → f(temp2)
：

Fig. 3 New individual particle

3.2 Constrained Optimization
 In order for particles to quickly move to the
correct positions in each iteration, by allowing the
movement of particles in unfeasible solution

Particle Swarm Matrix

P1.x1 P2.x1 … Pn-1.x
1

Pn.x1 → f(x1)

∶ ∶ ∶ ∶ ∶ → ∶

P1.xm P2.xm … Pn-1.x
m Pn.xm → f(xm)

Pj.xi : Position of ith particle in jth swarm
Particle Swarm Matrix

P1.x1 P2.x1 … Pn-1.x
1

Pn.x1 → f(x1)

∶ ∶ ∶ ∶ ∶ → ∶

P1.xm P2.xm … Pn-1.x
m Pn.xm → f(xm)

Pj.xi : Position of ith particle in jth swarm
Particle Swarm Matrix

P1. ŷ P2. ŷ … Pn-1.ŷ Pn.ŷ → f(ŷ)
Pj.xi : Position of ith particle in jth swarm

WSEAS TRANSACTIONS on MATHEMATICS Ching-Long Su, Shutan Hsieh

ISSN: 1109-2769 630 Issue 8, Volume 9, August 2010

positions to feasible solution positions, reducing the
occurrences of constraint violations, best solution or
the position closest to best solution is more easily
obtained. Through penalty function, constraint
violations can be dealt with and unfeasible solutions
are given penalty value to guide particles to feasible
areas. According to equation (2), when constraint
function g(x)i violates constraints, it is dealt with
according to the following:

(,) , (,)
0, i

g r n b if g r n b
Penalty

Otherwise
− >⎧

= ⎨
⎩

　 　

 After defining penalty function, the fitness of each
particle are adjusted through fitness function. The
fitness function is defined as follow:

1

()

1
n

i
i

f xFitness
Penalty

=

=
+∑

where n represents the number of constraints in the
problem. Penaltyi is applicable in problems of
maximization. When penalty occurs, the fitness
value should be lower. Conversely, in solving
minimization problems, to give penalty is to raise the
fitness value as shown in Fitness.

1

() (1)
n

i
i

Fitness f x Penalty
=

= × +∑

4 Numerical Results

To evaluate the performance of the proposed CPSO
approach for the mixed-integer nonlinear engineering
design problems, six test problems (P1 ~ P6) from
previous literature are solved. They are compared
how CPSO and other methods find solutions. Please
refer to Table 1 for parameter settings. This study
includes six problems described and illustrated in the
table.

Table 1 Initial setting of parameters

parameters value

Acceleration coefficient (c1, c2) 1.41
Inertia weight (w) 0.729
Maximum velocity (Vmax) 1
Swarm size 80
Iiterations 500

The determination of the parameters in evolutionary
algorithm is a significant problem for the
implementation. However, no formal methodology

can be used to solve the problem because various
value-combinations of the parameters result to
different characteristics as well as different
performance. Therefore, one should note that the best
values for the parameters in the algorithm are
case-dependent and based upon the experience from
preliminary runs.

4.1 Series-parallel system
The series-parallel system is made up of five
sub-systems as shown in Figure 4. It is a problem of
non-linear mixed integer programming with three
non-linear and inseparable constraints. The system
total reliability is Rs. The reliability of sub-systems
is expresses as Rj=Rj(nj)=1- () jn

jr−1 . Failure rate is
Qj=1-Rj, where Qj=1-Rj. Rj represents the reliability
of jth sub-system. nj represents the number devices
used by jth sub-system. rj is the reliability of device
used by jth sub-system. The goal of the problem is to
maximize the reliability of the system; therefore, the
number and reliability of the device of each
sub-system are distributed.

Fig. 4 Series-parallel system

 The mathematical model is as followed:

Max.
5

1
(,) [1 (1)]jn

j
j

f r n r
=

= − −∏

Subject to
5

1
1

(,) ()(exp())
4
j

j j Q
j

n
g r n C r n c

=
= + ≤∑

5

2
2

1
(,) j j Q

j
g r n v n v

=
= ≤∑

5

3
1

(,) exp
4
j

j j Q
j

n
g r n w n w

=

⎛ ⎞
= ≤⎜ ⎟⎜ ⎟

⎝ ⎠
∑

1 10 : integer, 1, 2,...,5jn j≤ ≤ =

60.5 1 10 : real, 1,2,...,5jx j−≤ ≤ − =

1 2

3

4

5

WSEAS TRANSACTIONS on MATHEMATICS Ching-Long Su, Shutan Hsieh

ISSN: 1109-2769 631 Issue 8, Volume 9, August 2010

 C(rj) in g1(r , n) in the model above represents the
cost for each sub-system for using device. Related
parameter and resource constraints for

[] iB
iii rTrC)ln(/)(−= α are shown in Table 2.

Gen et al. (2006) used hybrid genetic algorithm and
calculated system total reliability to be 0.931676.
After the evolution of CPSO, the result is 0.931679,
slightly better than the result from the literature (as
shown in Table 3).

Table 2 Series-parallel system parameters and
constraints

Sub
syst
em

105αj βj vj wj cQ vQ wQ

1 2.33 1.5 1 7 175.0 110.0 200.0
2 1.45 1.5 2 8
3 0.541 1.5 3 8
4 8.050 1.5 4 6
5 1.950 1.5 2 9 Operation time T 1000h

Table 3 Comparison of CPSO, Series-parallel system
reliability, and other method

 Prasad et
al. (2000)

Gen et al.
(2006) CPSO

n* (3,2,2,3,3) (3,2,2,3,3) (3,2,2,3,3)
r1 0.779780 0.780874 0.780532
r2 0.872320 0.871292 0.871654
r3 0.902450 0.902316 0.902962
r4 0.710810 0.711945 0.711181
r5 0.788160 0.786995 0.787213

f(x) 0.931678 0.931676 0.931679

4.2 Bridge Circuit System
Bridge circuit system is also a problem that considers
the optimization of system reliability distribution.
The aim is to maximize system reliability. The
constraints of the bridge system are the same as
series-parallel system in 4.1. The target is expresses
as followed:

Max. 1 2

1 2 3 4

2 3 1 4 5

1 4 2 3 5

(,) (,) (,)
(1 (,) (,)) (,) (,)
(1 (,))(1 (,)) (,) (,) (,)
(1 (,))(1 (,)) (,) (,) (,)

f r n R r n R r n
R r n R r n R r n R r n
R r n R r n R r n R r n R r n
R r n R r n R r n R r n R r n

= +
− +

− − +

− −

　　　　

　　　　

　　　　

Gen et al. (2006) used hybrid genetic algorithm and
calculated system total reliability to be 0.999889.
After the evolution of CPSO, the result is 0.999890,
slightly better than the result from the literature (as
shown in Table 4)

Table 4 Comparison of CPSO and other methods in
bridge system reliability distribution

 Gen et al. (2006) CPSO

n* (3,3,3,3,1) (3,3,2,4,1)
r1 0.808258 0.829535
r2 0.866742 0.859574
r3 0.861513 0.913151
r4 0.716608 0.645054
r5 0.766894 0.703808

f(x) 0.999889 0.999890
Although, the improvement seems not be very large,
it is not easy to get the better feasible improved
solution in a reasonable cpu time.

4.3 HS System
The hierarchical series-parallel system is made up of
a group of series and parallel systems (see Figure 5).
It is a non-linear and inseparable structure. Therefore,
the HSP system has 10 sub-systems. The target
function is expressed with pivotal decomposition
method (Kuo et al., 2002).

 Refer to Table 5 for the reliability and parameters
of each device. b1 and b2 represent maximum usable
resources, 120 and 300, respectively. System total
reliability is Rs and the reliability of sub-system is

() 1 (1) jx

j j jjR R rx= = − − . The failure rate is
Qj=1-Rj，j=1,…,10, where Rj is the reliability of jth
sub-system. xj is the number of device used by jth
sub-system. rj is the reliability of device used by jth
sub-system.

WSEAS TRANSACTIONS on MATHEMATICS Ching-Long Su, Shutan Hsieh

ISSN: 1109-2769 632 Issue 8, Volume 9, August 2010

 Fig. 5 HSP system

The mathematical model is as followed:
Max. () (){ }()3 1 2 4 5 6 7 8 9 101 1 1 1 1 1sR Q R R R R R Q Q Q R⎡ ⎤= − − − − − −⎣ ⎦

Subject to
2 33 5 101

1 2 2 3 4 4 5 5 6 7 6 8 7 9 1exp exp exp exp
2 2 4 2

x x xxc x c c c c x c x x c x c x b
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞

+ + + + + + + ≤⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

2 33 4 6 9 10
1 1 2 2 3 5 4 7 8 5 9 6 2 2exp exp exp()

6 4 2 4
x x x x x

w x x w w w w x x w x w x b
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ + + + + + ≤⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

j j jl x up p

Table 5 HSP system parameter distribution
j 1 2 3 4 5 6 7 8 9 10

rj 0.83 0.89 0.92 0.85 0.89 0.93 0.83 0.94 0.82 0.91

cj 8 4 2 2 1 6 2 8 - -

wj 16 6 7 12 7 1 9 - - -

lj 1 1 1 1 1 1 1 1 1 1

uj 4 5 6 7 5 5 3 3 4 4

 He et al. (2006) found that when u10 is set to 2, the
outcome of x10 is 4. Therefore, u10 is revised as 4.
The system total reliability obtained by He et al.
(2006) using multi-branch procedure is 0.999876,
while the result obtained with CPSO is 0.999881.
Compared with the results from past literature, the
result obtained by CPSO is superior to that from
previous method (as shown in Table 6). Again, it can
show that CPSO is another good approach to solve
the engineering optimization problems.

Table 6 Comparison of HSP system with CPSO and
other method

Gopal et al. (1978) Ha et al. (2006) CPSO

x* (1,1,1,2,2,2,1,2,1,4) (1,1,3,4,2,1,1,3,1,4) (1,2,3,6,4,3,3,1,1,4)

Rs 0.999097 0.999876 0.999881

4.4 Spring design
Spring design problem (Singiresu et al., 2005) is
described as in Figure 6.The aim of this problem is to

solve the problem of minimizing the volume of
spring material. There are three design variables to
consider:

X=[x1, x2, x3]T=[N, d, D]T

of which, N represents the number of spring coils and
d is the diameter of metal wire. D is the diameter of
the spring.

d

D

Fig. 6 Spring design (Singiresu et al., 2005)

The mathematical model is as follow:

Min. () ()2 2
3 2 1 2 / 4f X x x xπ= +

Subject to

() ()3
1 max 3 28 / 0sg X S K P x xπ= − ≥

() ()()2 max 1 21.05 2 0g X l x xδ= − + + ≥

()3 2 min 0g X x d= − ≥

()4 max 3 0g X D x= − ≥

()5 3 0g X C= − ≥

()6 0pmg X δ δ= − ≥

() () ()7 max load 1 2/ 1.05 2 0fg X l P P K x xδ= − − − − + ≥

 ()8 max load() / 0wg X P P K δ= − − ≥

where, C=x3/x2, Ks = (4C-1)/(4C-4) + 0.615/C,
K=(G 4

2x)/(8 3
3x x1), 5≤ x1 ≤20, x1 =5+k, k =0,1,…,15,

0.207≤ x2 ≤0.500, x2∈{0.207, 0.225, 0.244, 0.263,
0.283, 0.307, 0.331, 0.362, 0.394, 0.4375, 0.5000},
1.0≤ x3 ≤3.0

The settings of other parameters are as follows:

max max min

max

1000, 1.89 5, 1.15 7, 14, 0.2,
3, 6, 300, 6.6, and 1.25pm load f w

P S e G e l d
D P lδ δ

= = = = =
= = = = =

 Also, x1 must be an integer and x2 is a discrete

value. x3 is a continuous variable. The following are

possibilities for x2: 0.207, 0.225, 0.244, 0.263, 0.283,

0.307, 0.331, 0.362, 0.394, 0.4375, 0.500.

WSEAS TRANSACTIONS on MATHEMATICS Ching-Long Su, Shutan Hsieh

ISSN: 1109-2769 633 Issue 8, Volume 9, August 2010

 The smallest volume of the material obtained by
hybrid genetic algorithm proposed by Singiresu et al.
(2005) is 2.66342, while the result obtained with
CPSO is 2.65856. Compared with the results from
past literature, the result obtained by CPSO is
superior to those of two earlier methods (as shown in
Table 7).

Table 7 Comparison of best spring design and other
methods
 Salajegheh

et al.
(1993)

Singiresu
et al.

(2005)
CPSO Remarks

x1 10 9 9 integer
x2 0.283 0.283 0.283 discrete
x3 1.180701 1.22528 1.22304 continuous

f(x) 2.7995 2.66342 2.65856

4.5 Pressure vessel design
Pressure vessel is a cylindrical container with one
end as a semi-sphere as shown in Figure 7. It is a
storage tank for pressurized gas. The aim of problem
is to minimize total material cost. Below are four
design variables to consider:

X=[x1, x2, x3, x4]T=[Ts, Th, R, L]T

of which, Ts represents the thickness of the outer shell
and Th is the thickness of the semi-spherical outer
shell. R is the radius of the outer shell, while L is the
length.

The mathematical model is as followed:
Minimize

() 2 2 2
1 3 4 2 3 1 4 1 30.6224 1.7781 3.1611 19.8621f X x x x x x x x x x= + + +

Subject to

()1 1 30.0193 0g X x x= − ≥

()2 2 30.00954 0g X x x= − ≥

() 2 3
3 3 4 3

4 750 1728 0
3

g X x x xπ π= + − × ≥

()4 4240 0g X x= − ≥

()5 1 1.1 0g X x= − ≥
()6 2 0.6 0g X x= − ≥

L

RR

sThT

Fig. 7 Pressure vessel

 Moreover, x1 and x2 must be integral multiples of
0.0625. x3 and x4 are continuous variables. As the
upper and lower limits of x1, x2, x3, and x4 were not
mentioned in earlier literature, here the upper and
lower limits of x1, x2, x3, and x4 are set as below:

10 10x≤ ≤ ； 20 10x≤ ≤ ； 30 100x≤ ≤ ； 40 100x≤ ≤

Table 8 Comparison of best pressure vessel design

 Sandgren
(1990)

Shih et
al.

(1995)

Fu et al.
(1991)

Singiresu
et al.

(2005)
CPSO

x1 1.125 1.125 1.125 1.1875 1.125

x2 0.625 0.625 0.625 0.625 0.625
x3 48.97 47.448 48.3807 61.4483 58.269
x4 106.72 119.98 111.7449 27.4037 43.81

f(x) 7982.5 8160.80 8048.619 7284.02 7200.67

 The smallest material cost obtained by hybrid
genetic algorithm proposed by Singiresu et al. (2005)
is 7284.02, while the result obtained with CPSO is
7200.667. Compared with the results from past
literature, the result obtained by CPSO is superior to
those in past literature (as in Table 8).

4.6 Decelerator design
The aim of this problem as described in Figure 8 is to
minimize the total weight of the decelerator. Below
are the seven design variables:

1 2 3 4 5 6 7 1 2 1 2, , , , , , , , , , , ,T TX x x x x x x x b m n l l d d= =⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦
of which, b is the width of the front side, while m is
parts of the saw tooth. n is the number of small gears
on the saw tooth. l1 is the distance between axial 1
and bearings. l2 is the distance between axial 2 and
bearings. d1 is the diameter of axial 1, while d2 is the
diameter of axial 2.

WSEAS TRANSACTIONS on MATHEMATICS Ching-Long Su, Shutan Hsieh

ISSN: 1109-2769 634 Issue 8, Volume 9, August 2010

1 4l x=

1 5l x=

1 6d x=

1 3z x= 2z

2 7d x=

Fig. 8 Decelerator design

Minimize f(x)=0.7854x1

2
2x (3.33333 2

3x +14.9334x3 -

43.0934) - 15.08x1(2
6x + 2

7x) + 7.477

(3
6x + 3

7x) + 0.7854 (x4
2
6x +x5+ 2

7x)
Subject to

() 1 2 1
1 1 2 327 1g X x x x− − −= ≤

() 1 2 2
2 1 2 3397.5 1g X x x x− − −= ≤

() 1 1 3 4
3 2 3 4 61.93 1g X x x x x− − −= ≤

() 1 1 3 4
4 2 3 5 71.93 1g X x x x x− − −= ≤

() () ()
0.52

6 34
5 6

2 3

745 16.9 10 0.1 1100xg X x
x x

⎡ ⎤⎛ ⎞⎢ ⎥= + ≤⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

() () ()
2

6 3
6 7

2 3

745 157.5 10 0.1 850xg X x
x x

⎡ ⎤⎛ ⎞⎢ ⎥= + ≤⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

()7 2 3 40g X x x= ≤

()8 1 2 5g X x x= ≥

()9 1 2 12g X x x= ≤

() () 1
10 6 41.5 1.9 1g X x x−= + ≤

() () 1
11 7 51.1 1.9 1g X x x−= + ≤

12.6 3.6x≤ ≤

20.7 0.8x≤ ≤

317 28x≤ ≤

47.3 8.3x≤ ≤

57.3 8.3x≤ ≤

62.9 3.9x≤ ≤
 Furthermore, x1, x2, x4, and x5 must be integral
multiples of 0.1. x6 and x7 must be integral multiples
of 0.01, and x3 must be an integer. The smallest
weight obtained by hybrid genetic algorithm
proposed by Singiresu et al. (2005) is 3000.83, while
the result obtained with CPSO is 2998.27. Compared
with past literature, the result obtained by CPSO is
superior to those in past literature (as shown in Table
9).

Table 9 Comparison of best decelerator design and
other methods

 Singiresu et al.
(2005) CPSO Remarks

x1 3.5 3.5 discrete
x2 0.7 0.7 discrete
x3 17 17 integer
x4 7.3 7.3 discrete
x5 7.8 7.8 discrete
x6 3.36 3.35 discrete
x7 5.29 5.29 discrete

f(x) 3000.83 2998.27

5 Conclusions

As cooperative particle swarm optimization raises
the effectiveness of the execution dealing with
multiple dimension problems, this study uses it to
solve the problems of non-linear mixed integer
programming. These problems include series-parallel
reliability system, bridge circuit system, hierarchical
series-parallel reliability system, spring design
problem, pressure vessel problem, and Decelerator
design problem. Totally, these six engineering
problems are with highly complexity and difficult to
be solved. This study has proven that through CPSO
search, the solutions found are better than or tie the
well-know best solutions by other heuristic methods
in previous literature. While the improvement may
be too small to be insignificant, our limited
experience suggests that the penalty guided CPSO
find solutions which are of a quality and are
comparable to that of other heuristic algorithms. The
proposed method achieves the optimal/near optimal
solution for all problems in this work more
effectively and efficiently. Furthermore, guided by

WSEAS TRANSACTIONS on MATHEMATICS Ching-Long Su, Shutan Hsieh

ISSN: 1109-2769 635 Issue 8, Volume 9, August 2010

penalty function, it allows particles to move to more
appropriate search area, thus improving some
drawbacks in some studies by using PSO related
approach.

References:
[1] Chen, T.-C. (2006). Penalty Guided PSO for

Reliability Design Problems. In PRICAI 2006:
Trends in Artificial Intelligence, pp. 777-786.

[2] Chen, T.-C. (2005): An immune algorithm based
approach for reliability design problems. in
Proceeding of International Conference on
Operations and Supply Management, Bali,
Indonesia .

[3] Coello, Carlos A. (2000). Use of a self-adaptive
penalty approach for engineering optimization
problems. Computers in Industry, 41(2), pp.
113-127.

[4] Fu, J. F., Fenton, R. G., & Cleghorn, W. L.
(1991). A mixed integer-discrete-continuous
programming method and its application to
engineering design optimization. Engineering
Optimization, 17, pp. 263-280.

[5] Gen, Mitsuo, & Yun, YoungSu. (2006). Soft
computing approach for reliability optimization:
State-of-the-art survey. Reliability Engineering
& System Safety, 91(9), pp. 1008-1026.

[6] Gopal, Krishna, Aggarwal, K. K., & Gupta, J. S.
(1978). An Improved Algorithm for Reliability
Optimization. IEEE Transactions on reliability,
R-27(5), pp. 325-328.

[7] Ha, Chunghun, & Kuo, Way. (2006). Reliability
redundancy allocation: An improved realization
for nonconvex nonlinear programming problems.
European Journal of Operational Research,
171(1), pp. 24-38.

[8] He, Qie, & Wang, Ling. (2007). An effective
co-evolutionary particle swarm optimization for
constrained engineering design problems.
Engineering Applications of Artificial
Intelligence, 20(1), pp. 89-99.

[9] Hikita, M., Nakagawa, Y., Harihisa, H. (1992),
“Reliability optimization of systems by a
surrogate constraints algorithm,” IEEE
Transactions on Reliability, R-41(3), pp.
473-480.

[10] Hsieh, Y.-C., Chen, T.-C., Bricker, D.L. (1998),
“Genetic algorithms for reliability design
problems,” Microelectronic Reliability, 38, pp.
1599-1605.

[11] Joines, J. A., & Houck, C. R. (1994). On the use
of non-stationary penalty functions to solve
nonlinear constrained optimization problems
with GA's. Paper presented at the Proceedings of
the First IEEE Conference on Evolutionary
Computation.

[12] Kuo, W., & Zuo, M.J. (2002). Optimal
Reliability Modeling: Principles and
Applications: John Wiley and Sons.

[13] Li, H. L., & Papalambros, P. (1985). A
production system for use of global optimization
knowledge. ASME Journal of Mechanisms,
Transmission, and Automation, 107, pp.
277-284.

[14] Li, W. C., & Azarm, S. (1990). Optimality and
constrained derivatives in two-level design
optimization. ASME Journal of Mechanical
Design, 112, pp. 563-568.

[15] Nakagawa, Y., Miyazaki, S. (1981), “Surrogate
constraints algorithm for reliability optimization
problems with two constraints,” IEEE
Transaction on Reliability, R-30, 175-180.

[16] Potter, M. A., & A., K. (1994). A Cooperative
Coevolutionary Approach to Function
Optimization. Lecture Notes in Computer
Science, 866.

[17] Prasad, V. R., & Kuo, W. (2000). Reliability
optimization of coherent systems. Reliability,
IEEE Transactions on, 49(3), pp. 323-330.

[18] Salajegheh, E., & Vanderplaats, G. N. (1993).
Optimum design of trusses with sizing and shape
variables. Structural and Multidisciplinary
Optimization, 6(2), pp. 79-85.

[19] Sandgren, E. (1990). Nonlinear integer and
discrete programming in mechanical design
optimization. ASME Journal of Mechanical
Design, 112, pp. 223-229.

[20] Shih, C. J., & Lai, T. K. (1995). Mixed-discrete
fuzzy programming for nonlinear engineering
optimization. Engineering Optimization, 23, pp.
187-199.

[21] Singiresu, S. Rao, & Ying, Xiong. (2005). A
Hybrid Genetic Algorithm for Mixed-Discrete
Design Optimization. Journal of Mechanical
Design, 127(6), pp. 1100-1112.

[22] Van Den Bergh, F., & Engelbrecht, A. P. (2004).
A Cooperative approach to particle swarm
optimization. Evolutionary Computation, IEEE
Transactions on, 8(3), pp. 225-239.

[23] Xu, Z., Kuo, W., & Lin, H.H. (1990),

WSEAS TRANSACTIONS on MATHEMATICS Ching-Long Su, Shutan Hsieh

ISSN: 1109-2769 636 Issue 8, Volume 9, August 2010

“Optimization limits in improving system
reliability,” IEEE Transactions on Reliability,
R-39, pp. 51-60.

[24] Yokota, T., Gen, M., & Li, Y.-X. (1996),
“Genetic algorithm for non-linear mixed integer
programming problems and its application,”
Computers and Industrial Engineering, 30(4),
pp. 905-917.

WSEAS TRANSACTIONS on MATHEMATICS Ching-Long Su, Shutan Hsieh

ISSN: 1109-2769 637 Issue 8, Volume 9, August 2010

