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Abstract: In this paper the static model of the Cournot duopoly with tax evasion is analyzed. A study for the local
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1 Introduction
During the last decades revenues from indirect
tax have become increasingly important in many
economies. Substantial attention has been devoted to
evasion of indirect taxes. It is well known that indirect
tax evasion, especially evasion of VAT, may erode a
substantial part of tax revenues [3], [5], [9].

In [4] a model with tax evasion is presented. The
authors consider n firms which enter the market with
a homogenous good. These firms have to pay an ad
valorem sales tax, but may evade a certain amount of
their tax duty. The aims of the firms are to maximize
their profits. The equilibrium point is determined and
an economic analysis is made.

Based on [2], [4], [14]-[17], in our paper we an-
alyze three economic models with tax evasion: the
static model of Cournot duopoly with tax evasion in
Section 2, the rent seeking game with tax evasion and
time delay in Section 3 and the stochastic model with
tax evasion and time delay in Section 4.

In Section 2, in the static model the purpose of
the firms is to maximize their profits. We determine
the firms’ outputs and the declared revenues which
maximize the profits, as well as the conditions for the
model’s parameters in which the maxim profits are ob-
tained.

In Section 3, we formulate a new dynamic model,
based on the model from Section 2, in which the time
delay is introduced. That means, the two firms do not
enter the market at the same time. One of them is
the leader firm and the other is the follower firm. The

second one knows the leader’s output in the previous
moment t− τ, τ ≥ 0.

Using classical methods [6], [10], we investigate
the local stability of the stationary state by analyzing
the corresponding transcendental characteristic equa-
tion of the linearized system. By choosing the delay
as a bifurcation parameter we show that this model
exhibits a limit cycle.

The stochastic model is presented in Section 4. In
order to analyze the locally asymptotic stability of the
solution, the first and second moments are discussed.

Finally numerical simulations, some conclusions
and future research possibilities are offered.

2 The static model of Cournot
duopoly with tax evasion

The static model of Cournot duopoly is described by
an economic game, where two firms enter the market
with a homogenous consumption product. The firms
do not cooperate, that means there is no collusion.
Each firm’s output decision affects the good’s price.
Moreover, firms compete in quantities and choose the
quantities simultaneously.

The elements which describe the model are: the
quantities which enter the market from the two firms
xi ≥ 0, i = 1, 2; the declared revenues zi, i = 1, 2;
the inverse demand function p : R+ → R+ ( p is a
derivable function with p′ (x) < 0, lim

x→a1

p (x) = 0,

lim
x→0

p (x) = b1,
(
a1 ∈ R, b1 ∈ R

)
; the penalty func-
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tion F : R+ → R+ (F is a derivable function with
F ′ (x) > 0, F ′′ (x) > 0, F (0) = 0); the cost func-
tions Ci : R+ → R+ ( Ci are derivable functions with
C ′

i (xi) > 0, C ′′
i ≥ 0, i = 1, 2 ).

The government levies an ad valorem tax on each
firm’s sales at the rate t1 ∈ (0, 1). To increase their
disposable income the firms evade taxes by underre-
porting their true income.

The true tax base of firm i is xip (x1 + x2) . Firm
i declares only zi ≤ xip (x1 + x2) as tax base to the
tax authority. Accordingly, evaded revenues of firm i
are given by xip (x1 + x2)− zi.

To combat tax evasion the government audits tax-
payers randomly and depending on the tax evasion
rate detects the evasion. The joint probability of be-
ing audited and detected is q ∈ [0, 1]. With proba-
bility 1 − q tax evasion remains undetected and the
tax bill of firm i amounts to t1zi. In case of detec-
tion, firm i has to pay taxes on the full amount of
revenues, xip (x1 + x2) , and, in addition, a penalty
F (xip (x1 + x2)− zi). The penalty is increasing and
convex in evaded revenues xip (x1 + x2)− zi. More-
over, it is assumed that F (0) = 0, namely law-
abiding firms go unpunished.

Therefore, the tax paid by firm i is then either
t1xip (x1+x2) + F (xip (x1 + x2)− zi) with prob-
ability q, or t1zi with probability 1− q.

The profit functions of the two firms are: Pi :
R2

+ → R+, i = 1, 2, given by:

Pi (x1, x2, z1, z2)=(1−q) [xip (x1+x2)−Ci (xi)−
− t1zi] + q[(1− t1) xip (x1 + x2)− Ci (xi)

− F (xip (x1 + x2)− zi)].
(1)

The first bracketed term in (1) equals the profit of firm
i if evasion activities remain undetected. The second
term in (1) represents the profit of firm i in case tax
evasion is detected.

An essential assumption of this model is that each
firm aims to maximize profit, based on the expecta-
tion that its own output and declared revenues deci-
sion will not have an effect on the decisions of its
rivals. Therefore, the firm’s purpose is to maximize
(1) with respect to output xi and declared revenue zi.
This represents a mathematical optimization problem
which is given by:

max
{xi,zi}

Pi, i = 1, 2. (2)

From the hypothesis about the functions p, F, Ci, i =
1, 2, we have:

Proposition 1 The solution of problem (2) is given by
the solution of the following system:

∂Pi

∂xi
=

[
1− qt1 − qF ′ (xip (x1 + x2)− zi)

] ·
[
p (x1 + x2) + xip

′ (x1 + x2)
]− C ′

i (xi) = 0,

∂Pi

∂zi
=−(1−q) t1+qF ′ (xip (x1+x2)−zi)=0,

i = 1, 2.

(3)

In what follows, we will consider the penalty

function as F (x) =
1
2
st1x

2, s ≥ 1 and the cost func-

tions as Ci (xi) = cixi, ci > 0, i = 1, 2.
From (3) we can deduce:

Proposition 2 The solution of system (3) satisfies the
relations:

p(x1+x2)+xip
′(x1+x2)=

ci

1−t1
, i=1, 2,

zi = xip(x1 + x2)− 1− q

qs
, i = 1, 2.

(4)

From Proposition 2 we obtain the following two
propositions:

Proposition 3 If p(x) = a − bx, a > 0, b > 0 and
(c1, c2) ∈ D ={(c1, c2) ∈ R2, c1 > 0, c2 > 0, c2 −
2c1 + a(1− t1) > 0, c1 − 2c2 + a(1− t1) > 0}, then
the solution of system (4) is given by :

x∗1 =
c2−2c1+a (1−t1)

3b (1−t1)
,

x∗2 =
c1−2c2 + (1−t1)

3b(1−t1)
,

z∗1 =
(a(1−t1)−2c1+c2)(a(1−t1)+c1+c2)

9b(1−t1)2
−

− 1−q

qs
,

z∗2 =
(a(1−t1)−2c2+c1)(a(1−t1)+c1+c2)

9b(1−t1)2
−

− 1−q

qs
.

(5)

Proposition 4 If p(x) =
1
x

and
1− q

qs + q − 1
c1 ≤

c2 ≤ qs + q − 1
1− q

c1, then the solution of system (4)

is given by :

x∗1 =
c2 (1− t1)
(c1 + c2)

2 , x∗2 =
c1 (1− t1)
(c1 + c2)

2 ,

z∗1 =
c2

c1 + c2
− 1− q

qs
, z∗2 =

c1

c1 + c2
− 1− q

qs
.

(6)
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3 The dynamic rent seeking game
with tax evasion and time delay

The dynamic model describes the variation in time
of output xi (t) , i = 1, 2 taking into account the

marginal profits
∂Pi

∂xi
, i = 1, 2. Assume that each

agent adjusts its declared revenue zi (t), i = 1, 2

proportionally to the marginal profits
∂Pi

∂zi
, i = 1, 2.

Then, the dynamic model is given by the following
differential system of equations:

·
x1 (t) = k1

∂P1

∂x1
= k1{[1− qt1 − qF ′(x1p (x1 + x2)−

− z1)] ·
[
p (x1 + x2) + x1p

′ (x1 + x2)
]− C1 (x1)},

·
x2 (t) = k2

∂P2

∂x2
= k2{[1− qt1 − qF ′(x2p (x1 + x2)−

− z2)] ·
[
p (x1 + x2) + x2p

′ (x1 + x2)
]− C2 (x2)},

·
z1 (t)=k3

∂P1

∂z1
=k3[−(1−q) t1+qF ′(x1p (x1+x2)−

− z1)],
·
z2 (t)=k4

∂P2

∂z2
=k4[−(1−q) t1+qF ′(x2p (x1+x2)−

− z2)],
(7)

with the initial conditions xi (0) = xi0, zi (0) = zi0,
i = 1, 2 and hi > 0, ki > 0, i = 1, 2.

For F (x) =
1
2
st1x

2, s ≥ 1 and Ci (xi) = cixi,

ci > 0, i = 1, 2 system (7) becomes:

·
x1(t) = k1{[1− qt1 − qst1(x1(t)p(x1(t)+

+ x2(t))− z1 (t))] · [p (x1 (t) + x2 (t))+

+ x1 (t) p′(x1 (t) + x2 (t))]− c1}
·
x2 (t) = k2{[1− qt1 − qst1(x2 (t) p(x1(t)+

+ x2 (t))− z2 (t))] · [p(x1 (t)+

+ x2 (t)) + x2 (t) p′(x1 (t) + x2 (t))]− c2}
·
z1 (t) = k3[− (1− q) t1 + qst1(x1 (t) ·
· p(x1 (t) + x2 (t))− z1 (t))]
·
z2 (t) = k4[− (1− q) t1 + qst1(x2 (t) ·
· p(x1 (t) + x2 (t))− z2 (t))]

xi (0) = xi0, zi (0) = zi0, i = 1, 2.

(8)

System (8) has the stationary state (x∗1, x
∗
2, z

∗
1 , z

∗
2)

given by Proposition 3.

In what follows we analyze the rent seeking
games with tax evasion and delay. For τ = 0 we ob-
tain the model from [4]. For τ = 0 and t1 = 0 we
obtain the model from [2]. We consider the model (8)
where we introduce the time delay τ . We suppose the
first firm is the leader and the second firm is the fol-
lower. The follower knows the quantity of the leader
firm, x1 (t− τ) , which entered the market at the mo-
ment t− τ, τ > 0.

The differential system that describes this model
is given by:

·
x1(t) = k1{[1− qt1 − qst1(x1(t)p(x1(t)+

+ x2(t))− z1 (t))] · [p (x1 (t) + x2 (t))+

+ x1 (t) p′(x1 (t) + x2 (t))]− c1}
·
x2 (t) = k2{[1− qt1 − qst1(x2 (t) p(x1 (t− τ)+

+ x2 (t))− z2 (t))] · [p(x1 (t− τ) + x2 (t))+

+ x2 (t) p′(x1 (t− τ) + x2 (t))]− c2}
·
z1 (t)=k3[−(1−q) t1+qst1(x1 (t) p(x1 (t)+

+ x2 (t))− z1 (t))]
·
z2 (t)=k4[−(1−q) t1+qst1(x2 (t) p(x1 (t)+

+ x2 (t))− z2 (t))]

x1 (θ) = φ(θ), θ ∈ [−τ, 0], x2(0) = x20,

zi (0) = zi0, i = 1, 2.

(9)

For p (x) = a − bx the stationary state of system (9)

is given by (5). For p (x) =
1
x

the stationary state of
system (9) is given by (6).

Let (x∗1, x
∗
2, z

∗
1 , z

∗
2) be the stationary state of the

system (9). The linearized system of (9) is given by:

ẏ(t) = Ay(t) + By(t− τ), (10)

where y(t) = (y1(t), y2(t), y3(t), y4(t))T and A =
(aij), B = (bij), i, j = 1, 2, 3, 4, with:

a11 = k1(−qst1
c2
1

(1− t1)
2 + (1− t1)(2p′ (x∗1 + x∗2)+

+ x∗1p
′′ (x∗1 + x∗2))),

a12 = k1(−qst1x
∗
1p
′ (x∗1 + x∗2)

c1

1− t1
+ (1− t1)·

· (p′ (x∗1 + x∗2) + x∗1p
′′ (x∗1 + x∗2)

)
),
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a13 =
k1qst1c1

1− t1
, a14 = 0,

a21 = 0, a23 = 0, a24 =
qst1c2k2

1− t1
,

a22 =k2(−qst1
c2
2

(1−t1)
2 +(1−t1)(2p′ (x∗1+x∗2)+

+x∗2p
′′(x∗1 + x∗2))),

a31 =
k3qst1c1

1− t1
, a34 = 0, a33 = −k3qst1,

a32 = k3qst1x
∗
1p
′ (x∗1 + x∗2) ,

a41 = k4qst1x
∗
2p
′ (x∗1 + x∗2) , a42 = k4qst1

c2

1− t1
,

a43 = 0, a44 = −k4qst1,

b21 = k2(−qst1x
∗
2p
′ (x∗1 + x∗2)

c2

1− t1
+

+ (1− t1)
(
p′ (x∗1 + x∗2) + x∗2p

′′ (x∗1 + x∗2)
)
),

bij = 0, i = 1, 3, 4, j = 2, 3, 4.

(11)

The characteristic function of (10) is given by:

f(λ, τ) = λ4 + n43λ
3 + n42λ

2 + n41λ + n40+

+ e−λτ (n22λ
2 + n21λ + n20),

(12)

where

λ4 + n43λ
3 + n42λ

2 + n41λ + n40 =

= (λ− a11)(λ− a22)(λ− a33)(λ− a44)−
− a42a24(λ− a11)(λ− a33)− a12a24a41(λ− a33)−
− a31a13(λ− a22)(λ− a44)− a41a12a24(λ− a33)+

+ a31a13a24a42 − a41a32a13a24,

(13)

n22λ
2 + n21λ + n20 = −a12b21(λ− a33)(λ− a44)−

− a13a32b21(λ− a44)

Proposition 5 1. For τ = 0, the characteristic equa-
tion (12) is given by:

f(λ, 0) = λ4 + m43λ
3 + m42λ

2 + m41λ + m40,

(14)

where m43 = n43, m42 = n42 + n22, m41 = n41 +
n21, m40 = n40 + n20.

The stationary state of system (9) is asymptoti-
cally stable if and only if the following conditions:

D1 = m43 > 0, D2 = m43m42 −m41 > 0,

D3 = m41D2 −m2
43m40 > 0, D4 = m41D3 > 0

(15)

hold.

The proof is obtained from the Routh-Hurwitz
criterion for f(λ, 0) = 0.

If τ 6= 0 then the roots of f(λ, τ) = 0 depend
on τ . Considering τ as parameter, we determine τ0

so that λ = iω is a root of f(λ, τ) = 0. Substituting
λ = iω into equation (12) we obtain:
ω4 − in43ω

3 − n42ω
2 + in41ω + n40 +(−n22ω

2 + in21ω + n20

)
(cosωτ − isinωτ) = 0.

From the above equation we have:

cosωτ =
(n42ω

2 − ω4 − n40)(−n22ω
2 + n20)

(−n22ω2 + n20)2 + n2
21ω

2
+

+
n21ω(n43ω

3 − n41ω)
(−n22ω2 + n20)2 + n2

21ω
2
,

and

sinωτ =
(n42ω

2 − ω4 − n40)n21ω

(−n22ω2 + n20)2 + n2
21ω

2
+

+
(n22ω

2 − n20)(n43ω
3 − n41ω)

(−n22ω2 + n20)2 + n2
21ω

2
.

Taking into account that sin2 ωτ + cos2 ωτ = 1, the
following equation is obtained:

ω8 + r6ω
6 + r4ω

4 + r2ω
2 + r0 = 0 (16)

where
r6 = n2

43 − 2n42, r4 = n2
42 + 2n40 − 2n43n41 −

n2
22,

r2 = n2
41−2n42n40 +2n22n20−n2

21, r0 = n2
40−

n2
20.

If ω0 is a positive root of (16) then there is a Hopf
bifurcation and the value of τ0 is given by:

τ0 =
1
ω0

arctg
a1a4ω0 + a2a3

−a1a3 + a2a4ω0
, (17)

where a1 = ω4
0−n42ω

2
0+n40, a2 = −n43ω

3
0+n41ω0,

a3 = n22ω
2
0 − n20, a4 = n21ω0.

We can conclude with the following theorem:

Theorem 6 (i) If ω0 is a positive root of (16) and
Re(dλ

dτ )λ=iω0,τ=τ0 6= 0, where τ0 is given by (17),
then a Hopf bifurcation occurs at the stationary state
(x∗1, x

∗
2, z

∗
1 , z

∗
2) as τ passes through τ0.

(ii) If conditions (15) hold and n0 > 0, then the
stationary state is asymptotically stable for any τ > 0.
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4 The stochastic model
Let (Ω,F , P ) be the given probability space, and
w(t) ∈ R be a scalar Wiener process defined on
Ω having independent stationary Gaussian increments
with w(0) = 0, E(w(t) − w(s)) = 0 and E(w(t) −
w(s)) = min(t, s). The symbol E denotes the mathe-
matical expectation [11]. The sample trajectories of
w(t) are continuous, nowhere differentiable and have
infinite variation on any finite time interval [8].

For the dynamical system (9), we are interested
in finding the effect of the noise perturbation on the
steady state. Let the stochastic disturbance model of
(9) given by a system of stochastic differential equa-
tions with delay:

dx1(t) = k1{[1− qt1 − qst1(x1(t)p(x1(t) + x2(t))−
− z1 (t))] · [p (x1 (t) + x2 (t)) + x1 (t) p′(x1 (t)+

+ x2 (t))]− c1}dt− k1σ1(x1(t)− x∗1)dw(t)

dx2 (t) = k2{[1− qt1 − qst1(x2 (t) p(x1 (t− τ)+

+ x2 (t))− z2 (t))] · [p(x1 (t− τ) + x2 (t)) + x2 (t) ·
· p′(x1 (t− τ) + x2 (t))]− c2}dt−
− k2σ2(x2(t)− x∗2)dw(t)

dz1 (t)=k3[−(1−q) t1+qst1(x1 (t) p (x1 (t)+x2 (t))−
− z1 (t))]dt− k3σ3(z1(t)− z∗1)dw(t)

dz2 (t)=k4[−(1−q) t1+qst1(x2 (t) p (x1 (t)+x2 (t))−
− z2 (t))]dt− k4σ4(z2(t)− z∗2)dw(t)

x1 (0) = φ(θ), θ ∈ [−τ, 0], x2(0) = x20, zi (0) = zi0,

i = 1, 2, σi > 0, i = 1, 2, 3, 4.

(18)

The solution of (18) is a stochastic process de-
noted by x1(t) = x1(t, ω), x2(t) = x2(t, ω), z1(t) =
z1(t, ω), z2(t) = z2(t, ω), ω ∈ Ω. From the Cheby-
shev inequality the possible rang of x1, x2, z1, z2 at
a time t is ”almost” determined by its mean and vari-
ance at time t. So, the first and the second moments
are important for investing the solution behavior.

Linearizing (18) around the stationary state (x∗1,
x∗2, z∗1 , z∗2), yields the linear stochastic differential de-
lay equation:

dy(t) = (Ay(t)+By(t−τ))dt−Cy(t)dw(t), (19)

where y(t)=(y1(t), y2(t), y3(t), y4(t))T ,
A and B are given by (11) and C =
diag(−k1σ1,−k2σ2,−k3σ3,−k4σ4).

Let y(t) be the fundamental solution of the sys-
tem:

ẏ(t) = Ay(t) + By(t− τ). (20)

The solution of (19) is a stochastic precess given
by:

y(t,Φ) = yΦ(t) −
∫ t

0
Y (t− s)Cy(t− τ, Φ)dw(s)

(21)
where yΦ(t) is the solution given by:

yΦ(t) = Y (t)Φ(0) +
∫ 0

−τ
Y (t− τ − s)Φ(s)ds (22)

and Φ : [−τ, 0] → IR4 is the family of continuous
functions.

The existence and uniqueness theorem for the
stochastic differential delay equation has been esta-
blished in [8].

We denoted y(t,Φ) by y(t) and E the mathema-
tical expectation. From (19) we obtain:

Proposition 7 The moments of the solution of (19)
are given by:

dE(y(t))
dt

= AE(y(t)) + BE(y(t− τ)). (23)

To examine the stability of the second moments
of y(t) for linear stochastic differential delay equation
(19) we use Itô rule to given the stochastic differential
of y(t)yT (t).

d

dt
E(y(t)yT (t)) = E(dy(t)yT (t) + y(t)dyT (t)) =

= E(Ay(t)yT (t) + y(t)yT (t)AT +

+By(t−τ)yT (t)+y(t)yT (t−τ)BT +Cy(t)yT (t)C).
(24)

Let R(t, s) = E(y(t)yT (s)) be the covariance
matrix of the process y(t) so that R(t, t) satisfies:

dR(t, t)
dt

= AR(t, t) + R(t, t)AT + BR(t− τ, t)+

+ R(t, t− τ)BT + CR(t, t)C.

(25)

If R(t, s) = (Rij)i,j=1,4, from (25) we get:
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Proposition 8 The differential system (25) is given
by:

R11(t, t)
dt

= (2a11 + k2
1σ

2
1)R11(t, t) + 2a12R12(t, t)+

+ 2a13R13(t, t),
R22(t, t)

dt
= (2a22 + k2

2σ
2
2)R22(t, t) + 2a24R24(t, t)+

+ 2b21R12(t− τ, t),

R33(t, t)
dt

= (2a33 + k2
3σ

2
3)R33(t, t) + 2a31R13(t, t)+

+ 2a32R23(t, t),
R44(t, t)

dt
= (2a44 + k2

4σ
2
4)R44(t, t) + 2a41R14(t, t)+

+ 2a42R24(t, t),

R12(t, t)
dt

= (a11 + a22 + k1k2σ1σ2)R12(t, t)+

+ a12R22(t, t) + b21R11(t, t− τ) + a24R14(t, t)+

+ a13R23(t, t),
R13(t, t)

dt
= (a11 + a33 + k1k3σ1σ3)R13(t, t)+

+ a31R11(t, t) + a13R33(t, t) + a32R12(t, t)+

+ a12R23(t, t),
(26)

R14(t, t)
dt

= (a11 + a44 + k1k4σ1σ4)R14(t, t)+

+ a41R11(t, t) + a42R12(t, t) + a12R24(t, t)+

+ a13R34(t, t),

R23(t, t)
dt

= (a22 + a33 + k2k3σ2σ3)R23(t, t)+

+ a32R22(t, t) + b21R13(t− τ, t) + a24R34(t, t)+

+ a31R12(t, t),

R24(t, t)
dt

= (a22 + a44 + k2k4σ2σ4)R24(t, t)+

+ a42R22(t, t) + b21R14(t− τ, t) + a24R44(t, t)+

+ a41R12(t, t),

R34(t, t)
dt

= (a33 + a44 + k3k4σ3σ4)R34(t, t)+

+ a41R13(t, t) + a31R14(t, t) + a32R24(t, t)+

+ a42R23(t, t).

The proof is based on the fact that Rij(t, s) =
Rji(s, t), i, j = 1, 2, 3, 4.

Consider the following matrices:

A11(λ)=

=




p11(λ) 0 0 0 −2a12

0 p22(λ) 0 0 −2b21e
−λτ

0 0 p33(λ) 0 0
0 0 0 p44(λ) 0

−b21e
−λτ −a12 0 0 p12(λ)




,

A12 =




−2a13 0 0 0 0
0 0 0 −2a24 0

−2a31 0 −2a32 0 0
0 −2a11 0 −2a42 0
0 −2a24 −2a13 0 0




,

A21 =




−a31 0 −a13 0 −a32

−a41 0 0 0 −a42

0 −a32 0 0 −a31

0 −a42 0 −a24 −a41

0 0 0 0 0




, (27)

A22(λ)=

=




p13(λ) 0 −a12 0 0
0 p14(λ) 0 −a12 −a13

−b21e
−λτ 0 p23(λ) 0 −a24

0 −b21e
−λτ 0 p24(λ) 0

−a41 −a31 −a42 −a32 p34(λ)




,

where

pij(λ) = 2λ− aii − ajj − kikjσiσj , (28)

i, j = 1, 2, 3, 4.

Proposition 9 The characteristic function of (26) is
given by:

h(λ, τ) = detA11(λ)detA22(λ) (29)

Proof. Consider Rij(t, s) = eλ(t+s)Kij , i, j =
1, 2, 3, 4 with Kij constants. Replacing in (26) we
obtain a new system. From the condition that it ad-
mits the nontrivial solution we get h(λ, τ) = 0, where
h(λ, τ) = 0 is given by:

h(λ, τ) = det

(
A11(λ) A12

A21 A22(λ)

)
.

We obtain (29), because detA12 = 0.

Proposition 10 If k3 = k4, σ3 = σ4, k1σ1 = k2σ2,
then:

detA11(λ) = p33(λ)p44(λ)p12(λ)(p11(λ)p22(λ)−
− 4a12b21e

−λτ ),
(30)
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detA22(λ) = (p13(λ)p23(λ)− a12b21e
−λτ )

(p13(λ)p23(λ)p34(λ)− a24a12p13(λ)− a12a24a41−

− c2
1

c2
2

a24a42−(
x∗10c1

x∗20c2
a41a24b21+a12b21p34(λ))e−λτ ).

(31)

Proof. From (11) and (28) we get:

p14(λ) = p13(λ), p24(λ) = p23(λ),

a33 = a44, a31 =
c1

c2
a42, a32 =

x∗10

x∗20

a41,

a13 =
c1

c2
a24.

Replacing the above relation in detA11(λ) and
detA22(λ), then we obtain (30) and (31).

The analysis of the second moments are done
studying the roots of the characteristic equation
h(λ, τ) = 0.

It is well known that the trivial fixed point of
(26) is locally asymptotically stable if all the roots
λ of the characteristic equation h(λ, τ) = 0 satisfy
Re(λ) < 0. In this paper we analyze the roots of the
characteristic equation for τ = 0, using the numerical
simulation.

For τ = 0 and for given values of the parameters
we notice that the solutions of equation (26) is locally
asymptotically stable. Therefore, the mean values, the
mean square values and the variance of the model’s
variables are locally asymptotically stable.

5 Numerical simulations
The numerical simulation was made using a program
in Maple 12.

In our numerical simulations we consider the fol-
lowing parameters: c1 = 0.2, c2 = 2, k1 = 0.1,
k2 = 0.2, k3 = 0.1, k4 = 0.1, t1 = 0.19, q = 0.8,
s = 40, σ1 = 2, σ2 = 1, σ3 = 0.8, σ4 = 0.8.

If the price function is p(x) =
1
x

, we obtained
the steady state: x∗10 = 0.334710, x∗20 = 0.334710,
z∗10 = 0.90284090, z∗20 = 0.08446590. The real
parts of the roots for the equation h(λ, 0) = 0 are
negative. The mean values E(yi(t)), i = 1, 2, 3, 4,
the mean square values E(yi(t)2), i = 1, 2, 3, 4 and
the variances D(yi(t)) = E(yi(t)2) − (E(yi(t)))2,
i = 1, 2, 3, 4 are asymptotically stable. In what fol-
lows we consider τ = 0.

The orbits (n, x1(n, ω)), (n, x2(n, ω)) are pre-
sented in Fig1 and in Fig2 respectively:

The orbits (n, z1(n, ω)), (n, z2(n, ω)) are pre-
sented in Fig3 and in Fig4 respectively:

In figures Fig5 and Fig6 the orbits
(n,E(y1(n, ω))), (n,E(y2(n, ω))) are displayed:

In figures Fig7 and Fig8 the orbits
(n,E(y3(n, ω))), (n,E(y4(n, ω))) are displayed:

The variances (n,E(y1(n, ω)2)),
(n,E(y2(n, ω)2)) are showed in Fig9 and Fig10:
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The variances (n,E(y3(n, ω)2)),
(n,E(y4(n, ω)2)) are showed in Fig11 and Fig12:

The variances (n,D(y1(n, ω))), (n,D(y2(n, ω)))
can be visualized in Fig13 and Fig14:

The variances (n,D(y3(n, ω))), (n,D(y4(n, ω)))
can be visualized in Fig15 and Fig16:

From the above simulations we can notice that the
mean values and the variances of the state variables
are asymptotically stable.

If the price function is p(x) = 50 − 100x, we
obtained the steady state: x∗10 = 0.6798353910,
x∗20 = 0.6353909467, z∗10 = 18.84785151, z∗20 =
17.61525891. The real parts of the roots for the
equation h(λ, 0) = 0 are negative. The mean val-
ues E(yi(t)), i = 1, 2, 3, 4, the mean square values
E(yi(t)2), i = 1, 2, 3, 4 and the variances D(yi(t)) =
E(yi(t)2)− (E(yi(t)))2, i = 1, 2, 3, 4 are asymptoti-
cally stable. In what follows we consider τ = 0.

The orbits (n, x1(n, ω)), (n, x2(n, ω)) are pre-
sented in Fig17 and in Fig18 respectively:

The orbits (n, z1(n, ω)), (n, z2(n, ω)) are pre-
sented in Fig19 and in Fig20 respectively:

In figures Fig21 and Fig22 the orbits
(n,E(y1(n, ω))), (n,E(y2(n, ω))) are displayed:
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In figures Fig23 and Fig24 the orbits
(n,E(y3(n, ω))), (n,E(y4(n, ω))) are displayed:

The variances (n,E(y1(n, ω)2)),
(n,E(y2(n, ω)2)) are showed in Fig25 and Fig26:

The variances (n,E(y3(n, ω)2)),
(n,E(y4(n, ω)2)) are showed in Fig27 and Fig28:

The variances (n,D(y1(n, ω))), (n,D(y2(n, ω)))
can be visualized in Fig29 and Fig30:

The variances (n,D(y3(n, ω))), (n,D(y4(n, ω)))
can be visualized in Fig31 and Fig32:

From the above simulations we can notice that the
mean values and the variances of the state variables
are asymptotically stable.

6 Conclusions
In the static model with tax evasion two firms enter the
market with a homogeneous good. In order to increase
their income the firms evade taxes by underreporting
their true income. The government combats tax eva-
sion by auditing the taxpayers randomly. The evasion
is detected with the probability q. Also, parameter s
characterizes the behavior of the firms with respect to
the evasion.

For the dynamic model with tax evasion and time
delay, using the delay τ as a bifurcation parameter
we have shown that a Hopf bifurcation occurs when
τ passes through a critical value τ0.

The direction of the Hopf bifurcation, the stabil-
ity and the period of the bifurcating periodic solutions
will be analyzed in a future paper.

Also, a stochastic approach is considered. We use
numerical simulations in order to observe the locally
asymptotic stability of the solution.

The findings of the present paper can be extended
in an oligopoly case.

Also, the models from this paper can be extended
considering the fractional integral [16].
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