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Abstract: In this paper, we present some comparison theorems on preconditioned iterative method for solving
L-matrices linear systems. Comparison results and numerical examples show that the rate of convergence of the
preconditioned Gauss-Seidel iterative method is faster than the rate of convergence of the preconditioned SOR

iterative method.
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1 Introduction

The solutions of many problems in scientific
computing are eventually turned into the solutions
of the large linear systems, that is,

AX =b, 1)
where AeR™" is a known nonsingular matrix,
beR™ is given and xeR™ is unknown. To
solve (1) iteratively, the efficient splitting of the
coefficient matrix Ais usually required, one can see
[11-13] for details. For any splitting, A=M—N
with det(M ) # 0, the basic iterative method solving
Q) is

Xt =M7NX' +Mb,i =12,
Under the assumption that a; #0, i=1,2,---,n.

Without loss of generality, we assume that
A=I1-L-U, 2

where | is an identity matrix, L and U are,
respectively, strictly lower and upper triangular
matrices obtained from A. By the above splitting (2)
of A, the classical SOR iterative method is defined
by:
X" = (1 —wL) ' [(L-w)l + WU X' + (I —wL) ™ wb,
where i =1,2,---,n. Its iterative matrix is

L, =(-wL)'[Q-w)l +wU], (@3)
where W= 0 is a parameter, called the relaxation
parameter. It is known that for w=1, the SOR
method is reduced to the Gauss-Seidel method.

The spectral radius of the iterative matrix is
decisive for the convergence of the corresponding
iterative method, and the smaller it is, the faster the
iterative method converges when the spectral radius
is smaller than 1. In order to accelerate the
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convergence of iterative method for solving the
linear systems (1), the preconditioned methods are
often used. That is,
PAXx = Pb,
where the preconditioner P is a non-singular matrix.
Let
PA=D"-L-U".

Based on the SOR iterative method, it is easy to get
the corresponding preconditioned SOR iterative
methods, whose iterative matrices are

L, =(D"—wL)[(1-w)D" +wU"],w 0.
To improve the convergence rate of the iterative

method, many preconditioners have been proposed
[1-2,7-8,10,14-17]. Recently, the preconditioner

P=1+S was considered in [1-2,9] with

0O -4, 0 - 0

0 0 -a, -~ 0
S=|: oo

0 0 0 - -a,,

O 0 0 - 0

whose effect on A is to eliminate the elements of
the first upper diagonal to improve the convergence
of the iterative method where the matrix A has to
L-matrix with O<a.,.a .., <1i=12,---,n.

i+1,0 N, i+1

In this paper, under assumptions weaker than that
[1-2, 9], we consider the preconditioned SOR-type
iterative method for solving linear systems. Some
comparison theorems on preconditioned iterative
methods are provided. Also the optimal parameter is
presented. The comparison results and numerical
examples show that the rate of convergence of the
preconditioned Gauss-Seidel method is faster than
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the rate of convergence of the preconditioned SOR
iterative method with 0 <w <1.

2 Preliminaries
For convenience, we shall now briefly explain
some of the terminology and lemmas. Let

C=(c;)eR™ be an nxn real matrix. By
diag(C), it denotes the nxn diagonal matrix
coinciding in its diagonal with ¢;. For A=(g;;),
B=(b;)eR™, A=B if a;>D,; holds for all
i, j=12,---,n.Calling A is nonnegative if A>0
a; >0;i,j=12,---,n. It says that A-B>0 if
and only if A>B. These definitions carry

immediately over to vectors by identifying them
with nx1 matrices. p(-) denotes the spectral radius

of a matrix.

Definition 1[3] A matrix A is an L-matrix if
q;20; 1=12,---,n and a; <0, forall
L, j=L2,---,n;i# j.

Definition 2[4] A matrix A is irreducible if the

directed graph associated to A is strongly
connected.

Lemma 1[4] Let A R™ be a nonnegative and
irreducible nxn matrix. Then
(i) A has a positive real eigenvalue equal to its
spectral radius p(A);

(ii) for p(A), there corresponds an eigenvector
x>0;
(iii) p(A) isasimple eigenvalue of A.

Lemma 2[5] Let A be a nonnegative matrix.
Then

(1) If ax< Ax for some nonnegative vector X,
X#0,then a < p(A).

(2) If Ax< px for some positive vector X, then
p(A) < B . Moreover, if A is irreducible and if
0 # ax < Ax < Bx for some nonnegative vector X,
then

a<lp(A)Lp
and X is a positive vector.
Lemma 3[4] Let A=M,-N,=M,—-N, be

two regular splittings of A, where A™>0. If
N, >N, >0, then

0<p(M'N)) < p(M'N,) <1.
If, moreover, A" >0 and if N, >N, >0 equality

excluded, then
0<p(M'N,) < p(M'N,) <1.
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3 The preconditoined SOR iterative

method
Consider the preconditioned linear systems,

Ax =D, 4)
where A= (1 +S)A and b= (I +S)b with
0 -a, 0 - 0 |
0 0 -a, - 0
S=|: P
0 O 0 - -a.,
0 O o - 0
And the prec_onditioned linear systems )
AXx =D, (5)
where K=(I +§)A and b= (1 +§)bwith
0 -o'a, O .- 0 |
0 0 —a,'a,, - 0
S=|: : : - :
0 0 0 " _ar:—llan—l,n
0 0 0 0
We_z express the coefficient matrix of (4) as )
A=D-L-U,

where D :diag(ﬂ) ,Land U are strictly lower

and upper triangular matrices obtained from ﬂ,
respectively. By calculation, it obtains that

1- a,8,,

5 _ 1- Ay,

0
—8, Tax3dy 0

|
Il

_an—l,l + an—l,nanl _811—1,2 + an—l,nanz e 0
L —ay —a, _an,n—l 0_
00 —a;3+ 8,8y —a;, +a,,3,,

0 0 —a,, + a3,

0
0

Thé coefficient matrix of (5) can be expressed ;.S
A=D-L-U, (6)
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where Bzdiag(zx) ,Land U are strictly lower

and upper triangular matrices obtained from Z,
respectively. By calculation, we also get that

1 Bl
a,
D= 1- 2% ,
a,
L 1_
S ]
8,0 B, 0
L= : : ’

8,10 8, 8y Byt By O
_qﬂ _anz _an,ml O

0 814’3, %+qam - 4 +AaR, |
0  &tgd - &1GaA,

0

Apblying the SOR method to the preconditionea
linear systems (4) and (5), respectively, we have the
corresponding preconditioned SOR iterative method
whose iterative matrices are

Lw=(D-wL) ' [1-w)D+wU],
and
Lw =(D-wL) ' [1-w)D+wU].

(7)

(8)

First, we need the following lemmas for our proof.

Lemma 4 Let A and A be the coefficient
matrices of the linear systems (1) and (4),
respectively. If 0<w<1, A is an L-matrix such

that a,,,#0,i=12,---,n-1 and a,#0 , and

i+1,i
there exists a nonempty set of o € N :{l 2,---,n—]}
such that

O<a,a,,;<lieca,
{a. a. =0ieN\a.

i1+

Then the iterative matrices L, and Lw associated to

the SOR method applied to the linear systems (1)
and (4), respectively, are nonnegative irreducible.
Proof: From that A is an L-matrix, then L >0

is a strictly lower triangular matrix. So
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(I —wL) ™" =1 +wL+W L2+ 4wt

> 0.
By (3), we have

L, = (I —wL)[@-w)l +wU]
=[1 +WL+W L+ + WL
x[Q—w)I +wU]
=(@1-w)l +wU +w(l-w)L+w’LU
AW+ +w L [A-w) +wU ]
=1-w)l +wU +w(@-w)L+T,
where
T =wW’LU + (WL +---+w"'L" )
x[(L-w)I +wU]>0.
So L, is nonnegative. Then, from Lemma 1 of

[6], we have that L, is irreducible.
By (7), we have
Lw=(D-wL)[1-w)D+wWU]

—(I-wD 'D)[(l-w)l +wD U]
—(1-w)l +wl-w)D L+wD U+T,

where
T=w(D L)(D U)+W(D L)+
WD D) [A-w)l +wD U]
>0,
Sowehave T >0 and Ly >0 fromf)zo, L>0

and U >0.As [W, we have [W is nonnegative
and irreducible too. o
Analogously, we have the following lemma.

Lemma 5 Let A and A be the coefficient
matrices of the linear systems (1) and (5),

respectively. If 0O<w<l ¢, 21 1i=12---n-1 A
#0,1=12,---,n-1
and a,, #0, and there exists a nonempty set of
BeN={1,2,--,n-1} such that

O<a &, <a,lep,

{a.. a.,. =0,ieN\g.

i,i+1

is an L-matrix such that a

i+1,i

i+1,i
Then the iterative matrices L, and Luw associated to

the SOR method applied to the linear systems (1)
and (5), respectively, are nonnegative irreducible.

We need the following equalities to prove
Theorem 1, which are easily proved.

(E]) D-L=1-L-SL;
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(E2) E:B—I+L+§L;
(E3) U=SU-S+U.
Theorem 1 Let L, and Lw be the iterative

matrices of the SOR method given (3) and (7),

respectively. If 0<w<1, A is an L-matrix such
that a,,; #0,i=12,---,n-1 and a,=#0, and

there exists a nonempty setof e N ={12,--,n-1
such that

a..a..=0ieN\ca.

i,i+1

{O <@ .4, <liea,

i+1,i

Then

@ p(Lw) < p(L,). if p(L,) <L
(2) p(Lw) = p(L,) i p(L,) =1,
3) p(Lw) > p(L,), ifp(L,)>1.

Proof: From Lemma 4, it is clear that L, and

[W are nonnegative irreducible matrices. Thus,
from Lemma 1 there exists a positive vector

X=[X,%, %], % >0,i=12,--,n, such
that
L, X=AX, 9)

where 4= p(L,,), or, equivalently,

[A-w)I +wU]x=A(l —wL)x.  (10)
Therefore, for this x > 0,
~ ~ o~ -~
Lux—Ax=(D—-wL) " [l-w)D+wWUJ 1)

—A(D-wL)]x.
since A(D—wL)x = A(1—w)D +wA(D —L)x, we
get
Lux—Ax=(D-wL) [(1-w)D +wU

~A(1-w)D—wA(D - L)]x.
Since U =SU —S +U , from (12) we obtain
Lux—Ax=(D-wL)[(1-w)D+w(SU - S +U)

—A(1-w)D —wA(D - L)]x.

By L=D-1+L+SL, from the above equation
we have

Lux—Ax=(D-wL)[A-w—-A+wWA)D
+W(SU =S +U)

~wA(l = L-SL)]x.
By simple computations, from (13) we get

(12)

(13)
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Lux—Ax = (D—wL)[1-w)1—2)D
~wWA(l —L-SL)
+w(l +S)U —wS]x
= (S—W[)‘l{(l—w)(l—/l)ﬁ
~wWA(l -L-SL)-wS
#(1+)[(A~1+w) 1 ~wAL]} X
= (D-wL) [~ w)L-4)(D-1)

—(1-1)S]x
=(A-1)(D-wL)"[(w-1)(D-1)
+S]x.
Let
E=(w-1)(D-1)+S
__(W_l)auazl 4 0 - 0]
0 -W-Daga, -8, -+ 0
0 0 0 -+ 8.,
0 0 0 - 0 |
We have
Lux—Ax = (A —-1)(D-wL)*Ex
=(A=D(D-WL) (g4, pty,+*, t4,.1,0)",
where
M = _(W_l)ai,i+1ai+1,ixi —;1%,1 20,

(i=12,---,n-1).
(1) If 0<A<1, then LuX—AX <0 but not equal
t0 0. By Lemma 2, we get p(Lw) < A = o(L,).
(2) If A=1, then Lux—Ax=0. By Lemma 2, we
get p(Lu)=2=p(L,).
(3) If A>1, then LwX—Ax >0 but not equal to 0.
By Lemma 2, we get p(Lw) > A = p(L,).
Remark 1 It is easy to get that if o =N, our

preconditioner is reduced to the preconditioner
in [1].

We need the following equalities to prove
Theorem 2, which are easily proved.

(E1) D-L=1-L-SL;
(E2) L=D-1+L+SL;
(E3) U=9U-S+U.
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Theorem 2 Let L, and Lw be the iterative
matrices of the SOR method given (3) and (8),
respectively. If 0<w<l,¢, 211=12---n-1, A

¢01| :1’2’...,n_1
and a,, # 0, and there exists a nonempty set of
BeN ={12--,n-1 such that

{0 <88, <aplef,

is an L-matrix such that a

i+1,i

a.,a..=01eN\g

i,1+17+1,0

Then

M p(Lw)<p(L,). if p(L,) <L
(2) p(Lw) = p(L,) . if p(L,) =1,
(3) p(Lw) > p(L,) ., ifp(L,) >1.

Proof: From Lemma 5, it is clear that L, and

Luw are nonnegative irreducible matrices. Thus,
from Lemma 1 there exists a positive vector

X =[x, %, -+, X, ], such that
[A-w)l +wU]x=A(l —wL)x.  (14)
Therefore, for this X > 0,
LuX—Ax=(D-wL)[(1-w)D +wWJ
(D-wb)[1-w) 5

~A(D-wL)]x.

Since

A(D-wL)x=A(1-w)D+wA(D-L)x, then we

get

LwX—Ax=(D-wL)'[(1-w)D+wU
~A(1-w)D-wA(D - L)]x.

From U =SU —S+U , from (16) we obtain

LuX—Ax=(D-wL)[@—w)D+w(SU —S +U)
—A(1-w)D —wA(D - L)]x.

By L=D-1+L+SL, from the above equation
we have

LuX—Ax=(D-wL)[A-w—A+WA)D
+W(§U ~S+U )
~wWA(l —L—=SL)]x.
Iiy simple corm:)utati_ons, from (17) we get
LwX—Ax=(D-wL)'[(1-w)(1-2)D
+W(§+ Hu —wS
—wA(l —L=SL)]x.

(16)

(17)
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Lwx—Ax=(D-wL)™ {(1—w)(1— A)D
—wWA(l —L-SL)—wS
+(1+8)[(A -1+ W)l —wAL]} X
= (D-wL) [A-w)(1-A)(D-1)

~(1-2)S]x
=(1-A)(D-wL) '[A-w)(D-1)
~S]x.
Let
E=@1-w)(D-1)-S
w2 H g .o
o o
0 w-)&% % .
_ Q, a,
0 0 0 Htn
an—l
0 0 0 0
We have

LuX—Ax=(1—-A)(D-wL) ™ Ex

= (L= A)(D—WL) ™ (ty, 1y, #2,.4,0)",
where

;i = i[(w_l)ai,i+1ai+l,ixi + 8
a.

i,i+1

Xi+l] = 0'

1
(i=12,---,n-1).
The following proof is similar to Theorem 1. Here is
omitted. o
It is well known that, whenw =1, SOR iterative
method is reduced to Gauss-Seidel iterative method.
So we can easily get the following corollaries.
Corollary 1 Let L, and Lw be the iterative

matrices of the Gauss-Seidel iterative method
associated to the linear systems (1) and (4),
respectively. If A is an L-matrix such that
a,,;#0,i=12,---,n-1 and a, #0, and there

exists a nonempty set of e N ={1,2,---,n—1}
such that

O<a;,a,,;<lieca,

{a. a..=0,ieN\a.

i,i+17+1,0

Then N
@ p(Lw) <p(L,). if p(L,) <L
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(2) p(Lw) = p(L,). if p(L,) =1;
(3) p(Lw)> p(L,)., if p(L,) >1.

Corollary 2 Let L, and Lw be the iterative

matrices of the Gauss-Seidel iterative method
associated to the linear systems (1) and (5),

respectively. If o, >11=12--\n-1 A is an L-
#0 i1=12---n-1,
and there exists a nonempty set of SeN ={12--;n-]
such that

matrix such that a, =0 and a

i+1,i

81,18, =0,1e N\ S,

{0 <@ aQ, <, iep,

Then

O pLw) <p(L,),if p(L,) <L
(2) p(Lw) = p(L,) if p(L,) =1,
(3 p(Lw) > p(L,), ifp(L,)>1.

Theorem 3 LetO<w, <w, <1 and A" >0.

Under the hypothesis of Theorem 1, then
O<,0(Lw2)<p(|_wl)<1, if 0<A<].
Proof: Let
AA = M w — NW
where
Mu=2D-L, Nu=2"%540.
w w

Since 0<w, <W, <1, then 0<Nuw><Nu. By
Lemma 3, this completes the proof. o

Analogously, we have the following Theorem.

Theorem 4 LetO<w, <w, <1 and A" >0.
Under the hypothesis of Theorem 2, then
0< p(Lw2) < p(Lw) <1,if 0< A <1.

Remark 2 From the above discussing, it is easy
to get that w=1 is the optimal value. That is, the

rate of convergence of the preconditioned Gauss-
Seidel iterative method is faster than that the

preconditioned SOR iterative method with 0 <w<1.

4 Numerical example

Now let us consider the following example to
illustrate the results obtained.

The matrix A of the coefficient matrix of the
linear system (1) is the following form:
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(1 g r s g |
s 1 q r ° q
s 1 .S
A q q
rr-q s 1 r
s .. . q
- S r g s 1_nxn
1
where q=—— , r=0 and s=- For
n n+2

convenience, we set up the tested problem so that
the right hand side is equal to b=(11---1)". All tests
are started from the zero vector, performed in
Matlab 7.0. The error is chosen as ERR =[x —x¥|.

The stopping criterion is chosen as
||Xk+1 _ Xk ”

<1

Let ‘sor’ denote the non-preconditioned SOR
method, ‘psor’ denote the preconditioned SOR
method of the present paper and ‘pesor’ denote the
preconditioned SOR method in [7] with P =1+§S,
where

<10°.

0O 0 --- 0
0O 0 -0

S= .o
-a o --- 0

nl

In Tables 1-4, we list the value of the spectral
radius of iterative matrix (p(:)) , the iteration
number (IT), the CPU time (CPU(s)), the error
(ERR) with the different value of w and n when
the SOR iterative method are used to solve the

linear systems (1) with the preconditioner 1+S
and | +S, respectively.

The purpose of these experiments is just to
investigate the influence of the spectral radius of
iterative matrix and the convergence behavior of
SOR iterative method with the preconditioner | +S
and | + S, respectively.

:;‘zrt";‘f(')‘ée p() | 1T | cUPE) ERR

sor | 0.9583 | 251 | 0.1410 | 6.9581x10°
pesor | 0.9582 | 251 | 0.1250 | 6.9129x10°°
psor | 0.9555 | 237 | 0.1090 | 6.8481x10°

Table 1. Numerical illustration of Theorem 1 with
w=0.8 and n=50
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matrix (po(+)), the iteration number (IT), the CPU
time (CPU(s)) and the error (ERR) are listed in

Tables 5-8 with the different value of w and n.

neivE | p() | 1T | cup) ERR

sor | 0.9735 | 380 | 0.7030 | 9.9395x10°
pesor | 0.9734 | 380 | 0.7030 | 9.9063x10°
psor | 0.9725 | 368 | 0.6720 | 9.9031x10°®

Table 2. Numerical illustration of Theorem 1 with
w=0.9 and n =100

Iterative

:;Zrt"’r‘]t(')‘ée p() | 1T | cuPs) ERR

sor |0.9882 | 793 | 3.8590 | 1.2150x10°°
pesor | 0.9882 | 793 | 3.8570 | 1.2150x10°°
psor | 0.9880 | 779 | 3.7650 | 1.2109x10°®

Table 3. Numerical illustration of Theorem 1 with
w=0.7 and n=150

:;irt?té‘ée p() | 1T | cUPGs) ERR

sor | 0.9902 | 931 | 9.6250 | 1.4049x10°
pesor | 0.9901 | 931 | 9.6250 | 1.4044x10°
psor | 0.9900 | 918 | 9.4220 | 1.4035x10°°

Table 4. Numerical illustration of Theorem 1 with
w=0.75andn =200

0

-1

!
~
T

log10(ERR)
&
T

!
kS
T

RES:

——sor
— — -psor
— — -pesorH

method | PC) | 1T | CUPE) ERR
gs | 0.9379|174| 0.094 | 6.8179x10°
pegs | 0.9379 | 174 | 0.094 | 6.7626x10°
pgs | 0.9330 | 162 | 0.078 | 6.8110x10°®
Table 5. Numerical illustration of Corollary 1 with
n=>50
Ltq‘zrt";‘]t(')‘ée p() | 1T | cupr) ERR
gs | 0.9676 | 317 | 0.5780 | 9.9348x10°
pegs | 0.9676 | 317 | 0.5620 | 9.8974x10°
pgs | 0.9663 | 306 | 0.5470 | 9.8781x10°°
Table 6. Numerical illustration of Corollary 1 with
n=100
:Tt]‘;rt";‘]t(')‘ée p() | 1T | cupr) ERR
sor | 0.9782 | 455 | 2.2190 | 1.2117x10°°
pesor | 0.9782 | 455 | 2.2190 | 1.2116x10°°
psor | 0.9776 | 445 | 2.1410 | 1.2016x10°°
Table 7. Numerical illustration of Corollary 1 with
n=150
::‘irtar‘]t(')‘ée p() | 1T | cup) ERR
sor | 0.9836 | 590 | 6.0470 | 1.3969x10°
pesor | 0.9836 | 590 | 6.0630 | 1.3962x107°
psor | 0.9833 | 579 | 5.8910 | 1.3928x10°°

Table 8. Numerical

n=200

illustration of Corollary 1 with

0 50 100 150 200 250 300
Iteration number

Fig.1 Iteration number with w=0.8 and n =50

Remark 3 Fig. 1 corresponds to Table 1. Tables
2-4 corresponding to figures are similar to Table 1,
which are omitted here. From Tables 1-4 and Fig. 1,
it is easy to get that Theorem 1 holds.

Next , we study the Gauss-Seidel iterative method
to illustrate Corollary 1.

Similarity, let ‘gs’, ‘pgs’ and ‘pegs’ , respectively,
denote the non-preconditioned Gauss-Seidel method,
the preconditioned Gauss-Seidel method of the
present paper and the preconditioned Gauss-Seidel
method in [7]. The spectral radius of the iterative

ISSN: 1109-2769

log10(ERR)

RES=

. . . . . . . .
0 20 40 60 80 100 120 140 160 180
Iteration number

Fig.2 Iteration number with n =50
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Remark 4 The following Fig. 2 corresponds to
Table 5.

From Tables 5-8 and Fig. 2, it is not difficult to
find that Corollary 1 holds.

To illustrate Remark 2 obtained, here we give the
following Figs 3-4. Fig. 3 is to show that the non-
preconditioned Gauss-Seidel method is faster than
the non-preconditioned SOR method. Subsequently,
Fig. 4 shows that the preconditioned Gauss-Seidel
method is faster than the preconditioned SOR
method.

T
—sor,
——_gs

RES=log10(ERR)
\

-7

L L L L L
o 50 100 150 200 250 300
Iteration number

Fig.3 Unpreconditioned comparison results with
n=>50

T
psor
+ pgs

10g10(ERR)

RES=

100 150 200
Iteration number

Fig.4 Preconditioned comparison
n=>50

0 50 250

results with

To demonstrate Theorem 2, for simplicity, here
a,=2,(0=12,---,n-1). As before, we set up the
tested problem so that the right hand side is equal to
b=(1---1)". All tests are started from the zero
vector. The error is chosen as ERR = x**—x].
The stopping criterion is chosen as

||Xk+l_xk||
Ix¥]

Some results are presented to illustrate the

behavior of the convergence of the SOR method

with the preconditioner | +S, which are listed in

<10°.
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Tables 9-12. The purpose of these experiments is
just to investigate the influence of the spectral radius
of iterative matrix and the convergence behavior of

SOR iterative method with the preconditioner | +S.

Iterative

method o() | IT | CUP(s) ERR
sor | 0.9509 | 216 | 0.0781 | 4.3557x10°°
psor | 0.9477 | 204 | 0.0469 | 4.3642x10°

Table 9. Numerical illustration of Theorem 2 with
w=0.5and n=20

Iterative

method o() | IT | CUP(s) ERR
sor | 0.9661 | 304 | 0.1250 | 6.1536x10°°
psor | 0.9649 | 294 | 0.0781 | 6.2858x10°°

Table 10. Numerical illustration of Theorem 2 with
w=0.6 and n=40

Iterative

rethod o() | IT | CUP(s) ERR
sor | 0.9645|291 | 0.250 | 7.7326x10°°
psor | 0.9635 | 284 | 0.1875 | 7.7071x10°°

Table 11. Numerical illustration of Theorem 2 with
w=0.8 and n=60

::‘Zrtar‘]t(')‘ée p() | 1T | cupr) ERR
sor | 0.9733 | 378 | 0.6094 | 8.8828x10°°
psor | 0.9728 | 371 | 0.500 | 8.8977x107°

Table 12. Numerical illustration of Theorem 2 with
w=0.8 and n=80

O

[
\
_1—\\

sor
psor

I
N
T

log10(ERR)
&

|
N
T

RES:

I
a
T

!
)
T

-7

. . .
100 150 200
Iteration number

0 5‘0 250
Fig.5 Iteration number with w=0.5,n=20 and
a=2

Similarly, the above Fig. 5 corresponds to Table 9.
From Tables 9-12 and Fig. 5, we get that Theorem 2
holds.
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In the sequel, we investigate the Gauss-Seidel

method with preconditioner | +S . In other words,
we consider the spectral radius of of the iterative
matrix (o(-)), the iteration number (IT), the CPU
time (CPU(s)) and the error (ERR) with the different
value of w and n when the Gauss-Seidel method is
used to solve the linear systems (1) with

preconditioner | +S.
From our numerical experiments we get Tables
13-16.

:;irtfc')‘ée p() | 1T | cUPGs) ERR
gs | 0.8595 | 80 | 0.0469 | 4.1360x10°°
pgs | 0.8465 | 73 | 0.0156 | 4.3739x10°

Table 13. Numerical illustration of Corollary 2 with
n=20

:;irt?]t(')‘ée p() | 1T | cUPGs) ERR
gs | 0.9225| 141 | 0.0938 | 6.1743x10°°
pgs | 0.9187 | 135 | 0.0625 | 6.0958x10°

Table 14. Numerical illustration of Corollary 2 with
n=40

Iterative

method p() | IT | CUP(s) ERR
sor | 0.9471|202 | 0.1875 | 7.5164x10°
psor | 0.9454 | 196 | 0.1406 | 7.5418x10°

Table 15. Numerical illustration of Corollary 2 with
n=60

Iterative

method p() | IT | CUP(s) ERR
sor 0.9602 | 262 | 0.4129 | 8.8849x10°°
psor | 0.9592 | 257 | 0.3125 | 8.5927x10°

Table 16. Numerical illustration of Corollary 2 with
n=280

To illustrate Remark 2 obtained further, here we
give the above Figs 6-7. Fig. 6 illustrates that the
non-preconditioned Gauss-Seidel method is faster
than the non-preconditioned SOR method, too.
Subsequently, Fig. 7 shows that the preconditioned
Gauss-Seidel  method is  faster than the
preconditioned SOR method as well as.

From the above numerical experiments, it is easy
to get that Theorems 1-2 and Corollaris 1-2 hold. By
observing a mass of experiments, we also get that
Theorems 3-4 hold and our preconditioner is
superior to the preconditioner in [7]. What is more,
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Fig.6 Iteration number with n=20and o =2
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Fig.7 Preconditioned comparison results with
n=20and o =2

the rate of convergence of the preconditioned
Gauss-Seidel iterative method is faster than that the
preconditioned SOR iterative method withO <w<1.

Recently, Darvishi and Azimbeigi [17] proposed
the preconditioner P'=1+S" with

0 g O 0 0
_ﬂl-laZl ‘0‘2_1323 0 . 0
0 B8 0 3, 0

0 0 0 _/ﬁ"hmz 0 _ai%n
0 0 O 0 Ba, O
To inspect the efficiency of the preconditioner P

and P’ for Gauss-Seidel method by the above
discussion, we mainly discuss two cases:

N ea=4=1(1=12--,n);
(I e, =6 #1(=L2,---,n).
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n 20 30 40 50
p(P) | 0.8321 |0.8858 | 0.9148 | 0.9330
p(P") | 0.8321 |0.8858 | 0.9148 | 0.9330

Table 17. Spectral radius of iterative matrix with
the different values of n in Case (1)

n 20 30 40 50
p(P) | 08461 |0.8925 | 0.9187 | 0.9355
p(P) | 08461 |0.8925 | 0.9187 | 0.9355

Table 18. Spectral radius of iterative matrix with
the different values of n and «, = S, =2 for Case

(I

n 20 30 | 40(0.6) | 50(0.8)
p(P) |0.8458 | 0.8924 | 0.9186 | 0.9355
p(P) |0.8458 | 0.8924 | 0.9186 | 0.9355

Table 19. Spectral radius of iterative matrix with
the different values of n, S =1 and o, =2 for
Case (I1)

n 20 30 40 50
p(P) |0.8322 | 0.8858 | 0.9148 | 0.9330
p(P") |0.8322 | 0.8858 | 0.9148 | 0.9330

Table 20. Spectral radius of iterative matrix with
the different values of n, S =2 and «, =1 for

Case (I1)

In Tables 17-20, we list the value of the spectral
radius of iterative matrix p(P) and p(P") for Case
(D and (1.

From Tables 17-20, under certain conditions, we
are interested in finding that the spectral radius
p(P) of iterative matrix is the same as the spectral
radius p(P’) of iterative matrix when Gauss-Seidel
method is applied to solve the linear systems (1)
with L-matrices. In other words, the convergence
rate of Gauss-Seidel method with the preconditioner
P is the same as the convergence rate of Gauss-
Seidel method with the preconditioner P’. Whereas,
based on the structure of preconditioner and the
memory requirement, the preconditioner P is less
than the preconditioner P’ . In this case, the
preconditioner P is superior to the preconditioner
P".

4 Conclusion

In this paper, we have studied the preconditioned
SOR iterative method for solving L-matrices linear
systems (1). Some comparison theorems on the
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preconditioned SOR iterative method are presented.
The optimal parameter is presented as well as. The
comparison results and the numerical example show
that the rate of convergence of the preconditioned
Gauss-Seidel method is faster than the rate of
convergence of the preconditioned SOR iterative
method with 0 <w<1.
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