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Abstract:  In this paper, we present some comparison theorems on preconditioned iterative method for solving 
L-matrices linear systems. Comparison results and numerical examples show that the rate of convergence of the 
preconditioned Gauss-Seidel iterative method is faster than the rate of convergence of the preconditioned SOR 
iterative method. 
Key-Words:  Preconditioner; L-matrix; SOR method; Gauss-Seidel method; Spectral radius; Iteration  
 
1 Introduction 

The solutions of many problems in scientific 
computing are eventually turned into the solutions 
of the large linear systems, that is,   

,Ax b=                                  (1) 
where  n nA R ×∈  is a known nonsingular matrix, 

 is given and 1nb R ×∈ 1nx R ×∈  is unknown. To 
solve (1) iteratively, the efficient splitting of the 
coefficient matrix A is usually required, one can see 
[11-13] for details. For any splitting, A M N= −  
with the basic iterative method solving 
(1) is 

det( ) 0,M ≠

1 1 1 , 1,2,i ix M Nx M b i+ − −= + =  
Under the assumption that , . 0iia ≠ 1, 2, ,i n=

Without loss of generality, we assume that 
,A I L U= − −                             (2) 

where I  is an identity matrix, L and  are, 
respectively, strictly lower and upper triangular 
matrices obtained from 

U

A . By the above splitting (2) 
of A , the classical SOR iterative method is defined 
by: 

1 1( ) [(1 ) ] ( )i i 1 ,x I wL w I wU x I wL wb+ − −= − − + + −  
where  Its iterative matrix is 1, 2, , .i = n

,PAx Pb=

.PA D L U

1( ) [(1 ) ],wL I wL w I wU−= − − +      (3) 
where  is a parameter, called   the   relaxation 0w ≠
parameter. It is known that for , the SOR 
method is reduced to the Gauss-Seidel method. 

1w =

The spectral radius of the iterative matrix is 
decisive for the convergence of the corresponding 
iterative method, and the smaller it is, the faster the 
iterative method converges when the spectral radius 
is smaller than 1. In order to accelerate the 

convergence of iterative method for solving the 
linear systems (1), the preconditioned methods are 
often used. That is, 
  
where the preconditioner P is a non-singular matrix. 

Let 
∗                     ∗ ∗= − −

1( ) [(1 ) ], 0.wL D wL w D wU w∗ ∗ ∗ − ∗ ∗

 
Based on the SOR iterative method, it is easy to get 
the corresponding preconditioned SOR iterative 
methods,  whose iterative matrices are 

= − − + ≠  
To improve the convergence rate of the iterative 

method, many preconditioners have been proposed 
[1-2,7-8,10,14-17]. Recently, the preconditioner 
P I S= +

12

23

1,

00 0
0 0 0

,
0 0 0
0 0 0 0

n n

a
a

S
a −

−
 was considered in [1-2,9] with 
⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥=
⎢ ⎥

−⎢ ⎥
⎢ ⎥⎦

 

⎣
whose effect on A  is to eliminate the elements of 
the first upper diagonal to improve the convergence 
of the iterative method where the matrix A  has to 
L-matrix with  1, , 10 1, 1,2, , .i i i ia a i n+ +< < =
   In this paper, under assumptions weaker than that 
[1-2, 9], we consider the preconditioned SOR-type 
iterative method for solving linear systems. Some 
comparison theorems on preconditioned iterative 
methods are provided. Also the optimal parameter is 
presented. The comparison results and numerical 
examples show that the rate of convergence of the 
preconditioned Gauss-Seidel method is faster than 
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the rate of convergence of the preconditioned SOR 
iterative method with 0 1  .w< ≤
2 Preliminaries 

For convenience, we shall now briefly explain 
some of the terminology and lemmas. Let 

 be an ( ) n n
i jC c R ×= ∈ n n× real matrix. By 

 it denotes the n diagonal matrix 
coinciding in its diagonal with  For 

( ),diag C n×
.iic ( )i jA a= , 

 ( ) ,n n
i jB b R ×= ∈ A B≥

.
 if  holds for all 

Calling 
i j i ja b≥

, 1, 2, ,i j n= A  is nonnegative if  
 It says that  if 

and only if 

0A ≥
0; , 1,2, , .i ja i j≥ = n 0A B− ≥

.A B≥  These definitions carry 
immediately over to vectors by identifying them 
with  matrices. 1n× ( )ρ ⋅  denotes the spectral radius 
of a matrix.  

Definition 1[3]  A matrix A  is an L-matrix if 
0;iia ≥   and , for all 1, 2, ,i n= 0i ja ≤

, 1, 2, , ;i j n i j= ≠ .  
    Definition 2[4] A matrix A  is irreducible if the 
directed graph associated to A  is strongly 
connected. 

Lemma 1[4] Let n nA R ×∈  be a nonnegative and 
irreducible  matrix. Then n n×
  (i) A  has a positive real eigenvalue equal to its 
spectral radius ( )Aρ ; 

(ii) for ( )Aρ , there corresponds an eigenvector 
; 0x >

(iii) ( )Aρ  is a simple eigenvalue of A . 
Lemma 2[5] Let A  be a nonnegative matrix. 

Then 
(1) If x Axα ≤  for some nonnegative vector x , 

, then 0x ≠ ( )Aα ρ≤ . 
(2)  If Ax xβ≤  for some positive vector x , then 

( )Aρ β≤ . Moreover, if A  is irreducible and if 
0 x Ax xα β≠ ≤ ≤ for some nonnegative vector x , 
then 

                    ( )Aα ρ β≤ ≤  
and x  is a positive vector. 

Lemma 3[4] Let 1 1 2 2A M N M N= − = − be 

two regular splittings of A , where  If 
, then 

1 0.A− ≥

2 1 0N N≥ ≥

1 2

1 1
1 20 ( ) ( ) 1M N M Nρ ρ− −≤ ≤ .≤

.<

 

If, moreover,  and if  equality 
excluded, then 

1 0A− ≥ 2 1 0N N≥ ≥

1 2

1 1
1 20 ( ) ( ) 1M N M Nρ ρ− −< <  

3 The preconditoined SOR iterative 
method 

Consider the preconditioned linear systems, 
,Ax b=                              (4) 

where ( )A I S A= +  and with  ( )b I S b= +

12

23

1,

00 0
0 0 0

.
0 0 0
0 0 0 0

n n

a
a

S
a −

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥=
⎢ ⎥

−⎢ ⎥
⎢ ⎥⎣ ⎦

 

And the preconditioned linear systems 
,Ax b=                             (5) 

where ( )A I S A= +  and ( )b I S b= + with 
1

1 12
1

2 23

1
1 1,

00 0
0 0 0

.
0 0 0
0 0 0 0

n n n

a
a

S
a

α
α

α

−

−

−
− −

⎡ ⎤−
⎢ ⎥−⎢ ⎥
⎢ ⎥=
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎣ ⎦

 

We express the coefficient matrix of (4) as 
,A D L U= − −  

where ( )D diag A= , L and U are strictly lower 

and upper triangular matrices obtained from A , 
respectively. By calculation, it obtains that   

12 21

23 32

1
1

,

1

a a
a a

D

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

12 23 31

1,1 1, 1 1,2 1, 2

1 2 ,

0
0

,
0

0
n n n n n n n n

n n n n

a a a
L

a a a a a a
a a a

− − − −

−1

⎡ ⎤
⎢ ⎥− +⎢ ⎥
⎢ ⎥=
⎢ ⎥
− + − +⎢ ⎥

⎢ ⎥− − −⎣ ⎦

1 12 213 12 23

2 23 3

0 0
0 0

.
0
0

n n

n n

a a aa a a
a a a

U

− +− +⎡ ⎤
⎢ ⎥− +⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

The coefficient matrix of (5) can be expressed as 
,A D L U= − −                       (6) 
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where ( )D diag A= , L and U  are strictly lower 

and upper triangular matrices obtained from A , 
respectively. By calculation, we also get that 

12 21

1

23 32

2

1

1 ,

1

a a

a a
D

α

α

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥

−= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

2

1 1

1
12 23 31

1 1
1,1 1, 1 1,2 1, 2

, 11 2

0

0
,

0
0

n nn n n n n n n n

n nn n

a a a

L
a a a a a a

aa a

α

α α
− −

−

− −
− − − −

−

⎡ ⎤
⎢ ⎥− +⎢ ⎥
⎢ ⎥=⎢ ⎥
⎢ ⎥− + − +
⎢ ⎥−− −⎢ ⎥⎣ ⎦

 

1 11
13 1 12 23 1 1 12 212 1 12

1 1
23 2 23 2 2 23 3

1
1, 1 1,

0
0

.

0

n n

n n

n n n n n

a a a a a aa a
a a a a a

U
a a

α αα
α α

α

− −−

− −

−
− − −

⎡ ⎤− + − +− +
⎢ ⎥− + − +⎢ ⎥
⎢ ⎥=
⎢ ⎥

− +⎢ ⎥
⎢ ⎥
⎣ ⎦

  Applying the SOR method to the preconditioned 
linear systems (4) and (5), respectively, we have the 
corresponding preconditioned SOR iterative method 
whose iterative matrices are 

1( ) [(1 )wL D wL w D wU−= − − + ],            (7) 
and 

1( ) [(1 )wL D wL w D wU−= − − + ].            (8) 
First, we need the following lemmas for our proof. 
Lemma 4 Let A  and A  be the coefficient 

matrices of the linear systems (1) and (4), 
respectively.  If 0 , 1w< ≤ A  is an L-matrix such 
that  and , and 

there exists a nonempty set of 
1, 0, 1,2, , 1i ia i n+ ≠ = − 1 0na ≠

Nα ∈  { }1,2, , 1n= −   
such that 

, 1 1,

, 1 1,

0 1,
0, \ .

i i i i

i i i i

a a i
a a i N

,α
α

+ +

+ +

< <⎧
⎨ = ∈⎩

∈
 

Then the iterative matrices  and wL wL  associated to 
the SOR method applied to the linear systems (1) 
and (4), respectively, are nonnegative irreducible. 
Proof: From that A is an L-matrix, then  0L ≥
is a strictly lower triangular matrix. So 

1 2 2( )
0.

n n1 1I wL I wL w L w L− − −− = + + + +
≥

 

By (3), we have 
1

2 2 1 1

2

2 2 1 1

( ) [(1 ) ]

[ ]
[(1 ) ]

(1 ) (1 )
( )[(1 )

(1 ) (1 ) ,

w

n n

n n

L I wL w I wU

I wL w L w L
w I wU

w I wU w w L w LU
w L w L w I wU

w I wU w w L T

−

− −

− −

= − − +

= + + + +
× − +

= − + + − +

+ + + − +
= − + + − +

]

2 2 2 1 1( )
[(1 ) ] 0.

n nT w LU w L w L
w I wU

− −= + + +
× − + ≥

 

where  

 

So  is nonnegative. Then, from Lemma 1 of 

[6], we have that  is irreducible. 
wL

wL
By (7), we have 

1

1 11

1 1

( ) [(1 ) ]

( ) [(1 ) ]

(1 ) (1 ) ,

wL D wL w D wU

I wD L w I wD U

w I w w D L wD U T

−

− −−

− −

= − − +

= − − +

= − + − + +

 

where  
1 1 12 2 2

1 11 1

( )( ) [ ( )

( ) ][(1 )
0.

n n

T w D L D U w D L

w D L w I wD U

− − −

− −− −

= +

+ − +
≥

]

+

 

So we have 0T ≥   and 0wL ≥  from 0D ≥ , 0L ≥  
and 0U ≥ . As wL , we have wL  is nonnegative 
and irreducible too.  

Analogously, we have the following lemma. 
Lemma 5 Let A  and A  be the coefficient 

matrices of the linear systems (1) and (5), 
respectively.  If 0 1,w< ≤  1iα ≥  1,2, , 1,i n= − A  

is an L-matrix such that  

and
1, 0, 1,2, , 1i ia i n+ ≠ = −

1 0na ≠ , and there exists a nonempty set of 

{ }1, 2, , 1N nβ ∈ = −

,
 such that 

, 1 1,

, 1 1,

0 ,
0, \ .

i i i i i

i i i i

a a i
a a i N

α β
β

+ +

+ +

< < ∈⎧
⎨ = ∈⎩

 

Then the iterative matrices  and wL wL  associated to 
the SOR method applied to the linear systems (1) 
and (5), respectively, are nonnegative  irreducible. 
 

We need the following equalities to prove 
Theorem 1, which are easily proved. 
( 1)E  ;D L I L SL− = − −  
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( 2)E  ;L D I L SL= − + +  

( 3)E  .U SU S U= − +  

Theorem 1 Let  and wL wL  be the iterative 
matrices of the SOR method given (3) and (7), 
respectively.  If 0 , 1w< ≤ A  is an L-matrix such 
that  and  and 

there exists a nonempty set of 
1, 0, 1,2, , 1i ia i n+ ≠ = − 1 0,na ≠

Nα ∈  { }1,2, , 1n= −  
such that 

, 1 1,

, 1 1,

0 1,
0, \ .

i i i i

i i i i

a a i
a a i N

,α
α

+ +

+ +

< <⎧
⎨ = ∈⎩

∈

;

 

Then  
(1)  , if ( ) ( )w wL Lρ ρ< ( ) 1wLρ <  

(2) ( ) ( )w wL Lρ ρ= , if ( ) 1wL ;ρ =  

(3) ( ) ( )w wL Lρ ρ> ,  if ( ) 1wL .ρ >  

Proof:  From Lemma 4, it is clear that  and wL

wL  are nonnegative irreducible matrices. Thus, 
from Lemma 1 there exists a positive vector 

1 2[ , , , ]T
nx x x x= , 0, 1,2, , ,ix i n> =  such 

that 
,wL x xλ=                             (9) 

where ( )wLλ ρ= , or, equivalently, 
[(1 ) ] ( ) .w I wU x I wL xλ− + = −        (10) 

Therefore, for this  0,x >
1( ) [(1 )

( )] .

wL x x D wL w D wU

D wL x

λ

λ

−− = − − +

− −
         (11) 

Since ( ) (1 ) (D wL x w D w D L xλ λ λ− = − + − ) , we 
get 

1( ) [(1 )

(1 ) ( )] .

wL x x D wL w D wU

w D w D L x

λ

λ λ

−− = − − +

− − − −
    (12) 

Since U SU S U= − + , from (12) we obtain  
1( ) [(1 ) (

(1 ) ( )] .

w )L x x D wL w D w SU S U

w D w D L x

λ

λ λ

−− = − − + − +

− − − −

By L D I L SL= − + + ,  from the above equation 
we have 

1( ) [(1

( )

( )] .

wL x x D wL w w D

w SU S U

w I L SL x

)λ λ λ

λ

−− = − − − +

+ − +

− − −

     (13) 

By simple computations,  from (13) we get 

{

}

1

1

1

1

( ) [(1 )(1 )

( )

( ) ]

( ) (1 )(1 )

( )

( )[( 1 ) ]

( ) [(1 )(1 )(

(1 ) ]

( 1)( ) [( 1)( )

] .

wL x x D wL w D

w I L SL

w I S U wS x

D wL w D

w I L SL w S

)

I S w I w L

D wL w D I

S x

D wL w D I

S x

λ λ

λ

λ

λ

λ λ

λ

λ

λ

−

−

−

−

− = − − −

− − −

+ + −

= − − −

− − − −

+ + − + −

= − − − −

− −

= − − − −

+

x
 

Let  

1212 21

23 32 23

1,

( 1)( )
0( 1) 0

( 1)0 0
.

0 0 0
0 0 0

n n

E w D I S
aw a a

w a a a

a −

= − − +

−− −

0

⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥=
⎢ ⎥

−⎢ ⎥
⎢ ⎥⎣ ⎦

 

We have 
1

1
1 2 1

( 1)( )

( 1)( ) ( , , , ,0)

w

T
n

L x x D wL Ex

D wL

λ λ

λ μ μ μ

−

−
−

− = − −

= − − ,

,
where  

, 1 1, , 1 1( 1) 0
( 1, 2, , 1).

i i i i i i i i iw a a x a x
i n

μ + + + += − − − ≥

= −
 

(1) If 0 1λ< < , then 0wL x xλ− ≤  but not equal 
to 0. By Lemma 2, we get ( ) ( )w wL Lρ λ ρ< = . 

(2) If 1λ = , then 0wL x xλ− = . By Lemma 2, we 
get ( ) ( )w wL Lρ λ ρ= = . 

(3) If 1λ > , then 0wL x xλ− ≥  but not equal to 0. 
By Lemma 2, we get ( ) ( )w wL Lρ λ ρ> = . 

Remark 1 It is easy to get that if ,Nα = our 
preconditioner is reduced to  the preconditioner 
in [1]. 

We need the following equalities to prove 
Theorem 2, which are easily proved. 
( 1 )E ′  ;D L I L SL− = − −  

( 2 )E ′  ;L D I L SL= − + +  

( 3 )E ′  .U SU S U= − +  
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Theorem 2 Let  and wL wL  be the iterative 
matrices of the SOR method given (3) and (8), 
respectively.  If 0 1 ,w< ≤ 1iα ≥ 1,2, , 1,i n= −  A  

is an L-matrix such that  

and  and there exists a nonempty set of 
1, 0, 1,2, , 1i ia i n+ ≠ = −

1 0,na ≠

Nβ ∈  { }1,2, , 1n= −

,
 such that 

, 1 1,

, 1 1,

0 ,
0, \ .

i i i i i

i i i i

a a i
a a i N

α β
β

+ +

+ +

< <⎧
⎨ = ∈⎩

∈
 

Then  
(1)  ( ) ( )w wL Lρ ρ< , if ( ) 1wL ;ρ <  

(2) ( ) ( )w wL Lρ ρ= , if ( ) 1wL ;ρ =  

(3) ( ) ( )w wL Lρ ρ> ,  if ( ) 1wL .ρ >  

Proof: From Lemma 5, it is clear that  and wL

wL  are nonnegative irreducible matrices. Thus, 
from Lemma 1 there exists a positive vector 

1 2[ , , , ]T
nx x x x= ,  such that 

[(1 ) ] ( ) .w I wU x I wL xλ− + = −        (14) 
Therefore, for this  0,x >

1( ) [(1 )

( )] .

wL x x D wL w D wU

D wL x

λ

λ

−− = − − +

− −
          (15) 

Since 
( ) (1 ) (D wL x w D w D L xλ λ λ− = − + − ) , then we 

get 
1( ) [(1 )

(1 ) ( )] .

wL x x D wL w D wU

w D w D L x

λ

λ λ

−− = − − +

− − − −
    (16) 

From U SU S U= − + , from (16) we obtain  
1( ) [(1 ) (

(1 ) ( )] .

w )L x x D wL w D w SU S U

w D w D L x

λ

λ λ

−− = − − + − +

− − − −

By L D I L SL= − + + ,  from the above equation 
we have 

1( ) [(1

( )

( )] .

wL x x D wL w w D

w SU S U

w I L SL x

)λ λ λ

λ

−− = − − − +

+ − +

− − −

     (17) 

By simple computations,  from (17) we get 
1( ) [(1 )(1

( )

( )] .

wL x x D wL w D

w S I U wS

w I L SL x

{

}

1

1

1

( ) (1 )(1 )

( )

( )[( 1 ) ]

( ) [(1 )(1 )(

(1 ) ]

(1 )( ) [(1 )( )

] .

wL x x D wL w D

w I L SL w S

)

I S w I w L

D wL w D I

S x

D wL w D I

S x

λ λ

λ

λ λ

λ

λ

λ

−

−

−

− = − − −

− − − −

+ + − + −

= − − − −

− −

= − − − −

−

x

 

Let  

12 21 12

1 1

23 32 23

2 2

1,

1

(1 )( )

( 1) 0 0

0 ( 1) 0
.

0 0 0

0 0 0

n n

n

E w D I S
a a aw

a a aw

a

α α

α α

α
−

−

= − − −

0

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

   

We have 
1

1
1 2 1

(1 )( )

(1 )( ) ( , , , ,0) ,
w

T
n

L x x D wL Ex

D wL

λ λ

λ μ μ μ

−

−
−

− = − −

= − −
where  

, 1 1, , 1 1
1 [( 1) ] 0,

( 1, 2, , 1).

i i i i i i i i i
i

w a a x a x

i n

μ
α + + + += − +

= −

≤
 

The following proof is similar to Theorem 1. Here is 
omitted.  
   It is well known that, when , SOR iterative 
method is reduced to Gauss-Seidel iterative method. 
So we can easily get the following corollaries. 

1w =

Corollary 1 Let  and wL wL  be the iterative 
matrices of the Gauss-Seidel iterative method 
associated to the linear systems (1) and (4), 
respectively. If A  is an L-matrix such that 

1, 0, 1,2, , 1i ia i n+ ≠ = −  and  and there 

exists a nonempty set of 
1 0,na ≠

Nα ∈  { }1,2, , 1n= −  
such that )λ λ

λ

−− = − − −

+ + −

− − −

 , 1 1,

, 1 1,

0 1,
0, \ .

i i i i

i i i i

a a i
a a i N

,α
α

+ +

+ +

< < ∈⎧
⎨ = ∈⎩

 

Then  
(1)  ( ) ( )w wL Lρ ρ< , if ( ) 1wL ;ρ <  
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(2) ( ) ( )w wL Lρ ρ= , if ( ) 1wL ;ρ =  

(3) ( ) ( )w wL Lρ ρ> ,  if ( ) 1wL .ρ >  

Corollary 2 Let  and wL wL  be the iterative 
matrices of the Gauss-Seidel iterative method 
associated to the linear systems (1) and (5), 
respectively.  If 1iα ≥ 1,2, , 1,i n= −  A  is an L-

matrix such that  and  , 

and there exists a nonempty set of 
1 0na ≠ 1, 0i ia + ≠ 1,2, , 1i n= −

Nβ∈  { }1,2, , 1n= −  
such that 

, 1 1,

, 1 1,

0 ,
0, \ .

i i i i i

i i i i

a a i
a a i N

,α β
β

+ +

+ +

< <⎧
⎨ = ∈⎩

∈
 

Then  
(1)  ( ) ( )w wL Lρ ρ< , if ( ) 1wL ;ρ <  

(2) ( ) ( )w wL Lρ ρ= , if ( ) 1wL ;ρ =  

(3) ( ) ( )w wL Lρ ρ> ,  if ( ) 1wL .ρ >  

Theorem 3 Let   and . 
Under the hypothesis of Theorem 1, then 

1 20 1w w< < ≤ 1 0A− ≥

2 10 ( ) ( )w wL Lρ ρ< < 1< , if 0 1λ< < . 
Proof: Let 

w wA M N= −  
where  

1
wM D L

w
= − , 

1
w

wN D
w
−

= +U . 

Since , then  1 20 1w w< < ≤ 20 wN N≤ ≤ 1w . By 
Lemma 3, this completes the proof.  

Analogously, we have the following Theorem. 
Theorem 4 Let   and . 

Under the hypothesis of Theorem 2, then 
1 20 1w w< < ≤ 1 0A− ≥

2 10 ( ) ( )w wL Lρ ρ< < 1< , if 0 1λ< < . 
Remark 2 From the above discussing, it is easy 

to get that  is the optimal value. That is, the 
rate of convergence of the preconditioned Gauss-
Seidel iterative method is faster than that the 
preconditioned SOR iterative method with 0 1

1w =

w< ≤ . 
 
 

4 Numerical example 
Now let us consider the following example to 

illustrate the results obtained. 
The matrix A of the coefficient matrix of the 

linear system (1)  is the following form: 

1
1

1
1

1 n n

q r s q
s q r q
q s q s

A
r q s r
s q

s r q s
×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

where 
2q
n

= − , 0r = and 
1

2
s

n
= −

+
. For 

convenience, we set up the tested problem so that 
the right hand side is equal to  All tests 
are started from the zero vector, performed in 
Matlab 7.0. The error is chosen as 

(1,1, ,1) .Tb=

1 .k kERR x x+= −  
The stopping criterion is chosen as 

1
610

k k

k

x x
x

+
−−

≤ . 

Let ‘sor’ denote the non-preconditioned SOR 
method, ‘psor’ denote the preconditioned SOR 
method of the present paper and ‘pesor’ denote the 
preconditioned SOR method in [7] with P I S= + , 
where  

,1

0 0 0
0 0 0

0 0n

S

a

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

. 

In Tables 1-4, we list the value of the  spectral 
radius of iterative matrix ( ( ))ρ ⋅ , the iteration 
number (IT), the CPU time (CPU(s)), the error 
(ERR) with the different value of w  and  when 
the SOR iterative method are used to solve the 
linear systems (1) with the preconditioner 

n

I S+  
and ,I S+    respectively.  

The purpose of these experiments is just to 
investigate the influence of the spectral radius of 
iterative matrix and the convergence behavior of 
SOR iterative method with the preconditioner I S+  
and I S+ , respectively.  

 
Iterative 
method ( )ρ ⋅  IT CUP(s) ERR 

sor 0.9583 251 0.1410 66.9581 10−×
pesor 0.9582 251 0.1250 66.9129 10−×
psor 0.9555 237 0.1090 66.8481 10−×

Table 1. Numerical illustration of Theorem 1 with 
0.8w =  and 50n =  
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Iterative 
method ( )ρ ⋅  IT CUP(s) ERR 

sor 0.9735 380 0.7030 69.9395 10−×
pesor 0.9734 380 0.7030 69.9063 10−×
psor 0.9725 368 0.6720 69.9031 10−×

Table 2. Numerical illustration of Theorem 1 with 
 and  0.9w = 100n =

 
Iterative 
method ( )ρ ⋅  IT CUP(s) ERR 

sor 0.9882 793 3.8590 51.2150 10−×
pesor 0.9882 793 3.8570 51.2150 10−×
psor 0.9880 779 3.7650 51.2109 10−×

Table 3. Numerical illustration of Theorem 1 with 
 and  0.7w = 150n =

 
Iterative 
method ( )ρ ⋅  IT CUP(s) ERR 

sor 0.9902 931 9.6250 51.4049 10−×
pesor 0.9901 931 9.6250 51.4044 10−×
psor 0.9900 918 9.4220 51.4035 10−×

Table 4. Numerical illustration of Theorem 1 with 
and  0.75w = 200n =
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−7

−6

−5
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−3
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−1

0

Iteration number

R
E

S
=

lo
g

1
0

(E
R

R
)

 

 
sor
psor
pesor

 
Fig.1 Iteration number with  and 0.8w = 50n =  

 
  Remark 3  Fig. 1 corresponds to  Table 1. Tables 
2-4 corresponding to figures are similar to Table 1, 
which are omitted here. From Tables 1-4 and Fig. 1, 
it is easy to get that Theorem 1 holds. 
    Next , we study the Gauss-Seidel iterative method 
to illustrate Corollary 1.  

Similarity, let ‘gs’, ‘pgs’ and ‘pegs’ , respectively, 
denote the non-preconditioned Gauss-Seidel method, 
the preconditioned Gauss-Seidel method of the 
present paper and the preconditioned Gauss-Seidel 
method in [7].  The spectral radius of the iterative 

matrix ( ( ))ρ ⋅ , the iteration number (IT), the CPU 
time (CPU(s)) and the error (ERR)  are listed in 
Tables 5-8  with the different value of  and . w n

 
Iterative 
method ( )ρ ⋅  IT CUP(s) ERR 

gs 0.9379 174 0.094 66.8179 10−×
pegs 0.9379 174 0.094 66.7626 10−×
pgs 0.9330 162 0.078 66.8110 10−×

Table 5. Numerical illustration of Corollary 1 with 
50n =  

 
Iterative 
method ( )ρ ⋅  IT CUP(s) ERR 

gs 0.9676 317 0.5780 69.9348 10−×
pegs 0.9676 317 0.5620 69.8974 10−×
pgs 0.9663 306 0.5470 69.8781 10−×

Table 6. Numerical illustration of Corollary 1 with 
100n =  

 
Iterative 
method ( )ρ ⋅  IT CUP(s) ERR 

sor 0.9782 455 2.2190 51.2117 10−×
pesor 0.9782 455 2.2190 51.2116 10−×
psor 0.9776 445 2.1410 51.2016 10−×

Table 7. Numerical illustration of Corollary 1 with 
150n =  

 
Iterative 
method ( )ρ ⋅  IT CUP(s) ERR 

sor 0.9836 590 6.0470 51.3969 10−×
pesor 0.9836 590 6.0630 51.3962 10−×
psor 0.9833 579 5.8910 51.3928 10−×

Table 8. Numerical illustration of Corollary 1 with 
200n =  
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Fig.2 Iteration number with  50n =
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Remark 4 The following Fig. 2 corresponds to 
Table 5. 

From Tables 5-8 and Fig. 2, it is not difficult to 
find that Corollary 1 holds. 

To illustrate Remark 2 obtained, here we give the 
following Figs 3-4. Fig. 3 is to show that the non-
preconditioned Gauss-Seidel method is faster than 
the non-preconditioned SOR method. Subsequently, 
Fig. 4 shows that the preconditioned Gauss-Seidel 
method is faster than the preconditioned SOR 
method.  
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Fig.3 Unpreconditioned comparison results with 

 50n =
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Fig.4 Preconditioned comparison results with 

 50n =
 

To demonstrate Theorem 2,  for simplicity, here 
2, ( 1,2, , 1)i i nα = = − . As before, we set up the 

tested problem so that the right hand side is equal to 
 All tests are started from the zero 

vector. The error is chosen as 

(1,1, ,1) .Tb=
1 .k kERR x x+= −  

The stopping criterion is chosen as 
1

610
k k

k

x x
x

+
−−

≤ . 

Some results are presented to illustrate the 
behavior of the convergence of the SOR method 
with the preconditioner I S+ , which are listed in 

Tables 9-12. The purpose of these experiments is 
just to investigate the influence of the spectral radius 
of iterative matrix and the convergence behavior of 
SOR iterative method with the preconditioner I S+ . 
 
Iterative 
method ( )ρ ⋅  IT CUP(s) ERR 

sor 0.9509 216 0.0781 64.3557 10−×
psor 0.9477 204 0.0469 64.3642 10−×

Table 9. Numerical illustration of Theorem 2 with 
0.5w =  and 20n =  

 
Iterative 
method ( )ρ ⋅  IT CUP(s) ERR 

sor 0.9661 304 0.1250 66.1536 10−×
psor 0.9649 294 0.0781 66.2858 10−×

Table 10. Numerical illustration of Theorem 2 with 
0.6w =  and 40n =  

 
Iterative 
method ( )ρ ⋅  IT CUP(s) ERR 

sor 0.9645 291 0.250 67.7326 10−×
psor 0.9635 284 0.1875 67.7071 10−×

Table 11. Numerical illustration of Theorem 2 with 
0.8w =  and 60n =  

 
Iterative 
method ( )ρ ⋅  IT CUP(s) ERR 

sor 0.9733 378 0.6094 68.8828 10−×
psor 0.9728 371 0.500 58.8977 10−×

Table 12. Numerical illustration of Theorem 2 with 
0.8w =  and 80n =  
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Fig.5 Iteration number with ,0.5w = 20n =  and 

2α =  
Similarly, the above Fig. 5 corresponds to Table 9. 

From Tables 9-12 and Fig. 5, we get that Theorem 2 
holds.  
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In the sequel, we investigate the Gauss-Seidel 
method with preconditioner I S+ . In other words, 
we consider the spectral radius of of the iterative 
matrix ( ( ))ρ ⋅ , the iteration number (IT), the CPU 
time (CPU(s)) and the error (ERR) with the different 
value of w  and  when the Gauss-Seidel method is 
used to solve the linear systems (1) with 
preconditioner 

n

I S+ . 
From our numerical experiments we get Tables 

13-16.  
 

Iterative 
method ( )ρ ⋅  IT CUP(s) ERR 

gs 0.8595 80 0.0469 64.1360 10−×
pgs 0.8465 73 0.0156 64.3739 10−×

Table 13. Numerical illustration of Corollary 2 with 
 20n =

 
Iterative 
method ( )ρ ⋅  IT CUP(s) ERR 

gs 0.9225 141 0.0938 66.1743 10−×
pgs 0.9187 135 0.0625 66.0958 10−×

Table 14. Numerical illustration of Corollary 2 with 
 40n =

 
Iterative 
method ( )ρ ⋅  IT CUP(s) ERR 

sor 0.9471 202 0.1875 57.5164 10−×
psor 0.9454 196 0.1406 67.5418 10−×

Table 15. Numerical illustration of Corollary 2 with 
 60n =

 
Iterative 
method ( )ρ ⋅  IT CUP(s) ERR 

sor 0.9602 262 0.4129 68.8849 10−×
psor 0.9592 257 0.3125 68.5927 10−×

Table 16. Numerical illustration of Corollary 2 with 
 80n =

 
To illustrate Remark 2 obtained further, here we 

give the above Figs 6-7. Fig. 6 illustrates that the 
non-preconditioned Gauss-Seidel method is faster 
than the non-preconditioned SOR method, too. 
Subsequently, Fig. 7 shows that the preconditioned 
Gauss-Seidel method is faster than the 
preconditioned SOR method as well as.  

From the above numerical experiments, it is easy 
to get that Theorems 1-2 and Corollaris 1-2 hold. By 
observing a mass of experiments, we also get that  
Theorems 3-4 hold and our preconditioner is 
superior to the preconditioner in [7]. What is more, 
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Fig.6 Iteration number with and 20n = 2α =  
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Fig.7 Preconditioned comparison results with 

20n = and 2α =  
 

the rate of convergence of the preconditioned 
Gauss-Seidel iterative method is faster than that the 
preconditioned SOR iterative method with 0 1w< ≤ .  
    Recently,  Darvishi and Azimbeigi [17] proposed 
the preconditioner P I S′ ′= +  with 

1
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⎣ ⎦

   To inspect the efficiency of the preconditioner  
and 

P
P′ for Gauss-Seidel method by the above 

discussion,  we mainly discuss two cases:  
  (I) 1 ( 1,2, , )i i i nα β= =   = ;   

(II) 1 ( 1,2, , )i i i nα β≠ ≠   = . 
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n  20 30 40 50 
( )Pρ  0.8321 0.8858 0.9148 0.9330
( )Pρ ′  0.8321 0.8858 0.9148 0.9330

   Table 17. Spectral radius of iterative matrix with  
the different values of  in Case (I) n
 

n  20 30 40 50 
( )Pρ  0.8461 0.8925 0.9187 0.9355
( )Pρ ′  0.8461 0.8925 0.9187 0.9355

  Table 18. Spectral radius of iterative matrix with  
the different values of n  and 2i iα β= =  for Case 
(II) 
 

n  20 30 40(0.6) 50(0.8)
( )Pρ  0.8458 0.8924 0.9186 0.9355
( )Pρ ′  0.8458 0.8924 0.9186 0.9355

  Table 19. Spectral radius of iterative matrix with  
the different values of n , 1iβ =  and 2iα =  for 
Case (II) 
 

n  20 30 40 50 
( )Pρ  0.8322 0.8858 0.9148 0.9330
( )Pρ ′  0.8322 0.8858 0.9148 0.9330

  Table 20. Spectral radius of iterative matrix with 
the different values of n , 2iβ =  and 1iα =  for 
Case (II) 

 
In Tables 17-20, we list the value of  the  spectral 

radius of iterative matrix ( )Pρ  and ( )Pρ ′  for Case 
(I) and (II). 

From Tables 17-20, under certain conditions, we 
are interested in finding that the spectral radius 

( )Pρ of iterative matrix is the same as the spectral 
radius ( )Pρ ′ of iterative matrix when Gauss-Seidel 
method is applied to solve the linear systems (1) 
with L-matrices. In other words, the convergence 
rate of Gauss-Seidel method with the preconditioner 

 is the same as the convergence rate of Gauss-
Seidel method with the preconditioner . Whereas, 
based on the structure of preconditioner and the 
memory requirement, the preconditioner P  is less 
than the preconditioner P

P
P′

′ . In this case, the 
preconditioner  is superior to  the preconditioner 

.   
P

P′
 

4 Conclusion 
   In this paper, we have studied the preconditioned 
SOR iterative method for solving L-matrices linear 
systems (1). Some comparison theorems on the 

preconditioned SOR iterative method are presented. 
The optimal parameter is presented as well as. The 
comparison results and the numerical example show 
that the rate of convergence of the preconditioned 
Gauss-Seidel method is faster than the rate of 
convergence of the preconditioned SOR iterative 
method with 0 1w .< ≤  
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