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Abstract: Consider the degenerate parabolic equation ∂xxu+u∂yu−∂tu = f(·, u), which comes from mathemat-
ics finance, and in which u(t, x) is the utility function of a agent’s decision under risk. By Oleinik’s line method,
the existence and the uniqueness of the local classical solution for the initial boundary problem of the equation are
got. Also, the global entropy solution of the Cauchy problem is discussed.
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1 Introduction
In this paper, we consider the following initial bound-
ary problem:

∂xxu+ u∂yu− ∂tu = f(·, u), (t, x, y) ∈ (0, T ]× Ω
(1)

u(·, 0) = u0, (x, y) ∈ Ω (2)

u |{x=0}×[0,T ]= u1(0, y, t), u |{x=R}×[0,T ]= 0 (3)

where Ω = (0, R) × (0, N) ⊂ R2, T is a suit-
ably small positive constant. The equation (1) arises
in mathematics finance, arises when studying nonlin-
ear physical phenomena such as the combined effects
of diffusion and convection of matter (cf.[5]), many
mathematicians have been interested in it. In [1], An-
tonelli, Barucci and Mancino introduce a new model
for agent’s decision under risk, in which the utility
function is the solution to (1)-(2). In the sense of the
User’s guide, i.e.

| u(x, y, t)− u(η, ξ, t) |≤ CT (| x− η | + | y − ξ |)
(4)

for every (x, y), (ξ, η) ∈ R2, t ∈ [0, T ), under the
assumption that f is uniformly Lipschitz continuous
function, Crandall, Ishii and Lions [2] proved the ex-
istence of a continuous viscosity solution by means of
probability methods. In [3], Citti, Pascucci and Poli-
doro studied the interior regularity, they proved that
the viscosity solutions are indeed in classical sense. In
[4], Antonelli and Pascucci showed that u is the limit,
uniformly on compacts of [0, T ] × R2, of the family
of solutions to the regularized Cauchy Problem: for
(x, y, t) ∈ R2 × (0, T ],

ε2∂yyu+ ∂xxu+ u∂yu− ∂tu = f(·, u), (5)

u(0, x, y) = u0(x, y). (6)

Other related work, one can refer to [7] etc. However,
all of the published papers study the Cauchy problem
and get the local classical solutions. As for the exis-
tence and uniqueness of the global weak solution for
the cauchy problem of (1), there are some differential
ways to deal with them, for example, (1) is the special
case of the Cauchy problem discussed in [8],[9] etc.,
we will simply narrate this aspect in the last section of
the paper. The main aim of the paper is to study the
initial boundary problem (1)-(3).

Clearly, (1) is a degenerate parabolic equation on
account of that it lacks the two order partial derivative
term ∂yyu. It is well-known that there are some rules
in how to quote an initial boundary problem of a de-
generate parabolic equation, one can refer to Oleinik’s
books [6],[10] etc. According to these rules, we quote
the problem as the form of (1)-(3). We will discuss
this problem in a complete different way comparing
to [1]-[4].

In order to describe our method, we have to quote
the well-known Prandtl system for a non-stationary
boundary layer arising in an axially symmetric in-
compressible flow past a solid body. As well known,
Prandtl proposed the conception of the boundary layer
in 1904[11]. From then on, the interest in the theory
of boundary layer has been steadily growing, due to
the mathematical questions it poses, and its important
practical applications. According to Prandtl boundary
layer theory, the flow about a solid body can be di-
vided into two regions: a very thin layer in the neigh-
borhood of the body (the boundary layer) where vis-
cous friction plays an essential part, and the remaining
region outside this layer where friction may be ne-
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glected (the outer flow). Thus, for fluids whose vis-
cosity is small, its influence is perceptible only in a
very thin region adjacent to the walls of a body in the
flow; the said region, according to Prandtl, is called
the boundary layer. This phenomenon is explained
by the fact that the fluid sticks to the surface of a solid
body and, this adhesion inhibits the motion of a thin
layer of fluid adjacent to the surface. In this thin re-
gion the velocity of the flow past a body at rest un-
dergoes a sharp increase: from zero at the surface to
the values of the velocity in the outer flow, where the
fluid may be regarded as frictionless. Prandtl derived
the system of equations for the first approximation of
the flow velocity in the boundary layer. This system
served as a basis for the development of the bound-
ary layer theory, which has now become one of the
fundamental parts of fluid dynamics. Assume that the
motion of a fluid occupying a two-dimensional region
is characterized by the velocity vector V = (u, v),
where u, v are the projections of V onto the coor-
dinate axes x, y, respectively, the Prandtl system for
a non-stationary boundary layer arising in an axially
symmetric incompressible flow past a solid body has
the form as

∂tu+ u∂xu+ v∂yu = ∂tU + U∂xU + ∂2
yu,

∂x(ru) + ∂y(rv) = 0,

in a domain D = {0 < t < T, 0 < x < X, 0 <
y < ∞}, where ν = const > 0 is the coefficient
of kinematic viscosity; U(t, x) is called the velocity
at the outer edge of the boundary layer, U(t, 0) = 0,
U(t, x) > 0 for x > 0; r(x) is the distance from
that point to the axis of a rotating body, r(0) = 0,
r(x) > 0 for x > 0. In recent decades, many scholars
have been carrying out research in this field, achieve-
ments are abundant in literature on theoretical, numer-
ical experimental aspects of the theory, see [12],[13]
etc. If we introduce the Crocco variables

τ = t, ξ = x, η =
u(t, x)
U(t, x)

,

we obtain the following equation for w(τ, ξ, η) =
∂yu
U :

w2wηη − wτ − ηUwξ +Awη +Bw = 0 (7)

whereA,B are the two known functions derived from
the Prandtl system, one can refer to [6] for details.
By the above Crocco transform, the Prandtl system
is succeeded to be changed to a degenerate parabolic
equation (7). On this basic point of view, Oleinik [6]
had done excellent works in the boundary theory by
the line method. Comparing (1) with (7), we find

these two equations are similar as each other, both of
them are lacks the two order partial derivative term
∂yyu. In view of that Oleinik’s line method had been
used widely to study a variety of problems, for exam-
ples [19][20] et al., it is nature to conjecture that we
are able to solve the problem (1)-(3) by Qleinik’s line
method.

The main result of the paper is the following

Theorem 1 Assume that

| u0(x, y) |≤ c(R− x), (x, y) ∈ Ω, (8)

the first order and second order derivatives of u0 are
bounded, u0xxx is bounded too. Assume that u1is con-
tinuous and smooth near ∂Ω, its first order, second or-
der derivatives at x = 0 are all bounded. Suppose f
satisfies (11) below and is an uniformly Lipschitz con-
tinuous function. Then the initial boundary problem
(1)-(3) has a unique solution in classical sense pro-
vided that t ≤ T , T is suitable small (or y ≤ N , N
is suitable small), and moreover, the first order and
second order derivatives of u are bounded.

By the way, for the best knowledge of the author,
this is the first paper on the initial boundary problem
of (1).

2 Line method
For the comparability of signs with the Prandtl sys-
tem, we rewrite (1)–(3) as following: for (ξ, η, t) ∈
Ω× (0, T ),

wηη − wτ + wwξ = f(η, ξ, τ, u), (9)

w(η, ξ, 0) = w0(η, ξ), (ξ, η) ∈ Ω (10)

w |{η=0}×[0,T ]= φ(0, ξ, t), w |{η=R}×[0,T ]= 0 (11)

where Ω = (0, N)× (0, R), w0 ∈ C2(Ω), its first or-
der derivatives and w0ηη are all bounded, φ(η, ξ, τ)
is a smooth function on Ω× (0, T ), w0(0, ξ) =
φ(0, ξ, 0). and f is a Lipschitz continuous function
which satisfies that: when w1 − w2 ≥ 0,

c2(w1 − w2) ≥ f(·, w1)− f(·, w2) ≥ c1(w1 − w2)
(12)

and
| f(·, w) |≤ c | w |p (13)

for some nonnegative number p. Moreover, we as-
sume that K1 ≤ 1

2R ,

| w0(η, ξ) |≤ K1(R− η), (η, ξ) ∈ Ω, φ ≤ 1
2
. (14)
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It is regret that the author does not know, to get the
results of theorem 1.1, whether the condition (14) is
necessary or not, it seems that (14) is only a technique
request in the proof. If one is able to refine the proof,
the (14) may be abandoned or be weaker.

For any functions, we use the following notation

fm,k(η) = f(η, kh,mh), h = const > 0.

Instead of equation (9)-(11), let us consider the fol-
lowing system of ordinary differential equations:

wm,k
ηη − wm,k − wm−1,k

h
+ wm−1,kw

m,k − wm,k−1

h
−f(·, wm,k) = 0, (15)

wm,k |η=R= 0, wm,k |η=0= φ(0, kh,mh), (16)

where

w0,k = w0(kh, η), m = 1, · · · , [Th]; k = 0, 1, · · · , [Nh]

If k = 0, (15) should be

wm,0
ηη − wm,0 − wm−1,0

h
− f(·, wm,0) = 0 (17)

The solutions of (15)-(16) are defined in the clas-
sical sense and we will prove that

wm,k
ηη , wm,k

η ,
wm,k − wm−1,k

h
,
wm,k − wm,k−1

h

are uniformly bounded for any m, k.

Lemma 2 Under the conditions of (11)-(13), the
problem (15)-(16) admits a unique solution for mh ≤
T0 and small enough h, where T0 is a suitable small
positive number. The solution satisfies the following
estimate

V0(η,mh) ≤ wm,k ≤ V1(η,mh) (18)

where V0, V1 are continuous function, positive in
(0, R), V1 ≤ 1

2 and such that

V0 ≡ K0(R− η), V1 ≡ K1(R− η) (19)

in a neighborhood of η = R, where K1 ≤ 1
2R as

before.

Proof: By (15) and (17), the existence of wm,k is
clearly. Let Qm,k be the difference of two solution
wm,k

1 , wm,k
2 . Then Qm,k can attain neither a positive

maximum nor a negative minimum at η = 0, R. By
the inductive assumption, | wm,k |≤ 1

2 , so

0 = Lm,k(Qm,k)

= Qm,k
ηη − 1

h
Qm,k + wm−1,k 1

h
Qm,k

+f(·, wm,k
1 )− f(·, wm,k

2 ) (20)

Qm,k can attain neither a positive maximum nor a neg-
ative minimum in interior of (0, R) by (12)-(13), pro-
vided that h ≤ h0 small enough. Consequently, under
our assumption, problem (15) cannot have more than
one solution. Therefore, we shall prove (18) form and
k under the assumption of that the solutions wm−1,k

of (15) admit the following a priori estimate

V1(η, (m−1)h) ≥ wm−1,k ≥ V0(η, (m−1)h). (21)

Denote that

Lm,k(u) = um,k
ηη − 1

h
(um,k − um−1,k)

+ wm−1,k 1
h

(um,k − um,k−1)− f(·, wm,k).

In order to prove the priori estimate (18) for τ = mh,
it suffices to show that there exist function V1 with the
properties specified in Lemma 2 and such that

0 ≥ Lm,k(V1) = V m,k
1ηη − 1

h
(V m,k

1 − V m−1,k
1 )

+wm−1,k 1
h

(V m,k
1 − V m,k−1

1 )− f(·, V m,k
1 )

and
V1(0,mh) ≥ φ(0, kh,mh)

under assumption (21). Then the inequality (20) can
be proved by induction with respect to m. Indeed, let
qm,k = V1 − wm,k. Then qm,k(0) ≥ 0 and

0 ≥ Lm,k(V1)− Lm,k(w)

= qm,k
ηη − 1

h
(qm,k − qm−1,k)

+wm−1,k 1
h

(qm,k − qm,k−1)

+f(·, V m,k
1 )− f(·, wm,k)

≥ qm,k
ηη − 1

h
(qm,k − qm−1,k)

+wm−1,k 1
h

(qm,k − qm,k−1)

+c2qm,k (22)

Let qm,k
1 = eαmhqm,k. Then

0 ≥ qm,k
1ηη −

1
h

(qm,k
1 − qm−1,k

1 )

+wm−1,k 1
h

(qm,k
1 − qm,k−1

1 )

+αeαh
′
wm−1,k + c2q

m,k
1

≥ qm,k
1ηη − [

1
h

(1− wm−1,k)− c2]q
m,k
1 +

1
h
qm−1,k
1
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+wm−1,k(α− 1
h
qm,k−1
1 ) (23)

where 0 < h′ < h. By (23), if we choose α = α(h)
large enough, then it is easily to know that qm,k

1 can
not attain negative minimum in interior of (0, R) by
maximal principle.

qm,k
1 |η=0= eαmhqm,k |η=0≥ 0

qm,k
1 |η=R= eαmhqm,k |η=R= 0,

so (18) is true .
Under the condition (21), let us show that there is

a positive T0 such that for mh ≤ T0 there exist func-
tion V1 satisfying the desired inequality. Let ϕ1(s) be
a smooth function such that for η > R

2 ,

ϕ1(s) = R− η,

for 1
4R ≤ s ≤ 1

2R,

R

2
≤ ϕ1 ≤ R,

for η < 1
4R,

ϕ1(s) = R.

Set
V1 = Mϕ1(η)ϕ2(β1η)eβ2mh, (24)

where ϕ2 is a smooth function such that for 0 ≤ s ≤
R,

ϕ2(s) = 4− e
1
R

s,

for s ≥ 2R,
ϕ2(s) = 1,

for R ≤ s ≤ 2R

1 ≤ ϕ2(s) ≤ 3.

The constant M is chosen from the condition
V1(η, ξ, 0) ≥ 1

2 . The positive constants β1, β2 will
be specified shortly.

Clearly

L(V1) = Meβ2mh(ϕ1(η)ϕ2(β1η))ηη

−1
h
Mϕ1(η)ϕ2(β1η)(eβ2mh − eβ2(m−1)h)

−f(·, wm,k).

For a given small positive number δ, if R − η <
δ, we can choose β1 such that β1η ≥ 2R then
ϕ1(η)ϕ2(β1η) = R−η, so choosing β2 large enough,
mh ≤ T0 small enough

L(V1) = −1
h
M(R−η)(eβ2mh−eβ2(m−1)h)+c1(wm,k)p

≤ −1
h
M(R− η)(eβ2mh − eβ2(m−1)h)

+c1(M(R− η)eβ2mh)p

≤M(R− η)[−β2e
β2h′ + c2] ≤ 0.

If R − η > δ, notice that | (ϕ1(η)ϕ2(β1η))ηη |≤ c3,
then

L(V1) ≤ −1
h
Mϕ1(η)ϕ2(β1η)(eβ2mh − eβ2(m−1)h)

+c3Meβ2mh + c1 | wm,k |p

≤ −1
h
Mϕ1ϕ2(eβ2mh − eβ2(m−1)h)

+c3Meβ2mh + c1(Mϕ1ϕ2e
β2mh)p

≤M(ϕ1ϕ2)[−β2e
β2h′ + c4] ≤ 0.

At the same time, set

V = µϕ(α1η)ϕ1(η)e−α2mh,

where µ is small enough such that V0(0,mh) ≤
φ(0, kh,mh) and ϕ(s) is a smooth function such that
for 0 ≤ s ≤ R,

ϕ(s) = e
1
R

s,

for R ≤ s ≤ 3
2R,

1 ≤ k ≤ 3,

for s > 3
2R,

ϕ(s) = 1,

also by α1, α2 large enough, mh ≤ T0 small enough,
we have

L(V ) ≥ 0.

Thus we can get (18) easily.

Lemma 3 Assume that the conditions of Lemma 2 are
fulfilled, w0 has bounded first order derivatives, w0ηη

is bounded, then

wm,k
η ,

1
h

(wm,k −wm−1,k),
1
h

(wm,k −wm,k−1), wm,k
ηη

are bounded for mh ≤ T1 and h ≤ h0, uniformly
with respect to h, where the positive constants T1 ≤
T0.

Proof: Let Φm,k(η) be the functions defined as fol-
lows: for k ≥ 1,m ≥ 1,

Φm,k(η) = (
wm,k − wm−1,k

h
)2+(

wm,k − wm,k−1

h
)2

(25)
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and for k = 0,m ≥ 1

Φm,k(η) = (
wm,k − wm−1,k

h
)2. (26)

Also, we need to define Φ0,k(η) = (w0,k−w−1,k

h )2. So
let w−1,k = w−1,k(η, kh) be a bounded function such
that

w0,k − w−1,k

h
= w0,k

ηη + w−1,kw
0,k − w0,k−1

h
−f(·, w0,k). (27)

w−1,k is well defined because 1
h + w0,k

h > 0. Clearly,
on account of w0 has bounded first order deriva-
tives and w0ηη is bounded, w0,k−w−1,k

h is uniformly
bounded with respect to h, so | Φ0,k |≤ c.

Let

rm,k =
wm,k − wm,k−1

h
, ρm,k =

wm,k − wm−1,k

h
.

Now we will deduce the equation for Φm,k(η). To this
end, we subtract from equation (15) forwm,k equation
(13) forwm−1,k and multiply the result by 2ρm,k

h to get
the first equation; from (15) for wm,k we subtract (13)
for wm,k−1 and multiply the result by 2rm,k

h to get the
second equation. We find the equations for Φm,k(η)
with k = 0,m ≥ 1 by taking only the first equation.
In order to derive the equation for Φm,k(η) with m =
1, we utilize the relation (27) which defines the values
of w−1,k . Taking the sum of the three equations just
obtained we get the equation for Φm,k(η), k ≥ 1. Say,
we have

((15)m,k − (15)m−1,k)
2ρm,k

h

= 2ρm,kρm,k
ηη − 2ρm,k

h
(ρm,k − ρm−1,k)

+
2ρm,k

h
(wm−1,krm,k − wm−2,krm−1,k)

−2ρm,k

h
(f(·, wm,k)− f(·, wm−1,k)

= 2ρm,kρm,k
ηη − 2ρm,k

h
(ρm,k − ρm−1,k)

+
2ρm,k

h
[wm−1,k(ρm,k − wm−1,kρm,k−1)]

+
2ρm,k

h
(wm−1,k − wm−1,k−1)ρm−1,k

−2ρm,k

h
(f(·, wm,k)− f(·, wm−1,k);

((18)m,k − (18)m,k−1)
2rm,k

h

= 2rm,krm,k
ηη − 2rm,k

h
(ρm,k − ρm,k−1)

+
2rm,k

h
(wm−1,krm,k − wm−1,k−1rm,k−1)

−2rm,k

h
(f(·, wm,k)− f(·, wm,k−1))

= 2rm,krm,k
ηη − 2rm,k

h
(rm,k − rm−1,k)

+
2rm,k

h
(wm−1,krm,k − wm−1,k−1rm,k−1)

−2rm,k

h
(f(·, wm,k)− f(·, wm,k−1);

Φm,k
η = 2ρm,kρm,k

η + 2rm,krm,k
η ;

Φm,k
ηη = 2ρm,kρm,k

ηη + 2rm,krm,k
ηη

+2(ρm,k
η )2 + 2(rm,k

η )2;

−1
h

(Φm,k − Φm−1,k) = −1
h

[(ρm,k)2

−(ρm−1,k)2 + (rm,k)2 − (rm−1,k)2];

wm−1,k

h
(Φm,k − Φm,k−1)

=
wm−1,k

h
[(ρm,k)2 − (ρm,k−1)2]

+
wm−1,k

h
[(rm,k)2 − (rm,k−1)2];

Φm,k
ηη − 1

h
(Φm,k − Φm−1,k)

+
wm−1,k

h
(Φm,k − Φm,k−1)

= 2(ρm,k
η )2 + 2(rm,k

η )2

− 1
h

[(ρm,k)2+(rm,k)2]+
1
h

[(ρm−1,k)2+(rm−1,k)2]

+
wm−1,k

h
[(ρm,k)2−(ρm,k−1)2+(rm,k)2−(rm,k−1)2]

+
2ρm,k

h
(ρm,k − ρm−1,k)− 2ρm,k

h
[wm−1,kρm,k

+ (wm−1,k − wm−1,k−1)ρm−1,k − wm−1,kρm,k−1]

+
2ρm,k

h
(f(·, wm,k)− f(·, wm−1,k)

+
2rm,k

h
(rm,k − rm,k−1)

− 2rm,k

h
(wm−1,krm,k − wm−1,k−1rm,k−1)

+
2rm,k

h
(f(·, wm,k)− f(·, wm,k−1).

By (12)-(13), we have

Φm,k
ηη − 1

h
(Φm,k−Φm−1,k)+

wm−1,k

h
(Φm,k−Φm,k−1)
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≥ 2(ρm,k
η )2 + 2(rm,k

η )2 − 1
h

[(ρm,k)2 + (rm,k)2]

+
1
h

[(ρm−1,k)2 + (rm−1,k)2]

+
wm−1,k

h
[(ρm,k)2 − (ρm,k−1)2]

+
wm−1,k

h
[(rm,k)2 − (rm,k−1)2]

+
2ρm,k

h
(ρm,k − ρm−1,k)

−2ρm,k

h
[wm−1,k(ρm,k − ρm,k−1)]

−2ρm,k

h
[(wm−1,k − wm−1,k−1)ρm−1,k]

+
2c1
h

(ρm,k)2 +
2rm,k

h
(rm,k − rm,k−1)

−2rm,k

h
(wm−1,krm,k − wm−1,k−1rm,k−1)

+
2c1
h

(rm,k)2;

(i). If at the maximal value point of Φm,k, suppose
Φm,k − Φm,k−1 ≥ 0, then

Φm,k
ηη − 1

h
(Φm,k − Φm−1,k)

+
wm−1,k

h
(Φm,k − Φm,k−1)− αΦm,k + βΦm,k−1

≥ 2(ρm,k
η )2 + 2(rm,k

η )2

+ (
2c1 + 1− wm−1,k

h
− α)[(ρm,k)2 + (rm,k)2]

+ (β − wm−1,k

h
)[(ρm,k−1)2 + (rm,k−1)2]

+
1
h

[(ρm−1,k)2 + (rm−1,k)2]

− 2ρm,k

h
[(wm−1,k−wm−1,k−1+1)ρm−1,k−wm−1,kρm,k−1]

− 2rm,k

h
rm,k−1 +

2rm,k

h
wm−1,k−1rm,k−1;

If we chooseα = α(h) ≥, β = β(h) large
enough, such that β − wm−1,k

h > 0, 2c1+1−wm−1,k

h −
α > 0, this is possible because that (18). Then by
Cauchy inequality, we have

Φm,k
ηη − 1

h
(Φm,k − Φm−1,k)

+
wm−1,k

h
(Φm,k − Φm,k−1)− αΦm,k + βΦm,k−1

= Φm,k
ηη − 1

h
(Φm,k − Φm−1,k)

− (β − wm−1,k

h
)(Φm,k − Φm,k−1)

− (α− β)Φm,k > 0. (28)

Now, we have two cases. The first cases is that at
the maximal value point of Φm,k, Φm,k−Φm−1,k ≥ 0,

then by the maximal principle, Φm,k can not attain its
maximum in the interior of (0, R). The second case is
that at the maximal point of Φm,k, Φm,k − Φm−1,k ≤
0, let Φ̃ = e−γmhΦ. Then by (28)

Φ̃m,k
ηη − 1

h(Φ̃m,k − Φ̃m−1,k)− γe−γh1Φ̃m−1,k

−e−γmh(β − wm−1,k

h )(Φ̃m,k−Φ̃m,k−1)−(α−β)Φ̃m,k

> 0

and

Φ̃m,k
ηη − 1

h Φ̃m,k + ( 1
h − γe−γh1)Φ̃m−1,k

−e−γmh(β − wm−1,k

h )(Φ̃m,k−Φ̃m,k−1)−(α−β)Φ̃m,k

> 0

where h1 < h. If we choose γ = γ(h) > 1
h large

enough, then Φ̃m,kcan not attain its maximum in the
interior of (0, R). Φ(η) = eγmhΦ̃(η) also can not
attain its maximum in the interior of (0, R).

(ii). If at the maximal value point of Φm,k, Φm,k−
Φm,k−1 ≤ 0, let Φ1 = Φ + 1. Then

Φm,k
1ηη −

1
h

Φm,k
1 +

wm−1,k

h
(Φm,k

1 − Φm,k−1
1 )

−αΦm,k
1 + βΦm,k−1

1

≥ 2(ρm,k
η )2 + 2(rm,k

η )2 + (−α+ β − 1
h

)

+(
2c1 + 1− wm−1,k

h
− α)[(ρm,k)2 + (rm,k)2]

+(β − wm−1,k

h
)[(ρm,k−1)2 + (rm,k−1)2]

−2ρm,k

h
ρm−1,k +

2ρm,k

h
wm−2,kρm−1,k

−2rm,k

h
rm,k−1 +

2rm,k

h
wm−1,k−1rm,k−1;

If we choose α = α(h), β = β(h) large enough, such
that2c1+1−wm−1,k

h −α > 0, 1
h +α ≤ β , which implies

that β − wm−1,k

h > 0, then by Cauchy inequality, we
have

Φm,k
1ηη −

1
h

Φm,k
1 +

wm−1,k

h
(Φm,k

1 − Φm,k−1
1 )

−αΦm,k
1 + βΦm,k−1

1

= Φm,k
1ηη −

1
h

Φm,k
1 +

wm−1,k

h
(Φm,k

1 − Φm,k−1
1 )

−(α− β)(Φm,k
1 − Φm,k−1

1 )− βΦm,k
1 > 0.

By the maximal principle, Φm,k
1 can not attain its max-

imum in the interior of (0, R). Thus Φm,k can not at-
tain its maximum in the interior of (0, R) too.

When η = R,Φm,k = 0. When η = 0, because
φ(η, ξ, τ) is a smooth function on Ω× (0, T ), clearly
we have Φm,k(0) ≤ c, so

Φm,k(η) ≤ c,∀η ∈ [0, R]. (29)
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Now by (15), | wm,k
ηη |≤ c. This implies that| wm,k

η |≤
c . So Lemma 2 is proved.

Theorem 4 Under the assumption of Lemma 2 and
Lemma 3, the problem (9)-(11) admits a solution w
with the following properties: w is continuous,

| w |≤ K1(R− η) (30)

in the domain (0, T )×Ω,w has bounded weak deriva-
tives wη, wξ, wτ ,

| wξ |≤ c(R− η), | wτ |≤ c(R− η); (31)

the weak derivative wη, wηη exists and bounded ,
equation (15) holds almost everywhere in the same
domain.

Proof : First, let us prove the uniqueness of the solu-
tion. Assume the contrary, namely, that w1 and w2 are
two solutions of problem (9)-(11). Then, the function
z = w1 − w2 satisfies the following equation

zηη−zτ+zzξ+(w1w2ξ+w2w1ξ) = f(·, w1)−f(·, w2),

z(η, ξ, 0) = 0, z |[0,T ]×Ω= 0.

Let z1 = e−ατz. If we choose α large enough then it
is easily to prove that z ≡ 0 by the maximal principle.

Now, we will prove the existence of the solution
of (9)-(11). The solutions wm,k of problem (15)-(16)
should be linearly extended to the domain (0, T )×Ω.
First, when (k − 1)h < ξ ≤ kh, k = 1, 2, · · · , k(h),
k(h) = [Nh], let

wm
h (η, ξ) = wm

h (η, (k − 1)hλ+ (1− λ)kh)
= (1− λ)wm,k(η) + λwm,k−1(η). (32)

Secondly, when (m − 1)h < τ < mh, m =
1, 2, · · · ,m(h), m(h) = [Th], let

wh(τ, ξ, η) = wh(η, ξ,mh(1− σ) + (m− 1)hσ)
= (1− σ)wm

h (η, ξ) + σwm−1
h (η, ξ). (33)

According to Lemma 2, Lemma 3, the functions
wh(η, ξ, τ) from this family satisfy the Lipschitz con-
dition with respect to ξ, τ , and have uniformly (in h)
bounded first derivative in η for 0 ≤ ξ ≤ N, 0 ≤
η ≤ R. By the Arzela Theorem, there is a se-
quence hi → 0 such that wh uniformly converge to
some w(η, ξ, τ). It follows from Lemma 2, Lemma
3 that w(η, ξ, τ) has bounded weak derivativeswτ ,
wξ, wη, wηη in (0, T )× Ω. Moreover,

| wξ |≤ c(R− η), | wτ |≤ c(R− η).

The sequence whi
may be assumed such that the

derivatives wτ , wξ, wη, wηη in the domain (0, T )× Ω
coincide with weak limits in L2((0, T ) × Ω) of the
respective functions

whi
(η, ξ, τ + hi)− whi

(η, ξ, τ)
hi

,

whi
(η, ξ + hi, τ)− whi

(η, ξ, τ)
hi

, whiη, whiηη.

Denoting wm,k
h = wh(η, ξ, τ) = w(η, kh,mh),

by (15),

wm,k
hηη −

wm,k
h − wm−1,k

h

h
+ wm−1,k

h

wm,k
h − wm,k−1

h

h
−f(·, wm,k

h ) = 0. (34)

Now, suppose that ϕ(η, ξ, τ) be a smooth function,
which support set is compact in (0, T )× Ω. Let

ϕm,k(η) = ϕ(η, kh,mh).

Let us multiply with hϕm,k(η) at the two side of (34),
integrating the resulting equation in η from 0 to R,
and taking the sum over k,m from 1 to k(h),m(h)
respectively, we obtain

∑
m,k

h
R∫
−R

ϕm,k[wm,k
hηη −

wm,k
h

−wm−1,k
h

h

+wm−1,k
h

wm,k
h

−wm,k−1
h

h −f(·, wm,k)]dη=0.

(35)

Denote the function f̄ (τ, ξ, η) on [0, T ] × Ω as: for
(m− 1)h < τ < mh, (k − 1)h < ξ ≤ kh,

f̄(η, ξ, τ) = f(η, kh,mh), (36)

and denote

(
∆wh

h
)m
1 =

wm,k
h − wm−1,k

h
,

(
∆wh

h
)k
2 =

wm,k
h − wm,k−1

h
.

Then we can rewrite (35) to∫ T

0

∫
(w̄hηηϕ̄− (

∆wh

h
)m
1 ϕ̄+ (

∆wh

h
)k
2ϕ̄w̄h

−f(·, wm−1,k)ϕ̄)dτdξdη = 0. (37)

Since

| w̄−w |≤| w̄−wh | + | wh−w |≤Mh+ | wh−w |,

when h → 0, w̄ → w. Just likely, ϕ̄ → ϕ,
f(·, wm−1,k)ϕ→ g(·, w)ϕ. At the same time,

(
∆wh

h
)1 ⇀ wτ , (

∆wh

h
)2 ⇀ wξ, w̄hηη ⇀ wηη,
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in L2((0, T ) × (0, R) × (0, N)), so, if let h → 0 in
(37), then∫ T

0

∫ R

0

∫ N

0
(wηη−wτ+wwξ−g(z, w))ϕdτdξdη = 0.

By the arbitrary of ϕ, we get ours result.

3 Parallel results
Consider the following initial boundary problem

wηη−wτ +wwξ = f(η, ξ, τ, u), (ξ, η, t) ∈ Ω×(0, T )
(38)

w(η, ξ, 0) = w0(η, ξ), (ξ, η) ∈ Ω (39)

w |{η=0}×[0,T ]= φ(0, ξ, t), w |{η=R}×[0,T ]= 0,
(40)

w |ξ=0= ϕ(η, 0, τ), (41)

where Ω = (0, N) × (0, R), w0(0, ξ) = φ(0, ξ, 0)
as before, ϕ is compatible with the functions w0, φ,
which satisfy the condition (14), and f satisfies the
condition (12)-(13). In addition, we must assume that
K2 ≤ 1

2R ,

| ϕ(η, τ) |≤ K2(R− η), ϕ ≤ 1
2
. (42)

Instead of equation (38)-(41), let us consider the fol-
lowing system of ordinary differential equations:

wm,k
ηη − wm,k−wm−1,k

h
+wm−1,kw

m,k−wm,k−1

h
−f(·, wm,k) = 0, (43)

wm,k |η=R= 0, wm,k |η=0= φ(0, kh,mh), (44)

where

w0,k = w0(kh, η), wm,0(η) = ϕ(η,mh),

m = 1, · · · , [Th]; k = 0, 1, · · · , [Nh].
Similarly, we have

Lemma 5 Under the conditions of (11), (12) and
(42), the problem (43)-(44) admits a unique solution
for kh ≤ N0 and small enough h, where N0 is a suit-
able small positive number. The solution satisfies the
following estimate

V0(η, kh) ≤ wm,k ≤ V1(η, kh), (45)

where V0, V1 are continuous functions, positive in
(0, R), V1 ≤ 1

2 and such that

V0 ≡ K0(R−η), V1 ≡ K1(R−η),K1 ≤
1

2R
, (46)

in a neighborhood of η = R.

Lemma 6 Assume that the conditions of Lemma 5 are
fulfilled, w0 has bounded first order derivatives, w0ηη

is bounded, then

wm,k
η ,

1
h

(wm,k −wm−1,k),
1
h

(wm,k −wm,k−1), wm,k
ηη

are bounded for kh ≤ N1 and h ≤ h0, uniformly with
respect to h, where the positive constants N1 ≤ N0.

Theorem 7 Under the assumption of Lemma 5 and
Lemma 6, problem (38)-(41) admits a solution w with
the following properties: w is continuous,

| w |≤ K1(R− η) (47)

in the domain (0, T )×Ω, w has bounded weak deriva-
tives wη, wξ, wτ ,

| wξ |≤ c(R− η), | wτ |≤ c(R− η); (48)

the weak derivative wη, wηη exists and bounded ,
equation (38) holds almost everywhere in the same
domain.

4 The proof of Theorem 1
Let p = ∂xu and differential (1) with respect to x.
Then we get

∂xxp+ p∂yu+ u∂yp− ∂tp =
∂

∂u
f(·, u)p.

Consider the following problem: for z = (t, x, y) ∈
(0, T )× Ω,

∂xxp+ u∂yp− ∂tp =
∂

∂u
f(·, u)p− p∂yu = g(·, p),

(49)
p(0, ·) = p0(x, y) = u0y(x, y), (50)

p |{x=0}×[0,T ]= u1x(0, y, t), p |{x=R}×[0,T ]= 0.
(51)

where g(·, p) = p( ∂
∂uf(·, u) − ∂yu). By Theorem

4, we can assume that g(·, p) is a Lipschitz function
and satisfies with (11). Just like the discussion of sec-
tion 2, on account of (27)-(28), we are able to get the
boundedness of the weak first order derivatives of p.
Then ∂xyu = ∂xp, ∂ytu = ∂tp, ∂xxp = ∂xxxu are
bounded. Which means that ∂xu, ∂xxu, ∂yu, ∂tu are
actually continuous functions. So (1)-(3) has the solu-
tion in classical sense.

Similarly, one is able to prove the problem (38)-
(41) has the solution in classical sense, and so the the-
orem is got.
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5 The global solution of Cauchy
problem

However, the known results in the equation (1) are
all in local solutions, say, when T is suitably small
positive constant. The methods used in these papers
seem difficult to be generalized to the cases when T
is an any given positive constant. The equation (1)
is a degenerate parabolic equation, so it only has the
weak global solution in general. To consider the weak
global solution of the cauchy problem of (1)-(2) (cer-
tainly, the Ω in (1) should be changed to R2), let
us firstly consider the following nonlinear degenerate
parabolic equation of the form

∂u

∂t
− ∂

∂xi
(aij(u)

∂u

∂xj
)−

n∑
i=1

∂bi(u)
∂xi

= c(t, x, u), (t, x) ∈ QT = (0, T )×Rn,(52)

u(0, ·) = u0(x, y), in RN (53)

where

aijξiξj ≥ 0,∀ξ = (ξ1, ξ2, · · · , ξN ) ∈ RN , (54)

and pairs of equal indices imply the summation from
1 up to N . Equation (52) arises in many appli-
cations, including two phase flow in porous media
(cf. [14] and references cited therein), sedimentation-
consolidation processes (cf. [15] and references cited
therein).

We notice that (1) is a very special case of (52),
say, aij in (1) has the form

(aij) =

(
1 0
0 0

)
.

We had got the posedness of (52) in [16] and [17], so
we can get the existence and uniqueness of the global
weak solution for the Cauchy problem (1)-(2) from
[17] etc. In details, we can discuss the global weak
solution as follows.

Following reference [18], u ∈ BV (QT ), QT =
RN × (0, T ) if and only if u ∈ L1

loc(QT ) and∫ T

0

∫
Bρ

| u(x1 + h1, · · · , xN + hN , t+ hN+1)

−u(x, t) | dxdt ≤ K | h |, (55)

where

Bρ = {x ∈ RN ; | X |< ρ}, h = (h1, h2, · · ·hN , hN+1)

and K is a positive constant. This is equivalent to
that the generalized derivatives of every function in
BV (QT ) are regular Radon measures on QT .

Let Sη(s) =
∫ s
0 hη(τ)dτ for small η > 0, where

hη(s) = 2
η (1− |s|

η )+. Obviously hη(s) ∈ C(R) and

hη(s) ≥ 0, | shη(s) |≤ 1, | Sη(s) |≤ 1; (56)

lim
η→0

Sη(s) = sgn(s), lim
η→0

sS′η(s) = 0, (57)

where sgn represents the sign function.
According to the idea of [16] and [17], we can

introduce the following notion.

Definition 8 A function u ∈ BV (QT ) ∩ L∞(QT ) is
said to be a weak solution of the problem (52)-(53) if

1. there exist the functions gi ∈ L2
loc(QT ), i =

1, 2, · · · , N such that∫ ∫
QT

φ(t, x)r̂ij(u)
∂u

∂xi
dxdt

=
∫ ∫

QT

φ(x, t)gi(t, x)dxdt. (58)

for any φ ∈ C2
0 (QT ), where (rij(u)) is the square

root of the matrix (aij(u)), and r̂ij(u) is the compos-
ite mean value of rij and u as usual.

2. u satisfies∫ ∫
QT

{Iη(u− k)ϕt −Bi
η(u, k)ϕxi

+ Aij
η (u, k)ϕxixj + c(t, x, u)Sη(u− k)ϕ

−
N∑

i=1

S′η(u− k)(gi)2ϕ}dxdydt ≥ 0, (59)

for any ϕ ∈ C2
0 (QT ), ϕ ≥ 0, any k ∈ R, η > 0.

3.

lim
η→0

∫
Ω
| u(t, x, y)− u0(x, y) | dxdy = 0, (60)

where

Iη(u− k) =
∫ u−k

0
Sη(s− k)ds,

Bi
η(u, k) =

∫ u

k
bisSη(s− k)ds, (61)

Aij
η (u, k) =

∫ u

k
aij(s)Sη(s− k)ds. (62)

Review the following general definition of the en-
tropy solution for Cauchy problem of (52) (cf. [18]
etc.),∫ ∫

QT

[|u− k|ϕt − sgn(u− k)(bi(u)− bi(k))ϕxi

+sgn(u− k)(Aij(u)−Aij(k))ϕxixj

+c(t, x, u)ϕ]dxdt ≥ 0, (63)
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where
Aij(u) =

∫ u

0
aij(s)ds,

on account of the arbitraries of the constant k, from
(5.13), it is well known that (1.1) is true in the sense
of distribution, i.e. for any φ(x, t) ∈ C∞

0 (QT ),∫ ∫
QT

∂u

∂t
φ(t, x)

=
∫ ∫

QT

Aijφxixjdxdt+
∫ ∫

QT

biφxidxdt

+
∫ ∫

QT

c(·, u)φdxdt. (64)

This fact means that the entropy solution is stronger
than the general weak solution.

Clearly, (60) implies (64), the entropy solution
defined in Definition 8 is stronger than the general one
defined as (63). At the same time, (60) implies (64)
certainly.

Considering the problem (1)-(2), the dimension
of the space variables isN = 2, we can simply denote
x = (x1, x2) = (x, y). Then we quote the following

Definition 9 A function u ∈ BV (QT ) ∩ L∞(QT ) is
said to be a weak solution of the problem (1)-(2) if u
satisfies (58), (60) and∫ ∫

QT

{Iη(u− k)ϕt −Bη(u, k)ϕy

+Iη(u− k)ϕxx − f(t, x, y, u)Sη(u− k)ϕ
−S′η(u− k)(∂xu)2ϕ}dxdydt ≥ 0, (65)

for any ϕ ∈ C2
0 (QT ), ϕ ≥ 0, any k ∈ R, η > 0.

Here
Bη(u, k) = −

∫ u

k
sSη(s− k)ds.

Immediately, by [16], [17], we have

Theorem 10 Suppose that

u0(x, y) ∈ L∞(R2),

fr(t, x, y, r) is bounded, and u0(x, y), f(t, x, y, r)
are suitably smooth. Then problem (1)-(2) has a gen-
eralized solution in the sense of Definition 9.

The outline of the proof of Theorem 10: Consider
the following regularized equation

∂xxu+u∂yu−∂tu−ε4u = f(·, u), (t, x, y) ∈ (0, T ]×Ω,

with the initial value (2). As in [18] we can prove

| uε |≤M, (66)

∫
QT

(aij(uε)uεxiuεxj + ε | ∇uε |2)ωλ(x)dxdt ≤ C

(67)∫
QT

(| ∂uε

∂t
| + | ∇uε |)ωλ(x)dxdt ≤ C (68)

where C,M are constants independent of ε, and

ωλ(x, y) = exp{−λ
√

1 + x2 + y2},

for a given positive constant λ.
Thus there exists a subsequence {uεn} of {uε}

and a function u ∈ BV (QT ) ∩ L∞(QT ) such that

uεn → u, a.e. in QT .

We now prove that u is a generalized solution of
(1)-(2). From (67), we have∫

QT

| rij ∂uε

∂xj
|2 wλ(x)dxdt ≤ C i = 1, ·, N,

where {rij} is the square root of the matrix {aij} gen-
erally, while for our special case, rij = aij . This
means that rij ∂uε

∂xj is weakly compact in L2
loc(QT ).

Without loss of generality, we may assume that rij ∂uε
∂xj

itself converges weakly in L2
loc(QT ) to a function

gi ∈ L2
loc(QT ). Thus for any φ ∈ C1

0 (QT )∫
QT

φgidxdt = lim
ε→0

∫
QT

φrij ∂uε

∂xj
dxdt

= lim
ε→0

∫
QT

φ(
∫ uε

0
rij(s)ds)xjdxdt

−
∫

QT

φ

∫ u

0
rij
xj

(s)dsdxdt

= −
∫

QT

φxj

∫ u

0
rij(s)dsdxdt

−
∫

QT

φ

∫ u

0
rij
xj

(s)dsdxdt

=
∫

QT

φ ̂rij(u)
∂u

∂xj
dxdt.

This implies u satisfies (58) in Definition 8.
Let φ ∈ C2

0 (QT ), φ ≥ 0, k ∈ R, η > 0.
Multiply (9) by φSη(uε − k) and integrate over QT ,
we obtain

−
∫

QT

[Iη(uε−k)ϕt−Bη(uε, k)ϕy+Iη(uε−k)ϕxx

−S′η(uε − k)ϕaij ∂uε

∂xi

∂uε

∂xj

+f(t, x, uε)ϕSη(uε − k)]dxdt

− ε

∫
QT

S′η(uε − k)(uε − k)ϕxi

∂u

∂xi
dxdt

− ε

∫
QT

(uε − k)Sη(uε − k)ϕxixidxdt
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− ε

∫
QT

S
′
η(uε − k)(

∂uε

∂xi
)2ϕdxdt = 0. (69)

Notice that, on the left hand side, the seventh term and
the eighth term tend to zero as ε → 0, the last term is
nonnegative, and by (69), on account of that,

lim
ε→0

inf
∫

QT

S′η(uε − k)aij(uε)
∂uε

∂xi

∂uε

∂xj
φdxdt

≥
∫

QT

S′η(u− k)gigiφdxdt

Letting ε→ 0 in (69), we get (65).

Theorem 11 Let u, v be solutions of (1.1)-(1.2) with
initial values u0(x), v0(x) ∈ L∞(R2) respectively.
Then ∫

Ω
| u(x, y, t)− v(x, y, t) | ωλ(x, y)dxdy

≤ C

∫
Ω
| u0 − v0 | ωλ(x, y)dxdy. (70)

The outline of the proof of Theorem 11: Let Γu be
the set of all jump points of u ∈ BV (QT ), ν the unit
normal vector of Γu at X = (x, y, t), u+(X) and
u−(X) the approximate limits of u at X ∈ Γu with
respect to (ν, Y − X) > 0 and (ν, Y − X) < 0 re-
spectively.

Let u be a solution of (52)-(53). Then we can
prove that (see [16][17])∫ u+

u−
γij(s, t, x)dsνi = 0, a.e.(t, x) ∈ Γu, j = 1, 2.

(71)
Let u, v be two generalized solutions of (1) with

initial values

u(x1, x2, 0) = u0(x1, x2), v(y1, y2, 0) = v0(y1, y2).

By Definition 9, we have for any ϕ ∈ C2
0 (QT ), ϕ ≥

0, k, l ∈ R,∫
QT

{Iη(u− k)ϕt −Bη(u, k)ϕx2 + Iη(u− k)ϕx1x1

−
N∑

n=1

S′η(u− k)gj
1g

j
1ϕ

−f(t, x1, x2, u)ϕSη(u− k)}dxdt ≥ 0, (72)

∫
QT

{Iη(v − l)ϕτ −Bη(v, l)ϕy2 + Iη(v − l)ϕy1y1

−
N∑

n=1

S′η(v − l)gj
2g

j
2ϕ

−f(τ, y1, y2, v)ϕSη(v − l)}dydτ ≥ 0. (73)

For simplicity, we denote x = (x1, x2), y =
(y1, y2). Let ψ(t, x, τ, y) ≥ 0, ψ ∈ C2(QT ×
QT ), suppψ(·, ·, τ, y) ⊂ QT if (τ, y) ∈ QT ,
suppψ(t, x, ·, ·) ⊂ QT . We choose k = v(τ, y), l =
u(t, x), ϕ = ψ(t, x, τ, y) in (72) (73) and integrate
over QT , to get∫
QT

∫
QT

{Iη(u−v)(ψt+ψτ )−(Bη(u, v)ψx2 +Bη(v, u)ψy2)

+Iη(u− v)ψx1x1 + Iη(v − u)ψy1y1

−S′η(u− v)
N∑

n=1
(gj

1g
j
1 + gj

2g
j
2)ψ

+ψ(f(t, x, u)Sη(u−v) + f(τ, y, v)Sη(v−u))}
·dxdtdydτ ≥ 0.

(74)
Choose ψ(t, x, τ, y) = φ(t, x)jh(t − τ, x − y),

where φ(t, x) ≥ 0, φ(t, x) ∈ C∞
0 (QT ), and

jh(t− τ, x− y) = ωh(t− τ)ΠN
i=1ωh(xi − yi),

ωh(s) =
1
h
ω(
s

h
),

ω(s) ∈ C∞
0 (R), ω(s) ≥ 0, ω(s) = 0 if | s |> 1,∫ ∞

−∞
ω(s)ds = 1.

Clearly

∂jh
∂t

+
∂jh
∂τ

= 0,
∂jh
∂xi

+
∂jh
∂yi

= 0, i = 1, · · · , N ;

∂ψ

∂t
+
∂ψ

∂τ
=
∂φ

∂t
jh,

∂ψ

∂xi
+
∂ψ

∂yi
=

∂φ

∂xi
jh.

Then (74) becomes∫
QT

∫
QT

{Iη(u− v)(ψt + ψτ )

−(Bη(u, v)ψx2 +Bη(v, u)ψy2)
+Iη(u− v)ψx1x1 + Iη(v, u)ψy1y1

−S′η(u− v)
N∑

n=1

(gj
1g

j
1 + gj

2g
j
2)ψ

+ψ(f(t, x, u)Sη(u−v)+f(τ, y, v)Sη(v−u))φjh}
·dxdtdydτ ≥ 0. (75)

Letting η → 0, h → 0 in (75), by (71), we are
able to get∫

QT

{|u(x, t)−v(x, t)|φt−
1
2
sgn(u−v)(u2−v2)φx2

+|u(x, t)− v(x, t)|φx1x1

+sgn(u−v)(f(t, x, u)− f(t, x, v))} ≥ 0. (76)

Let

η(t) =
∫ s−t

τ−t
αε(σ)dσ, ε < min{τ, T − s},
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where αε(t) is the kernel of mollifier with αε(t) = 0
for t /∈ (−ε, ε). By approximation, we can choose φ
with φ(x, t) = ωλ(x)η(t) in (76), where ωλ(x) is the
function as before. Using the estimates

| ∇ωλ |≤ Cλωλ(x), | ∆ωλ(x) |≤ Cλωλ(x),

and letting ε→ 0 in (76), we obtain∫
RN

|u(s, x)− v(s, x)|ωλ(x)dx

≤
∫

RN
|u(τ, x)− v(τ, x)|ωλ(x)dx

+C
∫ s

τ

∫
RN

|u(t, x)− v(t, x)|ωλ(x)dxdt.

Hence by Gronwall lemma, we obtain∫
RN

|u(s, x)− v(s, x)|ωλ(x)dx

≤ C

∫
RN

|u(τ, x)− v(τ, x)|ωλ(x)dx.

Letting τ → 0, the proof of Theorem 11 is completed.
At the last of the paper, we would like to point that

the uniqueness of the initial boundary problem of (52)
is still an open problem. So, it also seem very difficult
to solve the posedness of the global weak solution of
(1)-(3) for the time being.
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