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Abstract:- This paper is concerned with the construction and developing of several nonstandard finite difference
(NSFD) schemes in matrix form in order to obtain numerical solutions of epidemic models. In particular, we deal
with a classical SIR epidemic model and a seasonal model associated with the evolution of the transmission of
respiratory syncytial virus RSV in the human population. The first model is an autonomous differential equation
system, and the second one is a nonautonomous one which generally is more difficult to be solved. The numerical
schemes developed here can be used in other general epidemic models based on ordinary differential equations.
One advantage of the developed methodology is that can be used easily by the scientific community without special
knowledge. In addition, these NSFD schemes which are based on the the nonstandard finite difference methods
developed by Mickens solve numerically systems describing epidemics with less computational effort. Finally,
with these matrix NSFD schemes it can be exploited more easily matrix operations advantages.

Key–Words: Matrix difference scheme, Nonstandard schemes, Matrix computation, Numerical solution, Epidemic
model.

1 Introduction

In engineering and other sciences, many problems are
modeled using autonomous and nonautonomous sys-
tems of nonlinear differential equations. However,
due to highly nonlinearity and the coupling of the dif-
ferential equations, exact solutions are usually com-
plicated or impossible to determinate. For strong non-
linearity, numerical methods are commonly used. The
traditional approach to solve models with strong non-
linearity is to adopt the Euler or Runge-Kutta type nu-
merical schemes. These traditional schemes of finite
differences used to solve numerically systems of non-
linear differential equations of initial value raise ques-
tions such as what is the truncation error or the region

of stability. For instance, forward Euler, Runge-Kutta
and others methods to solve nonlinear initial value
problems, sometimes fail, generating oscillations, bi-
furcations, chaos and spurious states [25, 37]. More-
over some methods despite using adaptative step sizes
still fail (see [32]).

Using a small time step size in the numerical so-
lution derived by numerical methods can avoid the ob-
tention of incorrect solutions, but at expense of extra
computational cost. An efficient numerical method
applied over long time intervals, needs, however, the
use of time steps which are the maximum possible,
consistent with accuracy and stability. This is par-
ticularly desirable when used to solve dynamic sys-
tems which exhibit smooth long-term behaviour to be
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accurately represented on a reasonably coarse mesh
[27, 28]. Therefore, it is necessary to construct and
develop robust numerical schemes that yield accu-
rate numerical solutions using other techniques, for
example, the nonstandard difference method, which
was developed by Ronald Mickens [27, 28] and have
brought applications in different areas [2, 6, 7, 12, 13,
15, 24, 29] and references therein.

As we mentioned above, classical numerical
schemes sometimes fail [5, 25]. One alternative to
prevent these classes of numerical instabilities is the
construction of schemes using the nonstandard finite-
difference method. This technique, developed by
Mickens [27, 28] have brought a creation of new nu-
merical schemes preserving the physical properties,
especially the stability properties of equilibria of the
approximated system [1, 2, 12, 13, 19, 22, 31].

Anguelov and Lubuma [2] have used Mickens’
techniques to design nonstandard versions of the ex-
plicit and implicit Euler and the second order Runge-
Kutta methods. In addition Dimitrov and Kojouharov
[14] have designed a variety of such nonstandard fi-
nite difference schemes for general two-dimensional
systems based on the explicit Euler, the implicit Euler
and the second-order Runge-Kutta methods.

In this paper we develop and construct several
nonstandard finite difference schemes in matrix form
in order to obtain numerical solutions of epidemic
models. In particular, we deal with a classical SIR
epidemic model and a seasonal model associated with
the evolution of the transmission of respiratory syn-
cytial virus RSV in the human population. The first
model is an autonomous model and the second is a
nonautonomous one which generally is more difficult
to be solved. The numerical schemes developed can
be used in other general epidemic models which are
based on ordinary differential equations. One advan-
tage of the developed methodology is that can be used
easily by the scientific community without any spe-
cial knowledge. In addition these nonstandard numer-
ical schemes which are based on the nonstandard fi-
nite difference methods solve numerically the systems
describing epidemics with less computational effort.
This fact is important since these epidemic models
require different unknown parameters and these pa-
rameters often needs to be estimated through a com-
putational expensive fitting process to epidemiologi-
cal data and this process requires that the model be
solved several times. One basic property of some of
the nonstandard numerical schemes is that they can
be used with larger time step sizes, saving computa-
tional cost when integrating over long time periods. It
is well known that in several cases the Euler method
and other well-known methods produce bad approxi-
mations simulating the model for large time step sizes.

The first model considers the whooping cough
mathematical model presented in [16]. This model
is represented by a classical SIR epidemic model. In
fact this model was solved in [34] using an uncon-
ditionally stable positive NSFD scheme, where the
NSFD scheme converge to the steady state for any
time step size h. The second epidemic model consid-
ers the RSV transmission at population level. This
model is based on a nonautonomous system of dif-
ferential equations which has been studied previously
in several works [3, 39]. For this last model also a
NSFD scheme of predictor-corrector type has been
developed in [7]. However, in this paper the NSFD
schemes are developed for both epidemic models us-
ing matrix forms in order to improve computational
efficiency by means of matrix operations.

The importance of solving these epidemic models
is due to the fact that mathematical models have been
revealed as a important tool in studying the spread
and control of infectious diseases [8, 20]. The most
recent epidemiological models have involved aspects
such as passive immunity, stages of infection, vertical
transmission, disease vectors, macroparasitic loads,
age structure, social and sexual mixing groups, spa-
tial spread, vaccination, quarantine, and chemother-
apy [20]. Several of these models are based upon
systems of ordinary differential equations (ODE). In
these models commonly the variables represent sub-
populations of susceptibles (S), infected (I), recov-
ered (R), latent (E), transmitted diseases vectors, and
so forth. Thus, the ODE system describes the dy-
namics of the different classes of subpopulations in
the model [10, 21, 33, 36]. It is important to remark
that several numerical methods have been applied to
solve epidemic models [7, 9, 24, 26, 35]. In addi-
tion, the numerical solution of models with periodic
behavior are more difficult to be obtained in general.
For instance in [38] the authors find that ADM so-
lutions of Duffing, Van der Pol and Rayleigh equa-
tions were not periodic. They proposed an alternative
technique where Laplace transformation and Padé ap-
proximant were applied to obtain a better periodic so-
lution. However, interesting works investigating the
solution of ordinary differential equations systems ca-
pable of exhibiting chaotic behavior have been devel-
oped successfully in [7, 18]. Therefore, one of the
aims of this paper is to investigate numerically the ap-
plication of nonstandard finite difference schemes in
matrix form to seasonal epidemic models represented
by systems of nonautonomous nonlinear ordinary dif-
ferential equations in order to obtain periodic behav-
iors.

This paper is organized as follows. Section 2 in-
troduces the epidemic mathematical models for the
whooping cough SIR and for the transmission of
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RSV . These epidemic models are presented in their
particular matrix forms. In Section 3 we construct
the NSFD schemes using matrix forms of the afore-
mentioned epidemic mathematical models. Numeri-
cal simulations using the different NSFD numerical
schemes in matrix form for different time step sizes
are performed in Section 4. Discussion and conclu-
sions are presented in Section 5.

2 Mathematical models
Many epidemics are modeled by autonomous systems
of nonlinear ordinary differential equations which im-
plies the assumption that the parameters of the model
are independent of time. However, several diseases
present the effect of a seasonally varying contact rate
on the behavior of the disease. Thus a nonautonomous
system of nonlinear ordinary differential equations is
necessary to model the seasonal epidemics. In this
way, in order to model these epidemic models it is
necessary to rely on both systems of differential equa-
tions. These models can be generally described using
the following n-dimensional system,

dy

dt
= f(t, y); y(t0) = y0, (1)

where y = [y1, y2, ..., yn]T : [t0;T ) −→ Rn, the
function f = [f1, ..., fn]T : [0, +∞) × Rn −→ Rn

is differentiable and y0 ∈ Rn. The autonomous sys-
tems of nonlinear ordinary differential equations can
be seen as particular case of system (1), where the sys-
tem is of the following form:

dy

dt
= f(y); y(t0) = y0, (2)

Thus following the ideas proposed by Beretta and Ca-
passo [11, 17] many mathematical epidemic models
can be written in the following general matrix form:

dz

dt
= diag(z)Az + Bz + c, (3)

where,

• z ∈ Rn, being n the number of different classes
or subpopulations,

• c ∈ Rn, is a constant vector associated to the
independent terms,

• A = (aij) i, j = 1, ..., n, is a real constant ma-
trix associated to the nonlinear terms,

• B = (bij) i, j = 1, ..., n, is a real constant ma-
trix associated to the linear terms.

2.1 Mathematical model for the whooping
cough (SIR)

In this subsection we present the SIR epidemic
model [34], where the population is divided into three
classes: S(t) susceptible at time t, I(t) infected at
time t and R(t) recovered at time t and it is assume
immunity in this class. The mathematical model un-
der study is the following:

Ṡ(t) = µ− µS(t)−NβS(t)I(t),

İ(t) = NβS(t)I(t)− (µ + ν)I(t), (4)

Ṙ(t) = νI(t)− µR(t),

where

• β is the transmission coefficient,

• µ is the death rate and it is assumed equal to birth
rate,

• ν is the rate of recovery from disease and

• N total population.

In this model since the population is assumed constant
and have been normalized to unit one gets that for all
time t that

S(t) + I(t) + R(t) = 1. (5)

It is important to mention that the steady state of
(4) is given by the following points: the disease free
point (1, 0, 0) and the endemic point

(
1

R0
, µ

µ+ν (1 −
1

R0
), ν

µ+ν (1 − 1
R0

)
)

, where R0 = Nβ
µ+ν > 1 is the

basic reproductive number associated with the model
[34].

In this way, the epidemic model (4) can be writ-
ten in the general matrix form (3), where, z =
[S(t); I(t);R(t)]T , c = [µ; 0; 0]T and the matrix A
and B are given by:

A =

(
0 −Nβ 0

Nβ 0 0
0 0 0

)
and B =

(−µ 0 0
0 −µ− ν 0
0 ν −µ

)
.

For details about parameters and hypothesis we refer
the readers to [16, 34]. Each one of the parameters
values of the model Nβ, µ and ν with their numerical
values with biological sense are given in Table 1.

2.2 Mathematical seasonal model for the
transmission of the respiratory syncytial
virus RSV

In this subsection we are concerned with the math-
ematical seasonal model for the transmission of the
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Table 1: Parameters values for the SIR mathematical
epidemic model for the whooping cough (4).

Nβ µ ν

370 0.04 24

respiratory syncytial virus RSV . The mathematical
model is based on a system of first order ordinary dif-
ferential equations and it was proposed in [39]. The
model has several parameters that need to be esti-
mated fitting the model to medical data [4]. It is
important to mention that the model is fitted to the
epidemiological data using some of the developed
NSFD schemes with the aim of reducing computa-
tional time. In this model without loss of generality, it
is assumed that S(t) + I(t) + R(t) = 1. The model
is the classical SIRS (Susceptibles, Infected, Recov-
ered and Susceptibles), of the following form

Ṡ(t) = µ− µS(t)− β(t)S(t)I(t) + γR(t), S(0) = S0 > 0,

İ(t) = β(t)S(t)I(t)− νI(t)− µI(t), I(0) = I0 > 0, (6)

Ṙ(t) = νI(t)− γR(t)− µR(t), R(0) = R0 > 0.

The transmission coefficient function β(t) be-
tween classes S(t) and I(t) is a continuous T -periodic
function, called the transmission rate. This function
is generally approximated by a cosinusoidal function
β(t) = b0(1 + b1 cos(2π

T (t + ϕ)) where b0 > 0 is the
baseline transmission parameter, 0 < b1 ≤ 1 mea-
sures the amplitude of the seasonal variation in trans-
mission and 0 ≤ ϕ ≤ 2π is the phase angle normal-
ized [39]. In this way, following the ideas proposed by
Beretta and Capasso [11, 17] the epidemic model (6)
can be written in the following general matrix form,

dz

dt
= diag(z)Az + Bz + c, (7)

where, z = [S(t); I(t);R(t)]T , c = [µ; 0; 0]T , the
matrix A and B are given by:

A =

(
0 −β(t) 0

β(t) 0 0
0 0 0

)
and B =

(
−µ 0 γ
0 −µ− ν 0
0 ν −µ− γ

)
.

For details about parameters and hypothesis
we refer the reader to [3, 23, 39]. Each one of
the parameters values of the model γ, µ, ν, b0, b1

and φ for particular regions are given in Table 2.
Since the parameter values vary for each region,
these parameter values are modified in the numerical
simulations.

Table 2: Parameters values for the mathematical sea-
sonal model for the transmission of the respiratory
syncytial virus RSV (6).

Region b0 b1 φ µ ν γ

V alencia(Spain) 37 0.31 0.9 0.009 36 1.8
Gambia 60 0.16 0.15 0.041 36 1.8

3 Construction of the matrix non-
standard numerical schemes

In this section we construct the matrix NSFD
schemes for the epidemic mathematical models (4)
and (6). The main idea of these nonstandard schemes
is to transfer essential properties of the continuous
models to the discrete schemes and to obtain accu-
rate and computational inexpensive schemes in order
to minimize the fitting process time to obtain the un-
known parameters of the models. The approximated
solution of the variables representing the subpopula-
tions S(t), I(t) and R(t) need to be positive. Com-
putational inexpensive schemes can be obtained since
large time step sizes can be used, saving computa-
tional costs when integrating over long time periods.

From herein without loss of generality and for the
sake of clarity we obviate the explicit dependence on
t. Thus, a one-step numerical scheme with a step size
h that approximates the solution y(tk) of model (1)
can be written in the following form:

Dh(yk) = Fh(f ; yk), (8)

where Dh(yk) ≈ dy
dt , Fh(f ; yk) ≈ f(y) and tk = t0 +

kh.
In this way a scheme is called nonstandard if at

least one of the following conditions is satisfied [1],

1. Fh(f ; yk) = g(yk+1; yk;h), where
g(yk+1; yk;h) is a nonlocal approximation
of the right-hand side function f(t, y).

2. Discretization of derivative is not traditional, i.e.,
Dh(yk) = (yk+1−yk)

ϕ(h) , where ϕ(h) = h +O(h2)
is a nonnegative real-valued function on R called
denominator function that satisfies the following
properties [30]:

(a) ϕ(h) = h +O(h2), and

(b) 0 ≤ ϕ(h) < 1 for all h > 0,.

Through this paper the nontraditional derivative will
be computed using ϕ(h) as:

ϕ (h) =
1− e−λh

λ
. (9)
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On the other hand, the traditional or standard deriva-
tive is computed using ϕ(h) = h. For the construction
of matrix NSFD schemes of models (4) and (6), we
rely on the matrix form structure (3). The approxima-
tions of temporal derivatives are done by means of a
generalized forward scheme of first order. Hence, if
g(t) ∈ C1(R), let us to define its derivative as

dg(t)
dt

=
g(t + h)− g(t)

ϕ(h)
+O(ϕ(h)) as h −→ 0.

(10)

Note that the above definition is consistent with the
traditional definition of derivative, since

dg(t)
dt

= lim
h−→0

{
g(t + h)− g(t)

ϕ(h)
+O(ϕ(h))

}

= lim
h−→0

g(t + h)− g(t)
h

lim
h−→0

h

ϕ(h)
+ lim

h−→0
O(ϕ(h))

= ġ(t).

3.1 Matrix Euler NSFD scheme
The first numerical scheme is constructed to obtain the
solutions S(t), I(t) and R(t) of the models and it is
defined in matrix form by

zn+1 − zn

ϕ(h)
= diag(zn)Azn + Bzn + c, (11)

where this particular discretization is made based on
the Euler scheme, but with the derivative approxi-
mated by a nontraditional form. Thus after rearrang-
ing, yields the following explicit form,

zn+1 = zn + ϕ(h) (diag(zn)Azn + Bzn + c) .
(12)

3.2 Matrix NSFD scheme 2

The second numerical scheme is defined in matrix
form by

zn+1 − zn

ϕ(h)
= diag(zn)Azn + Bzn+1 + c. (13)

where this particular discretization is done based on
the forward implicit Euler scheme applied only on the
terms related to the matrix B and with the derivative
approximated by a nontraditional form. In this case
one gets the following explicit form,

zn+1 = [I − ϕ(h)B]−1 [zn + ϕ(h) (diag(zn)Azn + c)] ,
(14)

if [I − ϕ(h)B] is invertible.

3.3 Matrix NSFD scheme 3

The third numerical scheme is defined in matrix form
by

zn+1 − zn

ϕ(h)
= diag(zn)Azn+1 + Bzn + c, (15)

where this particular discretization is done based on
the forward implicit Euler scheme applied only on the
nonlinear component. Therefore, after rearranging, it
yields the following explicit form,

zn+1 = [I − ϕ(h)diag(zn)A]−1 [zn + ϕ(h) (Bzn + c)] ,
(16)

if [I − ϕ(h)diag(zn)A] is invertible.

3.4 Matrix NSFD scheme 4

The last numerical scheme is defined in matrix form
by

zn+1 − zn

ϕ(h)
= diag(zn)Azn+1 + Bzn+1 + c, (17)

where this particular discretization is done based on
the mixing of the schemes 2 and 3 with the derivative
approximated by a nontraditional form. One gets the
following explicit form,

zn+1 = [I − ϕ(h)diag(zn)A− ϕ(h)B]−1 (zn + ϕ(h)c) ,
(18)

if [I − ϕ(h)diag(zn)A− ϕ(h)B] is invertible.

4 Numerical results
In this section, the numerical results for the SIR
model and the seasonal mathematical model for the
transmission of respiratory syncytial virus RSV using
the four matrix proposed NSFD schemes are shown.
In order to test the accuracy of the NSFD schemes
we perform several numerical simulations varying the
time step size. The numerical results are presented in
two different subsections: one for the SIR model and
other for the seasonal RSV .

Since an exact analytic solution for both epidemic
mathematical models are unknown, we take in the nu-
merical comparisons as the true solution the computa-
tional expensive 4-th order Runge-Kutta scheme with
a very small time step size h = 0.0001 after check-
ing its numerical consistency with other numerical
schemes. In addition the numerical comparisons are
made using the infected population I(t) for two main
reasons: the infected population is the most important
one and usually this population is the one included in
the fitting process to epidemiological data.
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4.1 Numerical solution of the whooping
cough SIR model

As it was mentioned before this model considers the
whooping cough using model presented in [16]. We
solve numerically this model using matrix NSFD
schemes in order to improve computational efficiency
by means of matrix operations. This model has two
equilibrium points: the disease free point (1, 0, 0) and
the endemic point

(
1

R0
, µ

µ+ν (1− 1
R0

), ν
µ+ν (1− 1

R0
)
)

.
Thus, numerical solutions need to converge to any of
these equilibrium points depending on the parameter
values.

In Fig. 1 it can be seen a first numerical simula-
tion using all the numerical schemes with traditional
derivative and these results show that they are similar
for a time step size h = 0.0005 as was expected. In
Table 3 it is shown the computation time of of Euler,
matrix NSFD and 4-th order Runge-Kutta numeri-
cal scheme with time step size h = 0.0005. It can be
observed that the matrix NSFD schemes and Euler
are less expensive in computational time than the 4-th
order Runge-Kutta numerical scheme, despite the ma-
trix ordinary differential equation system is small. In
an epidemic model where the system to be solved and
the simulation time are large, it is expected that the
time difference would increase.
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0.015
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0.025

Time t 
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ct
ed

 p
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rt

io
n 

I(
t) RungeKutta 4th order

Classical Euler
NSFD Scheme 2
NSFD Scheme 3
NSFD Scheme 4

Fig. 1: Numerical comparisons for the SIR model,
using Euler and matrix NSFD scheme 4, both with
a time step size h = 0.0005 for the whooping cough
SIR model.

In the next numerical simulations the time step
size is increased in order to investigate which numeri-
cal scheme can produce the best results with a large
time step sizes. In Fig. 2 it can be seen that the
Euler classical scheme solution fails to represent the
infected I(t) population of the SIR model (4). No-

Time Euler Scheme 2 Scheme 3 Scheme 4 Runge-Kutta
[0, 25] 16.87s 16.84s 16.12s 16.26s 54.32s
[0, 50] 73.9s 74.0s 77.2s 74.7s 240.3s

Table 3: Comparison of the computation time of Eu-
ler, matrix NSFD and 4-th order Runge-Kutta nu-
merical schemes with time step size h = 0.0005 for
the whooping cough SIR model.

tice, that despite the use of the same time step size
h = 0.01, the NSFD scheme 4 with λ = 1 converges
to the correct endemic equilibrium point. Thus, a first
advantage of the NSFD is obtained.

In Figs. 3, 4, 5 and 6 it can be observed that de-
spite the use of a large time step size h = 0.01, the
NSFD schemes converge to the correct equilibrium
point. However, the frequency is not captured exactly
due to the large time step size. However, it can be
seen in 6 that the NSFD scheme 4 produces the best
approximation. On the other hand, it can be observed
that the graphics of the right hand side obtained using
nontraditional derivative do not differ greatly from the
ones of the left hand side obtained using the standard
derivative, with the exception of 5 where the accuracy
of NSFD scheme 3 improves with the nonstandard
derivative.

0.1 0.2 0.3 0.4 0.5
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−1

−0.5

0

0.5
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Time t 
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ct
ed

 p
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I(
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Classical Euler
NSFD Euler Scheme

Fig. 2: Numerical comparisons for the SIR model,
using Euler and NSFD scheme 4 with λ = 1, both
with a time step size h = 0.01.

4.2 Numerical solution of the seasonal RSV
model

As in previous subsection we take the 4-th order
Runge-Kutta scheme with a very small time step size
h = 0.0001 as the exact solution of the seasonal RSV
model for numerical comparisons purposes. As the
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Fig. 3: Numerical comparisons for the SIR model,
using NSFD Euler scheme with a time step size
h = 0.01. On the right hand side with the nonstan-
dard derivative using λ = 1 (see expression 9).
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Fig. 4: Numerical comparisons for the SIR model,
using NSFD scheme 2 with a time step size h =
0.005. On the right hand side with the nonstandard
derivative using λ = 1 (see expression 9).
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Fig. 5: Numerical comparisons for the SIR model,
using NSFD scheme 3 with a time step size h =
0.005. On the right hand side with the nonstandard
derivative using λ = 10 (see expression 9).
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Fig. 6: Numerical comparisons for the SIR model,
using NSFD scheme 4 with a time step size h =
0.005. On the right hand side is with the nonstandard
derivative using λ = 1 (see expression 9).

contact rate parameter β is very important from the
epidemic dynamic point of view, different values were
taken in the numerical simulations for the seasonal
RSV model. In order to show clearly the numeri-
cal results, two different types of NSFD schemes are
presented; schemes with standard derivative and with
nontraditional derivative. These numerical results are
presented in different subsections. In this way it is
easy to observe the effects of nonlocal approximations
and nontraditional derivatives.

In Fig. 7 it can be seen a first numerical simu-
lation for the seasonal RSV model using all the nu-
merical schemes with traditional derivative and these
results show that they are similar for a time step size
h = 0.0001 as was expected. In Table 4 it is shown
the computation time of of Euler, matrix NSFD and
4-th order Runge-Kutta numerical scheme with time
step size h = 0.0001. It can be observed that the ma-
trix NSFD schemes and Euler are less expensive in
computational time than the 4-th order Runge-Kutta
numerical scheme, despite the matrix ordinary differ-
ential equation system is small. Notice that in this
case the time step size need to be smaller due to the
more complex periodic behavior of the system.
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Fig. 7: Numerical comparisons for the SIR model,
using Euler and NSFD scheme 4, both with a time
step size h = 0.0001 for the seasonal RSV model.

Time Euler Scheme 2 Scheme 3 Scheme 4 Runge-Kutta
[0, 3] 37.9s 36.0s 40.5s 34.6s 93.9s
[0, 25] 83.2s 100.4s 88.8s 88.9s 256.9s

Table 4: Comparison of the computation time of Eu-
ler, matrix NSFD and 4-th order Runge-Kutta nu-
merical schemes with time step size h = 0.0001 for
the seasonal RSV model.
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4.2.1 Matrix NSFD schemes with nonlocal ap-
proximations and traditional derivative

Here it is shown several numerical results using the
matrix NSFD when traditional derivative is used. In
Fig. 8 it can be seen the solutions representing the
infected I(t) population of the respiratory syncytial
virus RSV model (6). It is clear from Fig. 8 that an
excellent agreement exists between the solution, the
Euler scheme and the NSFD scheme 2, both with a
time step size h = 0.001. However, in Fig. 9 it can be
observed that these schemes fails when the time step
size is increased to h = 0.002 for the Euler scheme
and h = 0.01 for NSFD scheme 2. It is important to
remark that NSFD scheme 2 achieves better results
for larger time step sizes than Euler scheme as it was
expected. For the matrix NSFD numerical schemes
2 and 3, the scenario is similar but these schemes fail
with smaller time step sizes as it can be seen in Fig.
10. Next subsection will be devoted to introduce the
nontraditional derivative to observe its effect on the
accuracy of the solutions.
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Fig. 8: Numerical comparisons between the solution
of RSV model, Euler scheme and the NSFD scheme
2, both with a time step size h = 0.001
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Fig. 9: Numerical comparisons between the solution
of RSV model, Euler scheme and the NSFD scheme
2 with time step sizes h = 0.002 and h = 0.01 respec-
tively.

4.2.2 NSFD schemes with nonlocal approxima-
tions and nonstandard derivative

In this subsection numerical results are computed us-
ing the nontraditional derivative. In Fig. 11 it can be
seen that the nonstandard Euler scheme (12) improves
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Fig. 10: Numerical comparisons between the solution
of RSV model, NSFD schemes 3 and 4, both with a
time step size h = 0.001

the accuracy of the traditional Euler scheme. This fact
is important since it means that the process fitting can
be done with the nonstandard Euler scheme without
the use of a smaller time step size, that will require
more computation time. When b1 is increased to 1000
in order to increase the stiffness of the seasonal model,
the NSFD scheme 2 with traditional derivative fails
to give a solution for a time step size h = 0.01 and
this same NSFD scheme with nontraditional deriva-
tive at least gives an approximate solution as it can be
seen in Fig. 12. Finally in Fig. 13 it can be observed
the solutions when b0 is increased to 700.
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Fig. 11: Numerical comparisons between the solu-
tion of RSV model, Euler scheme and the NSFD
Euler scheme with λ = 100 when a time step size
h = 0.005 is used in both schemes.
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Fig. 12: Numerical comparisons between the solution
of RSV model, NSFD scheme 2 with and without
the traditional derivative. We use λ = 4500 and a time
step size h = 0.01 for both schemes. In addition b1 is
increased to 1000 in order to increase the stiffness of
the model.
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Fig. 13: Numerical comparisons between the solution
of RSV model, NSFD scheme 2 with and without
the traditional derivative. We use λ = 250 and a time
step size h = 0.01 for both schemes. In addition b0

is increased to 700 in order to increase the stiffness of
the model and b1 = 100 .

5 Discussion and conclusions
One of the aims of this paper was to investigate nu-
merically the application of matrix NSFD schemes
to epidemic models represented by systems of au-
tonomous and nonautonomous nonlinear ordinary dif-
ferential equations. In addition, it was constructed in a
easy way these matrix NSFD such they can be used
easily by the scientific community without any spe-
cial knowledge. Moreover, with these matrix NSFD
schemes it can be exploited matrix operations advan-
tages.

Thus, we have concerned with a classical SIR
epidemic model and a seasonal model associated with
the evolution of the transmission of respiratory syn-
cytial virus RSV in the human population. The first
model was an autonomous model, and the second one
was a nonautonomous one which generally is more
difficult to be solved.

Numerical results for the SIR epidemic model
and the seasonal RSV model show that matrix
NSFD schemes converge to the correct equilibrium
point with large time step sizes. However, the fre-
quency of the true solution is not reproduced exactly
when large time step sizes are used with some ma-
trix NSFD schemes. Further research is necessary
in order to create in a more straightforward way these
schemes where the accuracy could be improved for
large time step sizes. We conclude that the developed
nonstandard schemes are competitive and preserve es-
sential properties of the continuous epidemic models
and large time step sizes can be used, thus making it
more economical to use when integrating over long
time periods.

Finally, it should be mentioned that the developed
numerical schemes can be used in other general epi-
demic models which are based on first order nonlinear
ordinary differential equations and the fitting process
to epidemiological data can reduce the computational

effort to obtain different unknown parameters of the
epidemic models.
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