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Abstract: In this paper, we consider the statistical properties of chain reaction of stock indices. The theory of
interacting systems and statistical physics are applied to describe and study the fluctuations of two stock indices in
a stock market, and the properties of the interacting reaction of the two indices are investigated in the present paper.
In this work, stochastic analysis and the two random paths model are used to study the probability distribution for
the chain reaction of stock indices, further we show the asymptotical behavior of probability measures of the
fluctuations for the two stock indices model. In the last part, we discuss the convergence of the finite dimensional
probability distributions for the financial model.
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1 Introduction
As the stock markets are becoming deregulated world-
wide, the modelling of the dynamics of the forwards
prices is becoming a key problem in the risk manage-
ment, physical assets valuation, and derivatives pric-
ing. Meanwhile it can be seen from a lot of phe-
nomena and research results in securities markets that
there is indeed a notable correlation among the fluc-
tuations of the securities indices all over the world.
For example, we often see that, the chain reaction
between Hang Seng Index (Hong Kong Stock Ex-
change) and Shanghai Composite Index (Shanghai
Stock Exchange) shows a notable positive correlation,
since there are many mainland companies of China are
listed in the Hong Kong Stock Exchange. About 30
years’ reformation and opening in economy of China,
now the capital market economy of China plays an
important role in the national economy, and the chain
reaction between the Chinese stock markets and the
foreign stock markets is becoming more obviously.

The study of fluctuation of stock price has been
made great progress in the past ten years, see [2,3,5,9-
14,17-27,31,32]. Recently, some research work has
been done in the field of applying the theory of sta-
tistical physics dynamic systems to investigate the
statistical properties of fluctuations of stock prices,
the power stock market is modelled by the dynam-
ics of power spot prices, and the corresponding val-
uation and hedging of contingent claims for this

price process model are also studied, for example see
[5,9,10,14,17,20,27,31,32]. For example, by applying
the percolation model, Makowiec et al. [17], Tanaka
[27] studied the market fluctuations. They constructed
a price model by the lattice percolation theory, accord-
ing to local interaction of percolation, the local inter-
action or influence among traders in one stock mar-
ket is constructed, and a cluster of percolation is used
to define the cluster of traders sharing the same opin-
ion about the market. Let pc denote the critical point
of influence rate in percolation model, around or at
this critical point, [27] show the existence of fat tails
for return processes, where the properties of percola-
tion clusters are applied. Here, the critical phenom-
ena of percolation model is used to illustrate the herd
behavior of stock market participants. In their study,
they assume that the information in the stock market
leads to the stock price fluctuation and the investors in
stock market follow the effect of sheep flock. There
are also some work that has been done by applying
Ising type models to a financial model, see [10,22]. In
[10,22], the interacting dynamic system is applied to
model a financial price model, and the corresponding
statistical properties is analyzed. In this paper, we ap-
ply the Ising type model to study the chain reaction
of stock indices. The original attempt of this work is
to study the financial phenomena by statistical physics
systems, and it is also important to understand the sta-
tistical properties of fluctuations of stock indices in
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globalized securities markets.
In the present paper, the stochastic process theory

and the two random paths model (a statistical physics
model) are used to construct a financial price model,
which describes the fluctuations of stock indices. In
the work of modelling the two indices financial model,
we consider the fluctuations of paths in a two random
paths model, where the “path” of the random model
is considered as a stock index process. The study
on the paths of the two random paths model is ap-
proximation relevant to the two interfaces problems
of the one-dimensional Solid-on-Solid (SOS) model.
Assume that there is a specified value of the large area
in the intermediate region of the two random indices
(where the financial meaning of the large area will be
given in Section 2), we discuss the statistical proper-
ties of the two random indices, and we study the sta-
tistical limiting properties of the two random indices
model. The statistical analysis method of this paper is
mainly based on the research work of [8].

2 Modeling Two Stock Indices by In-
teracting and Dynamic Systems

In this section, interacting particle system (see [4,6-
8,15,16,29,30]) is used to construct a financial model,
the particle is considered as a investor or trader, and
the path (or interface) is considered as a stock index
process. The aim of this paper is to study the limit-
ing properties of the financial model and the volatility
function and the drift function of the model.

First we give the construction of this financial
model. For a stock market, we consider a single in-
dex, and assume that there are m (m large enough)
traders in this stock market, and each trader can trade
unit number of stocks at each time t. At each time
t, the behavior of stock index process is determined
by the number of traders x+

t (with buying positions)
and x−t (with selling positions). Let ‘+’, ‘−’ and ‘0’
denote that traders take buying positions, selling po-
sitions and neutral positions respectively. If the num-
ber of traders in buying positions is bigger than the
number of traders in selling positions, it implies that
the index price is considered to be low by the mar-
ket participants, and the index price auctions higher
searching for buyers, similarly for the opposite case.
Traders with buying positions or selling positions are
called market participants.

Let xt(r) be the position of trader r(1 ≤ r ≤ m)
at time t, and

xt = (xt(1), · · · , xt(m))

be the configuration of positions for m traders. A
space of all configurations of positions for m traders

from time 1 to n is given by

X = {x = (x1, · · · , xn)}

and let x0 = 0. For a given configuration

x = (x1, · · · , xn) ∈ X

and t ∈ {1, · · · , n}, let

A(xt) =


x+

t − x−t − h0 if x+
t − x−t > h0

0 if | x+
t − x−t |≤ h0

−(x−t − x+
t − h0) if x−t − x+

t > h0

(1)
where h0 is a positive integer. If A(xt) > 0,
there are more buyers than sellers and the index
price is auctioned up. From above definitions and
[2,12,21,24,28], we define the index price of the
model at time t(t = 1, 2, · · ·) as following

St = eαA(xt)St−1

where α > 0, and let S0 be the price at time t = 0.
Then we have

St = S0 exp{α
t∑

k=1

A(xk)}. (2)

In this paper, we consider the chain reaction of
two stock indices, so we let S1

t (or A(x1)) and S2
t

(or A(x2)) to denote the two indices prices respec-
tively. Then we can obtain the corresponding defini-
tions as above (1)(2).

Next we study a two random paths model, the
Hamiltonian of the model on the horizontal set of

t ∈ Ln = {1, · · · , n}

is given by

Hn(A(x1), A(x2)) =∑
t∈Ln

(
|A(x1

t )−A(x1
t−1)|+

|A(x2
t )−A(x2

t−1)|
)
. (3)

For the two random paths models, let

Xn = {(A(x1), A(x2)) : A(x1
t ), A(x2

t ) ∈ Z,
for t ∈ Ln}

be the corresponding configuration pace. The
Gibbs measure associated with the Hamiltonian
Hn(A(x1), A(x2)) is defined as

P (A(x1), A(x2)) =
1

Zn,β
exp[−βHn(A(x1), A(x2))] (4)
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where β is a positive parameter called an inverse tem-
perature, and

Zn,β =
∑

(A(x1),A(x2))∈Xn

exp[−βHn(A(x1), A(x2))]

is a partition function.
According to (1), the integer-valued random vari-

ablesA(x1), A(x2), · · · , are independent and have the
same probability distribution. For t ∈ Ln and t ≥ 1,
let

ξt = A(x1
t )−A(x1

t−1)

ηt = A(x2
t )−A(x2

t−1)

where ξ0 = 0, η0 = 0. Let

ξ = {ξt, t ∈ Ln}

η = {ηt, t ∈ Ln}
then rewrite above partition function as

Zn,β =
∑
ξ,η

exp[−βHn(ξ, η)],

whereHn(ξ, η) is the Hamiltonian function for (ξ, η).
From above definitions, ξ = {ξt, t ∈ Ln} and η =
{ηt, t ∈ Ln} can be seen as the sequences of i.i.d. ran-
dom variables respectively. So, the two random paths
model has two independent random SOS paths, that
is, the model corresponds to the ensemble of two inde-
pendent self-avoiding paths in [0, n]×Z starting from
(0, 0) and ending at sites z in the line {t = n}(where
z = (t, y)), which do not go back in the horizontal
direction. Next we introduce the generating function
of the hight of the endpoints for one ‘step’, that is, for
a fixed t ∈ Ln, letGt be the set of real (u, v) such that

Q(u, v) = E[euβξt+vβηt ] <∞ (5)

where (u, v) is in some neighbourhood of the origin.
Considering the random walk (describing the fluctua-
tions of the index price process) as

Xξ
0 = 0, Xξ

t =
t∑

k=1

ξk, t = 1, 2, · · · , (6)

we define the index price process as a random polyg-
onal function lξn(s)

lξn(s) = Xξ
[ns] + {ns}ξ[ns]+1, for s ∈ [0, 1],

where [ns] denote the integral part of a real number
ns, and {ns} denote its fractional part. For a fixed n,
let

aξ
n =

1
n

n−1∑
t=0

Xξ
t =

n∑
t=1

(1− t

n
)ξt

be a new random variable which denote the area un-
der the index price line lηn(s). Similarly to above def-
initions, we can obtain the corresponding definitions
{Xη

0 , X
η
t , t = 1, 2, · · · , }, lηn(s) and aη

n. Let

ξ̄ =
n∑

t=1

ξt, η̄ =
n∑

t=1

ηt.

For (u, v) ∈ R×R, we define

ϕ(u, v) = lim
n→∞

1
n

ln
(∑

ξ,η

exp[βuξ̄ + βvη̄]

× exp[−βHn(ξ, η)]
/
Zn,β

)
(7)

by [8], it is known that the limit exists if (u, v) is in
some neighbourhood of the origin.

The aim of this paper is to study the asymptotes
of fluctuations of the two random paths conditioned
by fixing a large area between the two random paths.
Denote by aη−ξ

n = aη
n − aξ

n representing the area of
the intermediate layer between the two random paths.
For a real ζ̄0 and 0 ≤ s ≤ 1, assume that

F (ζ̄0, β, s)

=
d

dζ0
ϕ

(
−(1− s)ζ0, (1− s)ζ0

)∣∣∣
ζ0=ζ̄0

,

1
β

∫ 1

0
F (ζ̄0, β, s)ds = a (8)

where a > 0 is some constant. Then we state the main
results of this paper.

Main Result: Assume that for some δ(β) > 0 and
a > 0, there exists a real ζ̄0 satisfying above condition
(8) and |ζ̄0| < δ(β), then the process

Yn(t) =
1√
n

{
Xη

n(t)−Xξ
n(t)− n

β

∫ t

0
F (ζ̄0, β, s)ds

}
(9)

under Pn,β(· | aη−ξ
n = banc), converges weakly to

the process

Y (t) =
1
β

∫ t

0

√
ϕ′′

(
−(1− s)ζ̄0, (1− s)ζ̄0

)
dB(s)

(10)
conditioned that ∫ 1

0
Y (t)dt = 0

where {B(s)}s≥0 is the one dimensional standard
Brownian motion, ϕ(u, v) is defined in (6) and banc
is the integer part of an.
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Remark 1: From above definitions, the stock price S1
t

can be rewritten as

S1
t = S1

0 exp{αXξ
t }

and S2
t can be rewritten as

S2
t = S2

0 exp{αXη
t }

for t = 1, 2, · · · , n. In a stock market, here the ‘area’
aη−ξ

n may represent the information or the situation on
these two stock indices during the time from 0 to n, in-
cluding the estimation for these stock indices, positive
or negative news, trends, political event and economic
policy, etc. If the ‘area’ is positive and has a large
positive value, then the index price S2

t lies above the
index price S1

t during the time t = 1, 2, · · · , n (here
we suppose that S1

0 = S2
0 ), this implies that there may

have a positive influence or positive news on the index
S2

t , so that the market participants are likely to take
buying positions for the index S2

t . This means that,
comparing the price of the index S1

t and the price of
the index S2

t , the index price S2
t is more likely to in-

crease (or go up) than the index price S1
t . If the ‘area’

is negative and has a large negative value, then the in-
dex price S1

t lies above the index price S2
t during the

time t = 1, 2, · · · , n (here we suppose that S1
0 = S2

0 ),
this implies that the index price S2

t is more likely to
decrease (or go down) than the index price S1

t . In this
paper, we only consider the case that the ‘area’ is pos-
itive, and we can use the similar methods to discuss
the opposite case.

3 Estimate of Fluctuations for Two
Random Financial Stock Indices
Model

From definitions (6), we begin discussing the area be-
tween the two random paths. Now we define the areas
of aξ

n, a
η
n, a

η−ξ
n as followings,

aξ
n =

1
n

n∑
t=1

Xξ
t =

n∑
t=1

(1− t

n
)ξt

aη
n =

1
n

n∑
x=1

Xη
t =

n∑
t=1

(1− t

n
)ηt. (11)

aη−ξ
n = aη

n − aξ
n

=
n∑

t=1

(1− t

n
)(ηt − ξt). (12)

By the independence of {ξt, t ∈ Ln} and {ηt, t ∈
Ln}, the generation function of the area aη−ξ

n is de-
fined by

Q
aη−ξ

n
(ζ) =

1
Zn,β

∑
ξ,η

exp{βζaη−ξ
n } exp{−βHn(ξ, η)}

=
1

Zn,β

n∏
t=1

(∑
ξt,ηt

exp{βζ(1− t

n
)(ηt − ξt)

−β(|ξt|+ |ηt|)}
)

=
n∏

t=1

Q
(
−ζ(1− t

n
), ζ(1− t

n
)
)
. (13)

Let q be a natural number, and let {ti, 1 ≤ i ≤ q}
be any set of real numbers, such that

0 < t1 < · · · < tq ≤ 1.

Set a random vector as

X̂(q)
n (t1, · · · , tq) =

(aη−ξ
n , A(x2

bt1nc)−A(x1
bt1nc), · · · ,

A(x2
btqnc)−A(x1

btqnc)). (14)

Then for

ζ = (ζ0, ζ1, · · · , ζq) ∈ Rq+1,

it is similar to (13), we have

1
Zn,β

∑
ξ,η

eβζ·X̂(q)
n (t1,···,tq)e−βHn(ξ,η)

=
n∏

x=1

Q
(
−ζn(t; ζ), ζn(t; ζ)

)
(15)

where

ζn(t; ζ) = ζ0(1−
t

n
) +

q∑
i=1

ζi1[0,tin](t).

For the real ζ̄0 defined in (8) and some small constant
α1 > 0, let ζ ∈ Rq+1 satisfy the following conditions

Dα1,ζ̄0
= {ζ : −α1 < ζ0 < ζ̄0 + α1,

|ζi| < α1, i = 1, · · · , q}. (16)

Next we introduce the corresponding quadratic
form, a (q + 1)× (q + 1) matrix Vn(ζ) denote by

Vn(ζ) =
1
β2n

Hess ln
( 1
Zn,β

∑
ξ,η

eβζ·X̂(q)
n (t1,···,tq)

×e−βHn(ξ,η)
)
, (17)
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where Vn(ζ) is analytic in Dα1,ζ̄0
. Assume that ζ ∈

Dα1,ζ̄0
, and according to definition (17), then uni-

formly in ζ and

y = (y0, · · · , yq) ∈ Rq+1

such that | y |= 1, we have

y · Vn(ζ) · y −→ y · V (ζ) · y, as n→∞ (18)

where

V (ζ) =
1
β2

Hess
∫ 1

0
lnQ(−ζ(s), ζ(s))ds, (19)

and

ζ(s) = ζ0(1− s) +
q∑

i=1

ζi1[0,ti](s),

for 0 ≤ s ≤ 1. Let P̂ (q)
n be the probability distribu-

tion of
X̂(q)

n (t1, · · · , tq)

under Pn,β , and P̂ (q)
n,ζ be given by

P̂
(q)
n,ζ (z) = eβζ·zP̂ (q)

n (z)
/
En,β(eβζ·X̂(q)

n (t1,···,tq))
(20)

for all ζ ∈ Dα1,ζ̄0
and

z ∈ Z(q)
n = (n−1Z)× Zq.

Denote by Ê
(q)
n,ζ(·) the corresponding expectation

function for P̂ (q)
n,ζ (·). By the uniform boundedness of

the family of analytical functions Vn(ζ) for all L and
all ζ in Dα1,ζ̄0

, according to Lemma 2.7 and Proposi-
tion 2.7 in [8], we have the following two results.

(I) Let ζ
n
, ζ ∈ Dα1,ζ̄0

, and ζ
n
→ ζ as n → ∞.

Then the random vector

Ŷ (q)
n (t1, · · · , tq) =
1√
n

(X̂(q)
n (t1, · · · , tq)− Ê

(q)
n,ζ

n
X̂(q)

n (t1, · · · , tq))

(21)

converges weakly to a Gaussian random vector

Ŷ (q)(t1, · · · , tq)

of which covariance matrix is given by V (ζ).

Let gζ be the density function of the Gaussian

vector Ŷ (q)(t1, · · · , tq) given in (I).

(II) Let Z(q)
n = (n−1Z) × Zq, then for each zn ∈

Z(q)
n and ζ

n
∈ Dα1,ζ̄0

, define

y
n

=
1√
n

(zn − Ê
(q)
n,ζ

n
X̂(q)

n (t1, · · · , tq)). (22)

Then we have

n(q+3)/2P̂
(q)
n,ζ

n
(zn)− gζ

n
(y

n
) → 0 (23)

as n → ∞, and uniformly in zn ∈ Z(q)
n and ζ

n
∈

Dα1,ζ̄0
.

4 Convergence Behaviors of Chain
Reaction Between Two Stock In-
dices

In this section, we discuss the limiting properties of
the random vector (14) and show the proofs of the
main results in (9)(10).

In the definition (14), the random vector

X̂(q)
n (t1, · · · , tq)

is given. First we consider the convergence of the
finite-dimensional distribution of the random vector

Ŷ (q)
n (t1, · · · , tq)

defined in (21), see [1]. Let ζ◦
n
, ζ◦ be a special se-

quence in Dα1,ζ̄0
, such that

ζ◦
n

= (ζn,0, 0, · · · , 0)

ζ◦ = (ζ̄0, 0, · · · , 0) (24)

where ζ̄0 is defined in (8), and ζn,0 satisfies the fol-
lowing condition(see (13))

d

dζ0
lnQ

aη−ξ
n

(ζ0)
∣∣∣
ζ0=ζn,0

= banc, (25)

by (8)(13) and above (25), it can be proved that ζ◦
n
→

ζ◦ as n→∞. Let

ϕn(ζ; t1, · · · , tq) =
1
n

ln
( ∑

ξ,η

eβζ·X̂(q)
n (t1,···,tq)e−βHn(ξ,η)

/
Zn,β

)
,

(26)

and denote by

ϕ(q)(ζ; t1, · · · , tq) = lim
n→∞

ϕn(ζ; t1, · · · , tq)
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for ζ ∈ Dα1,ζ̄0
. From the definitions (8)(25)(26) and

the uniform boundedness of Hessζϕn, we have

Ê
(q)
n,ζ◦

n

X̂(q)
n (t1, · · · , tq)

= (banc, Ê(q)
n,ζ◦

n

(A(x2
bt1nc)−A(x1

bt1nc)), · · · ,

Ê
(q)
n,ζ◦

n

(A(x2
btqnc)−A(x1

btqnc)))

=
n

β
(∇ζϕn)(ζ◦

n
; t1, · · · , tq)

=
n

β
(∇ζϕ

(q))(ζ◦; t1, · · · , tq) + o(1). (27)

By (22)(24), for

−∞ < aj < bj <∞, 1 ≤ j ≤ q

we have

lim
n→∞

P̂ (q)
n (yj ∈ [aj , bj ], 1 ≤ j ≤ q | z0 = banc)

= lim
n→∞

P̂
(q)
n,ζ◦

n

(yj ∈ [aj , bj ],

1 ≤ j ≤ q | z0 = banc)

=

∫
[a1,b1]×···×[aq ,bq ] gζ◦(0, y1, · · · , yq)dy1 · · · dyq∫

Rq gζ◦(0, y1, · · · , yq)dy1 · · · dyq
.

(28)

According to the definition (19) and the result of (I) in
(21), let

Ŷ (q)(t1, · · · , tq)
= (Y0, Y (t1), Y (t2), · · · , Y (tq)) (29)

be a Gaussian random vector with distribution density
gζ(y0, · · · , yq). Then its covariance matrix is given by

E [Y (tj)Y (tk)] =
1
β2

∫ tj∧tk

0
ϕ′′(−(1− s)ζ̄0, (1− s)ζ̄0)ds

E [Y0Y (tj)] =
1
β2

∫ tj

0
ϕ′′(−(1− s)ζ̄0, (1− s)ζ̄0)ds

E
[
Y 2

0

]
=

1
β2

∫ 1

0
ϕ′′(−(1− s)ζ̄0, (1− s)ζ̄0)ds (30)

for j, k = 1, · · · , q, where a ∧ b = min{a, b}. This
means that {Y0, {Y (t)}t∈[0,1]} is a Gaussian random
process with covariance matrix given above for every
q ≥ 1. In above proof, we suppose that

A(x2
btinc)−A(x1

btinc)

= Xη
n(
btinc
n

)−Xξ
n(
btinc
n

)

for i = 1, · · · , q(see (27)). Similarly to Lemma 2.8 in
[8], the above argument is also true if we replace

Xη
n(
btinc
n

)−Xξ
n(
btnic
n

)

with
Xη

n(ti)−Xξ
n(ti)

for every 1 ≤ i ≤ q. Then the distribution of

X̂(q)
n (t1, · · · , tq)

under Pn,β(· | aη−ξ
n = banc), converges weakly to the

corresponding distribution of Gaussian random vector

Ŷ (q)(t1, · · · , tq).

Secondly, the tightness of above conditional dis-
tribution of the random process Yn(t) should be dis-
cussed. Following the similar argument of Section 3
in [8], we can prove a sufficient condition for the tight-
ness of the considered process Yn(t). Together with
the first part of this proof, this completes the proof of
main results in (10).

Remark 2: According to the arguments of [8], and
with the main results of (9)(10), the probability distri-
bution of the random process

1
n

(Xη
n(t)−Xξ

n(t))

under Pn,β(· | aη−ξ
n = banc), converges weakly to the

corresponding distribution concentrated on the func-
tion

1
β

∫ t

0
F (ζ̄0, β, s)ds.

5 Probability Properties of One
Stock Index by Chain Reaction

In this section, we study the asymptotical behavior of
one stock index

{Xη
0 , X

η
t , t = 1, 2, · · · , }

or lηn(s) by the chain reaction, see the definitions in
Section 2. In Section 3 and Section 4, the convergence
properties of

1√
n

(Xη
n(t)−Xξ

n(t))

is studied, here we continue to study the probability
distributions of random process

1
n
Xη

n(t)
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under Pn,β(· | aη−ξ
n = banc), as n→∞.

Corollary: Let

ϕ′u(u, v) =
∂

∂u
ϕ(u, v)

and

Fu(ζ̄0, β, s) = −ϕ′u
(
−(1− s)ζ̄0, (1− s)ζ̄0

)
.

Suppose that the condition (8) holds, then the proba-
bility distribution of the random process

1
n
Xη

n(t)

under Pn,β(· | aη−ξ
n = banc), converges weakly

to the corresponding probability distribution concen-
trated on the function

1
β

∫ t

0
F (ζ̄0, β, x)dx−

1
β

∫ t

0
Fu(ζ̄0, β, x)dx. (31)

Proof of Corollary: The random process

(Xη
n(t) | aη−ξ

n = banc)

can be written as

1
n

(Xη
n(t) | aη−ξ

n = banc)

=
1
n

(Xη
n(t)−Xξ

n(t) | aη−ξ
n = banc)

+
1
n

(Xξ
n(t) | aη−ξ

n = banc). (32)

For the first term of above equation, under Pn,β(· |
aη−ξ

n = banc) and by (10) in Section 2 and Remark 2,
we have that the probability distribution of the random
process

1
n

(Xη
n(t)−Xξ

n(t) | aη−ξ
n = banc)

converges weakly to the corresponding probability
distribution of the function

1
β

∫ t

0
F (ζ̄0, β, x)dx. (33)

For the second term of above equation, under Pn,β(· |
aη−ξ

n = banc), next we show that the probability dis-
tribution of the random process

1
n

(−Xξ
n(t) | aη−ξ

n = banc)

converges weakly to the corresponding probability
distribution of the function

1
β

∫ t

0
Fu(ζ̄0, β, x)dx. (34)

Let
0 < t1 < · · · < tq ≤ 1

be a set of real numbers, set a random vector as

X̂ξ
n(t1, · · · , tq) =

(aη−ξ
n ,−A(x1

bt1nc), · · · ,−A(x1
btqnc)). (35)

Let the sequence ζ◦
n
, ζ◦ be defined in (24), and with

the same condition of (25), we have the corresponding
function as following

ϕ1
n(ζ; t1, · · · , tq)

=
1
n

ln
( ∑

ξ,η

eβζ·X̂ξ
n(t1,···,tq)e−βHn(ξ,η)

/
Zn,β

)

=
1
n

ln
n∏

t=1

Q
(
−ζξ

n(t; ζ), ζη
n(t; ζ0)

)
(36)

where

ζξ
n(t; ζ) = ζ0(1− t/n) +

q∑
i=1

ζi1[0,tin](t),

ζη
n(t; ζ0) = ζ0(1− x/n),

for any

ζ = (ζ0, ζ1, · · · , ζq) ∈ Dα1,ζ̄0
.

Let

ϕ1(ζ; t1, · · · , tq) = lim
n→∞

ϕ1
n(ζ; t1, · · · , tq)

and Ê1
n,ζ(·) be the expectation for the random vector

of
X̂ξ

n(t1, · · · , tq)

(see (20)), then we have

Ê1
n,ζ◦

n
X̂ξ

n(t1, · · · , tq)

= (banc, Ê1
n,ζ◦

n
(−A(x1

bt1nc)), · · · ,

Ê1
n,ζ◦

n
(−A(x1

btqnc)))

=
n

β
(∇ζϕ

1
n)(ζ◦

n
; t1, · · · , tq)

=
n

β
(∇ζϕ

1)(ζ◦; t1, · · · , tq) + o(1), (37)
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where for 1 ≤ i ≤ q, and

Ê1
n,ζ◦

n
(−A(x1

btinc)) =
n∑

t=1

∂

∂ζi
lnQ

(
−ζξ

n(t; ζ), ζη
n(t; ζ0)

)∣∣∣
ζ=ζ◦

n

.(38)

For the random vector

X̂ξ
n(t1, · · · , tq)

by using the methods of Lemma 2.6 and Proposition
2.7 in [8], we can have the similar results as that of
(I) and (II). Then following the steps of (28)∼(30) in
Section 4, we can prove that the probability distribu-
tion of the random process

1√
n

(−Xξ
n(t)− n

β

∫ t

0
Fu(ζ̄0, β, s)ds), (39)

under Pn,β(· | aη−ξ
n = banc), converges weakly to

some Gaussian distribution. Thus by Remark 2, the
probability distribution of the random process

1
n

(−Xξ
n(t))

converges weakly to the corresponding probability
distribution concentrated on the function

Y1(t) =
1
β

∫ t

0
Fu(ζ̄0, β, s)ds. (40)

This completes the proof of (34), so that we finish the
proof of Corollary.

6 Finite Dimensional Probability
Distribution of Extended Stock
Indices

In Section 1-4 of the present paper, we discuss the
fluctuation properties of two random stock indices
which is defined in (6)(9). In this part, we modified
these definitions and we discuss the convergence of
the corresponding finite dimensional probability dis-
tributions.

In this section, we define the stock price St on

Ω× Ω̃ = {(ω, ω̃) : ω ∈ Ω, ω̃ ∈ Ω̃}

with the probability P (·), such that

P (ω, ω̃) = P (ω) · P̃ (ω̃).

On the space Ω̃, let {B(ω̃k), k = 1, · · · , t} be the ran-
dom sequence with the independent and identical dis-
tributions. More specifically, from (6)(9), the stock

price St(t = 1, 2, · · ·) which describes the statistical
behavior of two stock prices for all the investors at
time t is defined by

St = S0 exp{α(
t∑

k=1

(ηk − ξk) | aη−ξ
n = banc)

+
t∑

k=1

B(ω̃k)} (41)

where S0 is initial stock price at time 0, and the pa-
rameter α > 0 (for the simplicity, let α = 1). Now
we discuss the price model with the continuous time,
which are defined from above (9). The normalized
process Cn

v , v ∈ [0, 1] is defined by

Cn
v = An

v (ω) +Bn
v (ω̃)

=
1√
n

[(
[nv]∑
k=1

(ηk − ξk) | aη−ξ
n = banc)]

+
1√
n

[nv]∑
k=1

B(ω̃k). (42)

The normalized process Bn
v (ω̃), is defined by

Bn
v (ω̃) =

1√
n

[nv]∑
k=1

B(ω̃k), v ∈ [0, 1]. (43)

In this section, by properly choosing the random se-
quence {B(ω̃k), k = 1, · · · , t}, we suppose that

1√
n


[nv]∑
k=1

B(ω̃k) +
n

β

∫ v

0
F (ζ̄0, β, s)ds

 (44)

under P̃ (·), converges weakly to the process∫ v

0
µ(s)ds, v ∈ [0, 1]. (45)

In order to discuss the convergence of the fi-
nite dimensional probability distribution for the stock
price, let l ≥ 1, and let

0 < v1 < · · · < vl ≤ 1.

For
ζ = (ζ0, ζ1, · · · , ζl) ∈ Rl+1

such that
−b < ζ0 < ζ̄0 + b

and

|ζq| < c, (q = 1, · · · , l, ζ̄0 > 0, b > 0, c > 0)
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under the probability P (·), the corresponding function
for the normalized process Cn

v , v ∈ [0, 1] is given by
(see Section 3 and (43))

ψ
(n,l)
v1,···,vl(ζ1, · · · , ζl)

= E[exp{ζ · X̂(l)
n (v1, · · · , vl) +

l∑
q=1

ζqB
n
vq

(ω̃)}]

= E[exp{ζ · X̂(l)
n (v1, · · · , vl)}]

×E[exp{
l∑

q=1

ζqB
n
vq

(ω̃)}]. (46)

From (43), we study the limit of the function

ψ
(n,l)
v1,···,vl(ζ1, · · · , ζl)

(as n → ∞). Following the similar procedure of the
proof in Section 3, Section 4 and (45), and according
to the similar above argument, then we have

lim
n→∞

ψ
(n,l)
v1,···,vl(ζ1, · · · , ζl)

= exp{
l∑

q=1

ζq

∫ vq

0
µ(v)dv

+
1
2

l∑
q=1

l∑
q′=1

ζqζq′
∫ vq∧vq′

σ2(v)dv}.

Then the finite dimensional probability distribution of
the normalized stock price S0 exp{Cn

v } converges to
the corresponding finite dimensional probability dis-
tribution of random process

Sv = S0 exp{
∫ v

0
µ(u)du+

∫ v

0
σ(u)dB(u)}. (47)

This completes the proof of the convergence of the
finite dimensional probability distribution for the nor-
malized stock price S0 exp{Cn

v }.

7 Conclusion
In the present paper, the chain reaction between two
stock indices is modelled by the statistical physics dy-
namic systems in Section 2. In this financial model,
an intermediate region of the two random stock in-
dices is constructed, where the region may represent
the information or the situation on these two stock in-
dices, including the estimation for these stock indices,
positive or negative news, trends, political event and
economic policy, etc. This kind of research is a new
approach to study the statistical properties of fluctu-
ations of stock market. In Section 3 and Section 4,
we show the convergence of probability distributions

of the normalized stock indices, where the stochastic
process theory is applied to show the results of this
paper. Further in Section 5, we study the fluctuation
of one stock index which is affected by the chain re-
action. In Section 6, we discuss the convergence of
the corresponding finite dimensional probability dis-
tributions. The research work of the present paper is
mainly base on the theory of the statistical physics
systems, Gibbs measure and the convergence theory
of stochastic process.
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