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Abstract: We deal with a relational algebra model to define a refinement fuzzy ordering (demonic fuzzy inclusion)
and also the associated fuzzy operations which are fuzzy demonic join (tfuz), fuzzy demonic meet (ufuz) and
fuzzy demonic composition ( 2 fuz). We give also some properties of these operations and illustrate them with
simple examples. Our formalism is the relational algebra.
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1 Relation Algebras

Our mathematical tool is abstract relation algebra [8,
31, 33], which we now introduce.

Definition 1 A (homogeneous) relation algebra is a
structure (R,∪,∩, , ^, ;) over a non-empty set R of
elements, called relations, such that the following con-
ditions are satisfied:

• (R,∪,∩, ) is a complete Boolean algebra, with
zero element Ø, universal element L and ordering
⊆.

• Composition, denoted by (;), is associative and has
an identity element, denoted by I .

• The Schröder rule is satisfied: P ;Q ⊆ R ⇔
P^;R ⊆ Q ⇔ R ;Q^ ⊆ P .

• L ;R ;L = L ⇔ R 6= Ø (Tarski rule).

The relation R^ is called the converse of R. The
standard model of the above axioms is the set ℘(S×S)
of all subsets of S × S. In this model, ∪,∩, are
the usual union, intersection and complement, respec-
tively; the relation Ø is the empty relation, the univer-
sal relation is L = S × S and the identity relation is
I = {(s, s′) | s′ = s}. Converse and composition are
defined by

R^ = {(s, s′) | (s′, s) ∈ R} and Q ;R =
{(s, s′) | ∃s′′ : (s, s′′) ∈ Q ∧ (s′′, s′) ∈ R}.

Definition 2 A relation R ⊆ X ×X is :

(a) reflexive iff I ⊆ R, i.e. (∀x : (x, x) ∈ R),

(b) transitive iff R ;R ⊆ R, i.e (∀x, y, z : (x, z) ∈
R and (z, y) ∈ R ⇒ (x, y) ∈ R),

(c) symmetric iff R ⊆ R^, i.e. (∀x, y : (x, y) ∈
R ⇔ (y, x) ∈ R),

(d) antisymmetric iff R ∩ R^ ⊆ I , i.e.. (∀x, y :
(x, y) ∈ R and (x, y) ∈ R^ ⇒ x = y),

(e) equivalence iff R verifies properties (a), (b)
and (c),

(f) order iff R verifies properties (a), (b) and (d)

The precedence of the relational operators from high-
est to lowest is the following: and ^ bind equally,
followed by ;, then by ∩, and finally by ∪. From now
on, the composition operator symbol ; will be omitted
(that is, we write QR for Q ;R). From Definition 1,
the usual rules of the calculus of relations can be de-
rived (see, e.g., [6, 8, 31]). We assume these rules to be
known and simply recall a few of them.

Theorem 3 Let P,Q,R be relations. Then,

1.
⋃

i∈X Ri =
⋂

i∈X Ri,

2.
⋂

i∈X Ri =
⋃

i∈X Ri,

3. Q ∪R = Q ∩R,

4. Q ∩R = Q ∪R,

5. (Q ∩R) ∪R = Q ∪R,

6. P ∩Q ⊆ R ⇔ P ⊆ Q ∪R,

7. Q ⊆ R ⇔ R ⊆ Q,

8. Q(
⋃

i∈X Ri) =
⋃

i∈X QRi,

9. (
⋃

i∈X Qi)R =
⋃

i∈X QiR,
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10. (P ∪Q)R = PR ∪QR,

11. P (Q ∪R) = PQ ∪ PR,

12. Q(
⋂

i∈X Ri) ⊆
⋂

i∈X QRi,

13. (
⋂

i∈X Qi)R ⊆
⋂

i∈X QiR,

14. P (Q ∩R) ⊆ PQ ∩ PR,

15. (P ∩Q)R ⊆ PR ∩QR,

16. (
⋃

i∈X Ri)
^ =

⋃
i∈X R^

i ,

17. (Q ∪R)^ = Q^∪R^,

18. (
⋂

i∈X Ri)
^ =

⋂
i∈X R^

i ,

19. (Q ∩R)^ = Q^∩R^,

20. (QR)^ = R^Q^,

21. R^^ = R,

22. I^ = I ,

23. R
^

= R^,

24. Q ⊆ R ⇒ PQ ⊆ PR,

25. Q ⊆ R ⇒ QP ⊆ RP .

26. RØ = ØR = Ø,

27. RI = IR = R

28. RLL = RL,

29. PQ ∩R ⊆ (P ∩RQ^)(Q ∩ P^R),

30. PQ ∩R ⊆ P (Q ∩ P^R),

31. PQ ∩R ⊆ (P ∩RQ^)Q,

32. (P ∩QL)R = PR ∩QL,

33. LL = L,

34. (
⋂

i∈X RiL)L =
⋂

i∈X RiL,

35. (QL ∩RL)L = QL ∩RL,

36. (
⋃

i∈X RiL)L =
⋃

i∈X RiL,

37. (QL ∪RL)L = QL ∪RL,

38. (P ∩QL)R = PR ∩QL,

39. (P ∩ LQ^)R = P (R ∩QL),

40. QLR = QL ∩ LR.

41. R = (I ∩RR^)R.

Definition 4 A relation R is :

(a) deterministic iff R^R ⊆ I ,

(b) total iff L = RL (equivalent to I ⊆ RR^),

(c) an application iff it is total and deterministic,

(d) injective iff R^ is deterministic (i.e. RR^ ⊆
I),

(e) surjective iff R^ is total (i.e. LR = L, or also
I ⊆ R^R),

(f) a partial identity iff R ⊆ I (sub-identity),

(g) a vector iff R = RL (the vectors are usually
denoted by the letter v),

(h) a point iff R 6= Ø, R = RL and RR^ ⊆ I .

A function is a deterministic relation.

Theorem 5 Let P , Q and R be relations.

(a) Qdeterministic ⇒ Q(
⋂

i∈X Ri) =⋂
i∈X QRi,

(b) Q injective ⇒ (
⋂

i∈X Ri)Q =
⋂

i∈X RiQ,

(c) P deterministic ⇒ (Q∩RP^)P = QP ∩R,

(d) P injective ⇒ P (P^Q ∩R) = Q ∩ PR,

(e) Q total ⇔ QR ⊆ QR,

(f) Q deterministic ⇒ QR = QL ∩QR,

(g) Q application ⇒ QR = QR,

(h) Q surjective ⇔ RQ ⊆ RQ,

(i) Q injective ⇒ RQ = LQ ∩RQ,

(j) Q deterministic ⇒ QR ∪QL = QR,

(k) Q injective ⇒ RQ ∪ LQ = RQ,

(l) Q,R deterministic ⇒ QR deterministic,

(m) Q,R injectives ⇒ QR injective,

(n) Q,R total ⇒ QR total,

(o) Q,R surjective ⇒ QR surjective,

(p) Q ⊆ R,R deterministic and RL ⊆ QL ⇒
Q = R,

(q) Q ⊆ R,R injective and LR ⊆ LQ ⇒ Q =
R,

(r) R deterministic ⇒ Q ∩R deterministic,
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(s) R injective ⇒ Q ∩R injective,

(t) R total ⇒ Q ∪R total,

(u) R surjective ⇒ Q ∪R surjective.

2 Fuzzy Relation

Fuzzy relations are fuzzy subsets of A × B, that is,
mapping from A → B. They have been studied by
a number of authors, in particular by Zadeh [41],[42],
Kaufmann [21] and Rosenfeld [29]. Applications of
fuzzy relations are widespread and important.

Definition 6 Let A,B ∈ U be universal sets, a fuzzy
relation R̃ on A×B is defined by:

R̃ = {((x, y), µR̃(x, y) | (x, y) ∈ A ×
B,µR̃(x, y) ∈ [0, 1]} is called a fuzzy relation on
A×B.

Example 7
R̃ = ”x considerably larger than y”, we have: ,

R̃ =

 0.8 1 0.1 0.7
0 0.8 0 0

0.9 1 0.7 0.8


and S̃ = ”y very close to x”

S̃ =

 0.4 0 0.9 0.6
0.9 0.4 0.5 0.7
0.3 0 0.8 0.5

 .

2.1 Basic Operations On Fuzzy Relations

Definition 8 Let R̃ and S̃ be two fuzzy relations on A×
B. Then the following operations are defined:

• Union: µR̃∪S̃(x, y) = µR̃(x, y) ∨ µS̃(x, y),

• Intersection: µR̃∩S̃(x, y) = µR̃(x, y) ∧ µS̃(x, y),

• Max-min composition:
R̃ ◦ S̃ = {[(x, z),∨y{µR̃(x, y) ∧ µS̃(y, z)}]}.

Example 9

R̃ =

 0.8 1 0.1
0 0.8 0

0.9 1 0.7

 , S̃ =

 0.4 0 0.9
0.9 0.4 0.5
0.3 0 0.8

 .

Then:

• R̃ ∪ S̃ =

 0.8 1 0.9
0.9 0.8 0.5
0.9 1 0.8

 ,

• R̃ ∩ S̃ =

 0.4 0 0.1
0 0.4 0

0.3 0 0.7

,

• R̃ ◦ S̃ =

 0.9 0.4 0.8
0.8 0.4 0.5
0.9 0.4 0.9

.

Definition 10 Let R̃ be a fuzzy relation on A×A.

• R̃ is reflexive [42] iff µR̃(x, x) = 1 ∀x ∈ A,

• R̃ is transitive iff µR̃(x, z) ≥ µR̃(x, y) ∧
µR̃(y, z), ∀x, y, z ∈ A,

• R̃ is symmetric iff R̃(x, y) = R̃(y, x),

• R̃ is antisymmetric [21] iff for x 6= y either
µR̃(x, y) 6= µR̃(y, x) or µR̃(x, y) = µR̃(y, x) =
0 , ∀x, y ∈ A,

• R̃ is equivalence iff R̃ is reflexive, transitive, and
symmetric,

• R̃ is order iff R̃ is reflexive, transitive, and anti-
symmtric.

Example 11

• ( R̃ is reflexive):

R̃ =


y1 y2 y3 y4

x1 1 0 0.2 0.3
x2 0 1 0.1 1
x3 0.2 0.7 1 0.4
x4 0 1 0.4 1


• (R̃ is transitive):

R̃ =


y1 y2 y3 y4

x1 0.2 1 0.4 0.4
x2 0 0.6 0.3 0
x3 0 1 0.3 0
x4 0.1 1 1 0.1


• (R̃ is symmetric):

R̃ =


y1 y2 y3 y4

x1 0 0.1 0 0.1
x2 0.1 1 0.2 0.3
x3 0 0.2 0.8 0.8
x4 0.1 0.3 0.8 1
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• (R̃ is antisymmetric):

R̃ =


y1 y2 y3 y4

x1 0.4 0 0.7 0
x2 0 1 0.9 0.6
x3 0.8 0.4 0.7 0.4
x4 0 0.1 0 0


• (R̃ is equivalence):

R̃ =



y1 y2 y3 y4 y5 y6

x1 1 0.2 1 0.6 0.2 0.6
x2 0.2 1 0.2 0.2 0.8 0.2
x3 1 0.2 1 0.6 0.2 0.6
x4 0.6 0.2 0.6 1 0.2 0.8
x5 0.2 0.8 0.2 0.2 1 0.2
x6 0.6 0.2 0.6 0.8 0.2 1


.

The following properties have been proved to hold for
fuzzy relations (see [22, 23]);

Theorem 12 Let R̃, S̃ and T̃ be fuzzy relations. Then:

(a) R̃(S̃T̃ ) = (R̃S̃)T̃ ,

(b) R̃(S̃ ∪ T̃ ) = (R̃S̃) ∪ (R̃T̃ ),

(c) R̃(S̃ ∩ T̃ ) ⊆ (R̃S̃) ∩ (R̃T̃ ),

(d) S̃ ⊆ T̃ =⇒ R̃S̃ ⊆ R̃T̃ ,

(e) S̃ ⊆ T̃ =⇒ S̃R̃ ⊆ T̃ R̃,

(f) R̃Ĩ = ĨR̃ = R̃ for all fuzzy relation R̃,

(g) (R̃S̃)^ = S̃^R̃^,

(h) R̃^^ = R̃,

(i) (R̃ ∪ S̃)^ = R̃^∪ S̃^,

(j) (R̃ ∩ S̃)^ = R̃^∩ S̃^,

(k) R̃ ⊆ S̃ =⇒ R̃^ ⊆ S̃^.

3 A demonic order refinement

We will give the definition of our ordering.

Definition 13 We say that a relation Q refines a rela-
tion R [25], denoted by Q v R, iff

RL ⊆ QL and Q ∩RL ⊆ R,

or equivalently, iff

Q ∪QL ⊆ R ∪RL and QL ⊆ RL.

Example 14

•
(

1 0 0
1 1 0

)
v
(

1 1 0
0 0 0

)
,

•
(

1 0
0 0

)
6v
(

1 1
1 0

)
.

Theorem 15 The relation v is a partial order.

Proof. From Definition(13), it easily follows that the
refinement relation is antisymmetric:

Q v R and R v Q

⇐⇒ { Definition (13) }
Q ∪QL = R ∪RL and QL = RL

=⇒ { QL = RL ⇐⇒ QL = RL }
(Q ∪QL) ∩QL = (R ∪RL) ∩RL

=⇒ { Boolean law. }
Q = R

Consequently, v is reflexive and transitive (due to the
fact that the inclusion ⊆ has these properties); since it
is also antisymmetric, it is partial order.

3.1 Demonic operators

In this subsection, we will present demonic operators
and also some of their properties. For more details
see [4, 5, 7, 13]. To clarify the ideas, take two rela-
tions Q and R:

• Their supremum is

Q tR = (Q ∪R) ∩QL ∩RL,

and satisfies

(Q tR)L = QL ∩RL.

Then, QtR is exactly the relational expression of
the demonic union as defined by [4, 5] (which ex-
plains the word demonic of t-semilattice (BR,v
)).

• Their infimum, if it exists, is

Q uR = (Q ∪QL) ∩ (R ∪RL) ∩ (QL ∪RL)
= Q ∩R ∪Q ∩RL ∪R ∩QL,

and it satisfies

(Q uR)L = QL ∪RL.
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The operator u is called demonic intersection. For
Q u R to exist, we have to verify L ⊆ ((Q ∪
QL) ∩ (R ∪RL))L. This condition is equivalent
to QL∩RL ⊆ (Q∩R)L, which can be interpreted
as follows: the existence condition simply means
on the intersection of their domains, Q and R have
to agree for at least one value.

Example 16

•

1 1 0
1 0 0
0 0 0

 t
0 0 0

0 1 0
0 1 1

 =

0 0 0
1 1 0
0 0 0

 ,

•

1 1 0
1 1 0
0 0 0

 u
0 0 0

0 1 1
0 0 0

 =

1 1 0
0 1 0
0 0 0

 .

In what follows, we will give the definition of demonic
composition [4, 5, 6].

Definition 17 The binary operator ., called relative
implication, is defined as follows :

Q . R
def= QR.

Definition 18 The demonic composition of relations Q
and R is

Q 2 R = QR ∩Q . RL.

Example 19

•

1 1 0
0 1 1
0 0 0

 2

0 0 0
1 0 0
0 0 1

 =

0 0 0
1 0 1
0 0 0

 .

3.2 Properties of demonic operators

The demonic operatorsu,t and 2 have the same prop-
erties as ∩,∪ and (;), but the demonic intersections
have to be defined. Let us give some of them.

Theorem 20 Let P , Q and R be relations. Then,

(a) P u (Q tR) = (P uQ) t (P uR),

(b) P t (Q uR) = (P tQ) u (P tR),

(c) R 2 I = I 2 R = R,

(d) Q v R ⇒ P 2 Q v P 2 R,

(e) P v Q ⇒ P 2 R v Q 2 R,

(f) P 2 (Q tR) = P 2 Q t P 2 R,

(g) (P tQ) 2 R = P 2 R tQ 2 R,

(h) P 2 (Q uR) v P 2 Q u P 2 R,

(i) P 2 (Q 2 R) = (P 2 Q) 2 R,

(j) (P uQ) 2 R v P 2 R uQ 2 R.

Proposition 21

(a) Q deterministic ⇒ Q 2 R = QR,

(b) P deterministic ⇒ P 2 (QuR) = PQuPR,

(c) R total ⇒ Q 2 R = QR,

(d) PL ∩ QL = Ø ⇒ (P ∪ Q) 2 R = P 2 R ∪
Q 2 R,

(e) PL ∩QL = Ø ⇒ P uQ = P ∪Q.

4 A demonic fuzzy order refinement

We will give the definition of domain of fuzzy relations
R̃.

Definition 22 The domain of R̃ is supremum of value
in first row of the matrix, and the image of R̃ is supre-
mum of value in first column of the matrix. Formally,

dom(R̃) def= supy∈B{((x, y), µR̃(x, y)) | ∀x ∈ A},

img(R̃) def= supx∈A{((x, y), µR̃(x, y)) | ∀y ∈ B}.
• The vectors R̃L̃ and R̃^L̃ are particular vectors
characterizing respectively the domain and codomain
of R̃.

Now, we will give the definition of fuzzy ordering.

Definition 23 We say that a fuzzy relation Q̃ fuzzy re-
fines a fuzzy relation R̃, denoted by Q̃ vfuz R̃, iff

R̃L̃ ⊆ Q̃L̃ and Q̃ ∩ R̃L̃ ⊆ R̃

i.e (∨y∈B{µR̃(x, y)} ≤ ∨y∈B{µQ̃(x, y)}) and
(µQ̃(x, y) ∧ (∨y∈B{µR̃(x, y)}) ≤ µR̃(x, y)).

In other words, Q̃ refines R̃ if and only if the prerestric-
tion of Q̃ to the domain of R̃ is included in R̃. This
means that Q̃ must not produce results not allowed by
R̃ for those states that are in the domain of R̃.

Example 24

•

 0.3 0.2 0.4
0.7 0.8 0.8
0.3 0.5 0.6

 vfuz

 0.3 0.2 0.5
0.4 0.5 0.9
0.1 0.2 0.7


•
(

0.1 0.2 0.4
0.5 0.7 0.9

)
6vfuz

(
0.2 0.2 0.3
0.4 0.5 0.8

)
.

Theorem 25 The relation v is a partial order.
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4.1 Fuzzy Demonic operators

In this subsection, we will present fuzzy demonic op-
erators and also some of their properties.

To clarify the ideas, take two relations Q̃ and R̃:

• Their supremum is

Q̃ tfuz R̃ = (Q̃ ∨ R̃) ∧ Q̃L̃ ∧ R̃L̃,

⇐⇒

µ(Q̃tfuzR̃)(x, y) = min{max{µQ̃(x, y), µR̃(x, y)

},maxy(µQ̃(x, y)),maxy(µR̃(x, y))}

and satisfies

(Q̃ tfuz R̃)L̃ = Q̃L̃ ∩ R̃L̃.

Then, Q̃tfuzR̃ is exactly the relational expression
of the fuzzy demonic union.

• Their infimum, if it exists, is

Q̃ ufuz R̃ = (Q̃ ∧ R̃) ∨ (Q̃ ∧ 1− R̃L̃)
∨(R̃ ∧ 1− Q̃L̃)

⇐⇒

µ(Q̃ufuzR̃)(x, y) = max{min{µQ̃(x, y), µR̃(x, y)

},min{µQ̃(x, y), 1−maxy(µR̃(x, y))},min

{µR̃(x, y), 1−maxy(µQ̃(x, y))}}

and it satisfies

(Q̃ ufuz R̃)L̃ = Q̃L̃ ∪ R̃L̃.

The operator ufuz is called fuzzy demonic inter-
section. For Q̃ ufuz R̃ to exist, we have to verify
L̃ ⊆ (Q̃∪ ¯̃QL̃∩R̃∪ ¯̃RL̃). This condition is equiva-
lent to Q̃L̃∩ R̃L̃ ⊆ (Q̃∩ R̃)L̃, which can be inter-
preted as follows: the existence condition simply
means that on the intersection of their domains, Q̃
and R̃ have to agree for at least one value.

In what follows, we will give the definition of the
fuzzy demonic composition.

Definition 26 The fuzzy demonic composition of rela-
tions Q̃ and R̃ is

Q̃ 2 fuzR̃ = Q̃R̃ ∧ 1− Q̃R̃L̃

⇐⇒

µ(Q̃ 2 fuzR̃)(x, y) = min[maxy{min{µQ̃(x, y), µR̃(y,

z)}}, 1−maxy{min{µQ̃(x, y), 1−maxy(µR̃(x, y))}}]

Example 27

Q̃ =

0.1 0 0.2
0.3 0.8 1
0 1 0.7

 , R̃ =

 0 1 0
0.3 0.5 0.4
0.9 0.7 0.2

 .

Then:

• Q̃ tfuz R̃ =

0.1 0.2 0.2
0.3 0.5 0.5
0.9 0.9 0.7



• Q̃ ufuz R̃ =

 0 0.8 0
0.3 0.5 0.5
0 0.7 0.2



• Q̃ 2 fuzR̃ ==

0.2 0.2 0.2
0.5 0.5 0.4
0.5 0.5 0.4


4.2 Properties of fuzzy demonic operators

The fuzzy demonic operators ufuz,tfuz and 2 fuz ,
have the same properties as u,t and 2 , but the fuzzy
demonic intersections have to be defined. Let us give
some of them.

Theorem 28 Let P̃ , Q̃ and R̃ be fuzzy relations. Then,

• P̃ufuz (Q̃tfuz R̃) = (P̃ufuz Q̃)tfuz (P̃ufuz R̃),

• P̃tfuz (Q̃ufuz R̃) = (P̃tfuz Q̃)ufuz (P̃tfuz R̃),

• R̃ 2 fuz Ĩ = Ĩ 2 fuzR̃ = R̃,

• Q̃ vfuz R̃ ⇒ P̃ 2 fuzQ̃ vfuz P̃ 2 fuzR̃,

• P̃ vfuz Q̃ ⇒ P̃ 2 fuzR̃ vfuz Q̃ 2 fuzR̃,

• P̃ 2 fuz(Q̃ tfuz R̃) = P̃ 2 fuzQ̃ tfuz P̃ 2 fuzR̃,

• (P̃ tfuz Q̃) 2 fuzR̃ = P̃ 2 fuzR̃ tfuz Q̃ 2 fuzR̃,

• P̃ 2 fuz(Q̃ufuzR̃) vfuz P̃ 2 fuzQ̃ufuz P̃ 2 fuzR̃,

• P̃ 2 fuz(Q̃ 2 fuzR̃) = (P̃ 2 fuzQ̃) 2 fuzR̃,

• (P̃ufuzQ̃) 2 fuzR̃ vfuz P̃ 2 fuzR̃ufuzQ̃ 2 fuzR̃.

Proposition 29

• Q̃ deterministic ⇒ Q̃ 2 fuzR̃ = Q̃R̃,

• P̃ deterministic ⇒ P̃ 2 fuz(Q̃ ufuz R̃) =
P̃ Q̃ ufuz P̃ R̃,
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• R̃ total ⇒ Q̃ 2 fuzR̃ = Q̃R̃,

• P̃ L̃ ufuz Q̃L̃ = Ø ⇒ (P̃ tfuz Q̃) 2 fuzR̃ =
P̃ 2 fuzR̃ ∪ Q̃ 2 fuzR̃,

• P̃ L̃ ufuz Q̃L̃ = Ø ⇒ P̃ ufuz Q̃ = P̃ ∪ Q̃.

There are many properties achieved for relations, but
not fulfilled for fuzzy relations. For instance, if Q̃ and
R̃ are fuzzy relations, then:

(a) Q̃ tfuz R̃ 6= Q̃ ufuz R̃,

(b) Q̃ ufuz R̃ 6= Q̃ tfuz R̃,

(c) (Q̃ ufuz R̃) tfuz R̃ 6= Q̃ tfuz R̃,

(d) Q̃ vfuz R̃ 6⇒ R̃ 6vfuz Q̃.

Example 30

Q̃ =

(
0.1 0
1 0.2

)
, R̃ =

(
0.2 0.3
0.4 0.8

)
.

• Q̃ tfuz R̃ =

(
0.9 0.9
0.2 0.2

)
but

Q̃ ufuz R̃ =

(
0.8 0.7
0.2 0.6

)
,

• Q̃ ufuz R̃ =

(
0.8 0.7
0.4 0.8

)
but

Q̃ tfuz R̃ =

(
0.8 0.8
0.4 0.4

)
,

• (Q̃ ufuz R̃) tfuz R̃ =

(
0.3 0.3
0.4 0.2

)
but

Q̃ tfuz R̃ =

(
0.1 0.1
0.4 0.2

)
,

• Q̃ =

(
0.1 0
1 0.2

)
, R̃ =

(
0.1 0.1
0.4 0.4

)
then

Q̃ vfuz R̃ but R̃ 6vfuz Q̃. because

Q̃L̃ =

(
1

0.8

)
6⊆
(

0.9
0.6

)
= R̃L̃.
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