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Abstract: - This work presents the methodology from the determination the charge superficial density and 
electrical fields, in three simple structures to a finite straight wire, square plane plates and the capacitance 
between to plane plate, all finite and submitted to a constant potential. That involves the method of the 
moments using as expansion function the Haar wavelets instead of the pulse function, in order to reach a good 
precision and reducing the computational execution time. We also intend to take advantages of the wavelets 
application through the Cholesky decomposition, talking about formation of scattered matrixes, and the 
detection of nulls values. 
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1 Introduction 
 
1.1 Method of Moments 
 

The method of moments is a general method 
based on weighted waste [1][2]. This method 
includes many specific methods known can be 
mentioned the method of simulation of load, the 
method of finite elements, which are considered as 
one of the special cases of the method of moments. 

Any method, in which a system matrix can 
determine the coefficients of an equation, can be 
interpreted as a variation of the method of moments. 

Thus, the steps for applying the method of 
moments can be systematized as follows: 
a) Select a function to replace the approximate 
unknown function; 
b) Select a function of expansion and weighting;  
c) Completing the internal product between the 
function of expansion and weighting to obtain the 
resulting matrix;  
d) Solution of matrix equation using a computer 
program to obtain the approximate solution. 

The basis of the method of moments approach is 
a function of the type: 

 
�

(1) 

 
Where αn are constants not known, gn is a 

function of expansion and L is a mathematical 
operator. 

Becoming the internal product with a function 
Wm weight we get in matrix form: 
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that is A[α]=B, where[α] is the composed column 
of vectors for the unknown coefficients of the 
approach solution. In such a way if the properties of 
the adopted function, coincide with the properties of 
the accurate solution, then the approach solution 
will go to converge quickly. 

Some additional factors such as accuracy in the 
solution, ease of solution of the resulting matrix, the 
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size of the array etc, depend on the choice of basis 
function and weighting function.  

When we adopted the function of weight equal to 
the basic function, the result obtained in the method 
of moments is called the method of Galerkin. 

Making up the domestic product with a 
weighting function and using the matrix notation, 
we have that [A]*[α]=[B], being [α] a column 
vector composed of unknown coefficients of the 
approximate solution.  

 
1.2 Wavelets 
 

Many scientists already used analysis of wavelets 
as an alternative to classical Fourier analysis of 
[3][4][5]. In the last ten years, the interest in 
wavelets has grown tremendously since 1985, when 
he was given a new impetus to this theory through 
the contributions of mathematicians and specialists 
in signal processing. In general, the wavelet can be 
defined by: 

 
 
 
 

(3) 

 
The function Ψ is called mother wavelet, the 

values of (a) and (b) defined by a=2-j and b=k2-j 
with j and k belonging to the set of whole numbers 
on. 

Some types of wavelets mentioned in literature 
exist, being that the use of a type or another one 
directly is associated with the application. Rules of 
construction are being proposals for some 
researchers in accordance with the restrictions and 
necessities of each case. 

We can generate infinity of wavelets different 
and particularly to construct a set adjusted for 
processing of signals, specific expanses, obtaining 
with this the attainment of better resulted. 

Beyond wavelet of presented Haar previously we 
show to some wavelets such as Morlet, Hat Mexican 
and Shannon. 

The Fig. 1 we represent wavelet of Morlet, or 
modulated Gaussian that is formulated by: 
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Fig. 1 - Morlet  wavelet 
 
 
The Fig. 2 we represent Mexican hat wavelet that 

is formulated by: 
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Fig.2 - Mexican hat wavelet 
 

The Fig. 3 we represent Shannon wavelet that is 
formulated by: 
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Fig. 3 - Shannon wavelet 
 

1.2.1) One-Dimensional wavelets  

Considering the space L2(R), of all measurable 
functions of square integrated over R, and 
considering it is an orthogonal basis generated by Ψ, 
for any f(x)  of square integrated on R we 
have[6][7][8]: 
 
 
 
 

(7) 

 
An example of wavelet is the Haar function of 

which is defined as Fig. 4: 
 
 
 
 
 
 

 
 

Fig.4 - Haar function  
 

The Haar wavelet is defined by the two families 
of wavelet, the mother and father, the latter being 
represented by φ a scalar function defined by [4]: 

 
 
 
 

(8) 

 
The Fig. 5 shows graphically the intervals and 

amplitudes for the Haar wavelet one-dimensional, 
until the level two of resolution, representing the 
amplitude of the function obtained by varying the 
level j and the displacement of k.  

The set of wavelets coefficients obtained with 
the contribution of each will be used to determine 
the function f(x,y)  at each point.: 

 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig.5 - The Haar function one-dimensional  
until level two of resolution. 

 
 
Considering the mother wavelets and father, the 

function f (x) can be written by: 
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1.2.2) Two-dimensional wavelets 
 

We can build databases of two-dimensional 
wavelet, through a base in two dimensions with a 
single scale, or also by two bases of a size, with 
separate scales for each dimension [9]. Another 
possibility is to work with the mix of products 
between each of the two axes with different scales 
for each dimension [10][11][12]. Thus for any point 
P, until the level 1 resolution will: 
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(11) 

 
for a point P any until resolution level 1 we will 
have 
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For each axis, x is given by ψ(H)(x) an y is given 

by ψ(H)(y), resulting in the following contributions: 
 
  
 
 
 

(14) 

 
The Fig.6 shows the decomposition of the 

amplitude and the scale for wavelet of Haar for two 
dimensions until resolution level 1, for any point P.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6 - The Haar function two-dimensional  

 
2 Mathematical developments 
 

Here, we present the mathematical development 
for the application of the method of moments in 
determining the surface charge density for a finite 

straight wire (one-dimensional case) and a square 
plane plate (two-dimensional case), and capacitance 
square plane plate, all subjected to a constant 
potential. 

 
 

2.1 One-dimensional case 
 

First, Fig.7 we conducted a study of the 
distribution of electric charges in a finite straight 
wire with diameter (0.0001mm), resulting in an 
equation of a variable of type [13]: 

 
 
 
 
 
 
 
 
 
 

Fig. 7 - Subdivision of a finite straight wire  
 
 

 
 
 

(15) 

 
As the wire is straight and finite and positioned 

in the x axis, the observations in relation to axes y 
and z are considered equal to zero. The electrostatic 
potential is written by: 

 
 
 
 
 
 

(16) 

 
To calculate the potential and other physical 

quantities such as capacitance, electric field, 
etc., we calculate the surface density, which is 
an unknown quantity, which is within a 
mathematical operator. 

The determination of linear density of charge can 
be approximated by expansion in N terms, 
composed by the sum of coefficients multiplied by 
the function of expansion and weighting. Dividing 
the wire into N equal segments, we have the length 
of each part worth ∆=L/N.  
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Applying the weighting function as Wm=δ(x-
xm)=1, the internal product at point is given by: 

 
 
 
 
 
 
 

(17) 

 
Assuming that the load obtained in each 

subdivision of the wire is positioned in the center of 
gravity of each division, replacing it if the value of x 
by the distance of the load considered in relation to 
that, we have an integral that is only function of x'.  

Using the matrix notation, each Zmn is defined 
by: 
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2.2 Two-dimensional case 
 

Through the methodology presented above, the 
potential in a finite plane plate with very fine 
thickness creates a potential given by[14]: 
 
 
 
 
 

(19) 

 
The Fig 8 showed dividing each of the lines into 

segments equal and assuming that the distribution of 
load is concentrated in the center of gravity of each 
area ∆Sn, the influence of the load at the position  
(x,y), on the other determined by the coordinates  
(x’,y’), R is defined by the distance between loads. 

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 8 - Subdivision in a plain plate  

Applying the method of moments, the 
distribution of load can be approximated by the 
following equation: 

 
 
 
 
 
 
 
 

(20) 

 
Replace the value of x e y by the distance R, for 

the each point xm and ym, we have an integral 
function of which is only x’ and y’.  

 
 
 
 
 

(21) 

 
2.3 The capacitance calculation  

 
 The capacitance of a unit square plate can be 

evaluated based on the following well-known 
expression [15]: 
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If a square parallel conducting plane plates is 

considered as an example, we should remember that 
the potential in a finite and very thin plane plate can 
be evaluated by: 
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Thus, after applying the method of the moments, 

knowing the function of the approximated solution 
f(x,y), the expansion function g(x,y) and the 
weighed function W(x,y) and d the distance between 
the parallel square plates, the potential in a square 
plane plate, will be estimated by the inner product of 
these functions: 
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(24) 

 
Dividing the plate in equal segments and 

applying the weighed function as being the delta 
function of Dirac, we had that Wm=δ(x-xm) δ(y-ym), 
being the inner product in the point given by: 
 
 
 
 
 
 
 
 

(25) 

 
When two parallel plates are considered, the 

calculation of the plate capacitance, submitted to 
voltage +V on the top plate and –V on the bottom 
plate, can be evaluated by: 

 
 
 
 

(26) 

 
where t denotes “top plate” , b denotes “bottom 
plate”, and l is a matrix which elements depend on 
the plate charge contributions. 
   Assuming the  charges placed in the centre of 
each sub division in relation to each axes, 
substituting the values of x and y by the distance of 
the charge position to the point P(xm,ym), for a fixed 
potential V, the equation can be represented, by 
matrix notation, Zmn is defined by: 
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3 Applications  
 
3.1 Application one-dimensional 
 

To verify the performance of wavelets in the 
method of moments, we conducted a study on a 
finite straight wire. In this case, is used as basis for 
expansion of the Haar wavelet function and the 
weighting of the Dirac Delta function [16]. 

The potential in a finite straight wire, can be 
written by: 
 
 
 
 
 

(28) 

 
We split the wire with a length of 1m and 

diameter of 0.0001m, into eight equal segments 
according to Fig. 9.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9 - Contribution of each level in the 

the number of subdivisions 
 
For the first point, considering all the 

subdivisions, we have: 
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Solving the integral and is based on xm with the 
distance of the load source to source, we must each 
Zmn is defined by: 

 
 
 
 
 
 
 
 
 

(30) 

 
The calculation of linear density of charge at 

each point, using as a basis for expansion of the 
Haar wavelet, is given by: 
 
 
 
 
 

(31) 

 
The Table I present the results of the linear 

density of charge for a straight wire with a length of 
1.0 m, divided into 16 equal segments, depending 
on the level of resolution (j) and the displacement 
(k). 

 
Table I - Value of the linear charge density (pc/ m) 

of a finite straight wire in terms  
of levels of resolution. 

 
               Expansion Function 
Point Haar wavelet (Level) Pulse 
 2 3 4  

1 8.835 9.376 9.957 9.957 

2 8.835 9.376 8.764 8.764 

3 8.835 8.274 8.411 8.411 

4 8.835 8.274 8.219 8.219 

 7.970 8.059 8.102 8.102 

… … … … … 

12 7.970 8.059 8.102 8.102 

13 8.835 8.274 8.219 8.219 

14 8.835 8.274 8.411 8.411 

15 8.835 9.376 8.764 8.764 

16 8.835 9.376 9.957 9.957 

 
 
 

The Fig. 10 presents the load distribution when 
the wire is divided 32 equal segments, submitted to 
a constant potential of 1V, and using as expansion 
function wavelet of Haar. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.10 - The surface charge (pC/m) on a 1.0 m 

straight wire, for 32 subdivisions 
 
 
3.2 Test of hypothesis for a wire with 32 
division using the Haar wavelet and the pulse 

We can compare the results gotten between the 
two numerical methods considering it expansion 
function as being the pulse with the other using 
wavelets, through tests on the difference of the pair 
upped data or between the correlated population 
averages. We can carry through tests of comparison 
of averages for pair upped data, when the results of 
the two samples are related two the two, in 
accordance with some criterion that supplies an 
influence between some pairs and on the values of 
each pair. Thus, we calculate the differences for 
each pair of values, taking itself in consideration the 
values of the superficial load density in the point for 
each one of the numerical methods [17].  

Considering it existence hypothesis and the 
alternative hypothesis, we will have: 
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being in majority of cases µd =0, what it means that 
we will be testing the equality between the averages, 
that is H0 :µ1 = µ2, given for: 
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(33) 

 
the standard of the samples of the differences (s d ) 
and the estimate of the error standard 

d
s  are given 

by: 
 
 
 
 
 
 
 

(34) 

 
The criterion for comparison between the two 

methods is given by: 
 
 
 
 
 

(35) 

 
Considering it normal distribution and fixing a 

level �, we define the regions of not rejection and 
rejection of H0.  

If |Zcalc|>Z�� significant difference between the 
methods exists and in case -Z�<Zcalc<Z� that 
significant difference between the two methods does 
not exist. 

Statistical to verify the validity of the two used 
methods, in Table II meet some of the gotten results 
of the superficial load density, for a wire with 32 
divisions, using itself as expansion function wavelet 
of Haar comparatively with the function type pulse, 
calculating itself it changeable criterion. 

Therefore the criterion for comparison between 
the two methods results in Zcalc = -0.214783. 

Considering it table of the normal distribution 
and the level of 5% risk, for the alternative 
hypothesis, µd�0, we will have that -Z�=Z�=2.5% 

 
 
 

Table II - Calculation of the criterion for a wire 
with 32 divisions using as expansion function 

wavelet of Haar and the pulse. 
  

 Expansion Function Surface difference 

Point Pulse Haar  Wavelet dx10-14 d2x10-25 

1 0.10948601427928 0.10948601427928 75 5.625 

2 0.09351201394360 0.09351201394295 65 4.225 

3 0.08900319714776 0.08900319714714 62 3.844 

4 0.08642505943355 0.08642505943293 62 3.844 

…     

29 0.08642505943188 0.08642505943505 -317 100.489 

30 0.08900319714822 0.08900319714822 0 0 

31 0.09351201394092 0.09351201394441 -349 121.801 

32 0.10948601428081 0.10948601428139 -58 3.364 

Total - - -175 644.055 

        
  

For the table of normal distribution Z�=1.96, 
therefore inside of the region of not rejection. We 
can conclude that, statistical, significant difference 
between the two numerical methods does not exist, 
inside of the level of considered risk. 

Although wavelets are adjusted to analyze 
stationary processes, the consideration of its specter 
and its esteem can be useful when we pass to the not 
stationary case. As example, we can mention the 
analysis of processing of signals and image that can 
involve some aspects of estimation as: theorem of 
the sampling with wavelet of Shannon, probability 
and statistics using wavelets, etc. 

Making use of the statistics we will be able to 
improve the convergence and the precision of the 
results, through the choice of the parameters and of 
techniques as of crossed validation, that allows 
esteem the error of forecast for a model adjusted to 
the data, using a part of these data esteem the model 
and the remain to evaluate if it is adjusted or not. 

Therefore, through the statistical estimators as 
for example: the choice of the threshold, the 
Bayesiana analysis, the model with stationary errors, 
the esteem of densities, the covariance, etc., we will 
be able more esteem a function of adjusted 
expansion in the solution of the problem in study, 
with a lesser number of resolution levels, reduction 
of the order of the involved matrices, beyond a 
faster convergence, making with that let us have a 
reduction in the computational costs. 

 
 
 
 

 

n
 i ii=1

d    measured of sample 

          the differences
1

d = d d difference of the surface 
n

           density in the point

n    great the sample

�

��

�

�
�
�
�
�
�
�
�
�
��

( )2n
2in 2 i=1 d

d i di=1

d s1
s = d -  s =

n -1 n n

�
��

� �
� �� �
� �
� �
� �� �

d
calc

d

d -�
Z =

s

WSEAS TRANSACTIONS on MATHEMATICS Aldo Artur Belardi, Jose Roberto Cardoso, Carlos A. Franca Sartori

ISSN: 1109-2769 610 Issue 8, Volume 9, August 2010



3.3 Application two-dimensional  
 

The treatment of the Haar wavelet is given by the 
two-dimensional combination of products of the 
function at the point on each axis, considering their 
coefficients. The potential of a finite plane plate 
may be written by: 
 
 
 
 
 
 
 
 
 

(36) 

 
The plate was divided in steps of 0.25 in both the 

x axis and the y Fig. 11 shows these divisions based 
on the level of a resolution.  
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig.11 - Contribution of the wavelet on  
every point made by the subdivision 

 
For the load located in the first subdivision, shall 

be considered the contributions of the following of 
Haar wavelets to the level 2 of resolution: 
 
 
 
 
 
 

(37) 

 
 
 
 

Making up the function of weight equal to one 
and assuming that the density of cargo on a small 
area ∆Sn is constant, is knowing the value of the 
potential we can determine the approximate 
solution, then: 
 
 
 
 

(38) 

 
 
 
 
 

(39) 

 
The contribution of each wavelet in point will be 

considered by: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(40) 

 
 
The Table III presents the value of some 

coefficients obtained through the program. 
 

Table III - Value of coefficients using the Haar 
wavelet of two-dimensional 

 
Coeficientes Value x 10-10 

C0 0.2903 
C1 0 
C2 0.0218 
C3 -0.0218 
C4 0 
C5 0 
: : 

C14 0.0010 
C15 -0.0010 
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The Fig. 12 shows the distribution of load on a 
square plate, divided into 16 equal segments on each 
axis, subjected to a constant potential of 1V. 

 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 

Fig.12 - Distribution of surface charge density  
on a plane plate divided into 16 equal segments. 

 
3.4 Application capacitance 
 

If the potential in a finite and very thin plane 
plate is taken into account as an application, it can 
be evaluated by: 

 
 
 
 
 
 
 
 
 
 
 
 
 

(41) 

 
 
The Fig. 13 presents the variation of the 

capacitance between two parallel conducting plane 
plates as a function of the distance. 

 
 
 
  
 
 
 
 

Fig. 13 - Capacitance as a function of the distance 

 
The Table IV presents the comparative results, 

regarding the computing time values as a function of 
the number of the axe division, and of the null value 
detection routine application [18]. 

 
Table IV – Computing time (s) 

 
Computing time (s) 

Number of 
Divisions 

Without With Difference 
(%) 

4x4 0.1200 0.1000 16.66 
8x8 7.7220 4.1260 46.56 

16x16 486.990 185.928 61.82 
 

For calculate it of field in the plates we use the 
sum of the field effect load for load and can be 
evaluated by: 

 
 
 
 

(42) 

 
The Fig 14 it presents the field that was 

calculated on each one of square plane plate 
(1.0mx1.0m), and distance between (0.2m) 
submitted to a potential of 100 V. 
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It should be realized that when the null value 
detection routine is carried out, it will get a 40% 
average computing time reduction. 

After adopting the null value detection routine, 
an average 40% computing time reduction was 
achieved. 

 

 
Fig. 14 - Electricals fields square plane plate 

 
 

4 Computational aspects to plane plate 
 

The application of numerical methods in 
engineering is to facilitate the solution of complex 
problems with a response time low. The time of 
beginning and end of a task is then defined at 
execution time [19][20]. The performance of a 
program is defined by: 

 
 
 
 

(43) 

 
A good number of popular measures can be used 

in an attempt to create a standard measure of the 
performance. The result has been simple 
measurements, valid only in limited contexts. 
Another popular alternative to measure the 
execution time is the MFLOPS, or millions of 
floating point operations per second in, according 
to: 
 
 
 
 
 

(44) 

 

4.1 Measure the performance 
 
 

In applying a finite plane plate, we measure the 
time of the program, varying the number of division 
in each of the axes, measuring both the amount is 
carried out in floating point operations and the 
execution time. 

The Table V shows the values obtained for the 
execution time and total number of operations 
carried out in floating point, using as a basis for 
expansion of the Haar wavelet. 
 

Table V - Calculation in floating point operations 
and the execution time according to the  

number of divisions of the plate 
 

Divisions in 
each axis 

Operations in 
floating point 

Execution  
time (s) 

4X4 29.075 0.321 
8X8 1.236.699 7.931 

16X16 70.025.893 451.96 
�

 
4.2 Improving performance 
 

Advantage is the fact that the matrix is sparse 
Haar, reduce the execution time entering in a 
comparison program that, when the null value is 
detected, the transaction between the matrices is not 
performed.  

The Table VI presents the results comparing the 
values of execution time and number of operations 
in floating point, with and without the detection of 
null values. 
 
Table VI - Comparing the values of execution time 

and number of operations in floating point  
 
Divisions Null value 

Execution Time (s) 
Difference (%) 

 Without With  
4X4 0.321 0.250 22.12 
8X8 7.931 5.488 30.80 

16X16 451.96 222.60 50.75 
 
According to the results, we can reduce 40% the 

time of program implementation. Figure 15 shows 
the values obtained for the execution time with and 
without the detection of null values, depending on 
the number of divisions of the finite plane plate. 

 
 

1Performance
Execution _ time

=
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6
_N operation _ in _ floating _ pointMFLOPS

Execution _ Time 10
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×
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Fig. 15 - Value of execution time with and 
without the detection of null values  

 
In order to briefly illustrate those aspects, one 

can remember that the equation to determinate the 
coefficients of the approximation function can be 
written by:  

 
 
 

(45) 

 
where, Zmn is a square matrix that is not necessarily 
a scattered one, since it depends on the expansion 
function that was chosen. 

Thus, taking advantages of the fact that the 
Haar’s matrix is a scattered matrix, applying the 
matrix algebra, it will result [21]: 
 
 
 

(46) 

 
else, 
 
 
 
 
 
 
 
 
 

(47) 

 
When the plate was divided into 16 equal 

segments in each of the axes were generated a total 
of 256 coefficients, with 54% of them are void. 
Advantage is the fact that the Haar matrix is sparse; 
using the algebra of matrices we can write that: 

 
 
 
 

(48) 

 

Thus, after applying such an approach, we got a 
symmetrical matrix. Moreover, due to the properties 
of Haar function a number of “near” null matrix 
elements were obtained. 

The used approach is based on the assumption of 
a threshold levels. This level corresponds to a 
percentage of the difference between the maximum 
positive value and the minimum negative one: Once 
it is adopted, the matrix elements, inferior to this 
number, will be assumed as a null one. This 
approach will help to get an additional computing 
time reduction. 
 
4.3 Improved performance with variation in 
threshold  
 

Here, we show the amount of non-zero (points in 
blue), obtained for a plane plate with 16 division in 
each of the axes by selecting a threshold. 

The Fig. 16 and 17 show the results obtained 
varying the threshold is at 0.01%, 0.05%, 
respectively. 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 16 - Value of the threshold of 0.01%  
(23528 non-zero) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17 - Value of the threshold of 0.05%  
(19068 non-zero) 
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The Table VII shows the rate of change in 
percentage of the amount of non-zero when 
applying the threshold selected on the initial value 
of 65.536 points. 
 

Table VII - Change the quantity of items in 
percentage depending on the threshold. 

 
 Elements 

Threshold 
 (%) 

Quantity Not Null 
(%) 

Null 
(%) 

0.00001 63.088 96.26 3.74 
0.01 23.528 35.90 64.10 
0.02 19.068 29.09 70.91 
0.05 12.232 18.66 81.34 
0.10 6.704 10.23 89.77 

 
The Fig. 18 represents the variation of surface 

density of charge, for a plane plate with 16 divisions 
on each side, depending on the selected threshold. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 18 - Variation of surface density  

 
 

The Table VIII and Fig. 19 show the variation of 
execution time on the solution of the system 
matrixes, varying the number of division of the 
plane plate depending on the selected threshold. 
 

 
 
 
 
 
 
 
 
 

Table VIII - Execution time depending  
on the threshold 

 

Division Plate  Execution Time(s) 

 0.00001% 0.05% 0.1% 

16x16 0.27 0.16 0.16 

32x32 25.486 4.516 2.073 

�

�

�

�

�

�

�

�

�

�

�

�

�

�

 
 

Figure 19 - Time of execution according 
to selected threshold 

�

Therefore, the variation of the threshold led to a 
significant reduction in execution time, without 
significantly changing the value of the surface 
density of charge. 
�

4.4 The performance using the Cholesky 
 

An efficient method for calculating the matrix is 
through the decomposition of Cholesky, which 
considers that the matrix is symmetric positive 
defined [22]. 

Such matrices appear in a variety of applications, 
such as the numerical solution of initial value 
problems of the method of finite differences, or the 
method of finite elements. 

A symmetrical matrix of NxN order positive is 
defined if XT AX>0 for all not null vectors of x 
satisfying the following properties:  
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a) If A is a defined positive symmetrical matrix, 
then A is inversion; 

b) If A is a defined positive symmetrical matrix, 
then det (A) > 0; 

c) If A is a defined positive symmetrical matrix, 
then sub first main A1,......,An an A is all defined 
positive, and 

d) If A is a defined positive symmetrical matrix, 
then A can be reduced to a superior triangular form 
using only elementary operations: it is inversion. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(49) 

 
The decomposition of Cholesky, believes that a 

particular order NxN matrix A can be factored into a 
product A=HHT, where H is the lower triangular 
matrix with positive diagonal elements. 

The matrix A=HHT, also can be written in terms 
of a superior triangular matrix that is R=HT . In fact, 
if R=HT   then A=HHT = RR=HT. 

The Fig. 20 shows the number of elements of 
triangular shape, obtained after the application of 
Cholesky with threshold of 0.01%.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(50) 

This decomposition, the partial average 
execution time for a plane plate with 16 divisions in 
each axis, changed from 0.21 to 0.02(s) and with 32 
division from 11.49 in 0351(s), to further improve 
the overall performance of the program. 

  
 

 
 

Figure 20 - Number of elements after  
 Cholesky decomposition (0.01%) 

 
5) Conclusion  
�

According to the results we can observe that the 
numerical method presented is very efficient and 
accurate solutions of problems in electrostatics.  

With the proposed methodology in the two cases 
that were the object of our study, considering the 
domestic product expansion of the function of the 
Haar wavelet function instead of the pulse (a 
function of the Dirac Delta weighting) and 
discretization of the domain of the function through 
points we obtained a variation in the calculation of 
coefficients, which contribute to the calculation of 
surface charge density of less than 0.025%. 

Given the fact that the transformed matrix of the 
Haar wavelets produces sparse matrices, in 
alternative programming, such as the detection of 
null values, we obtained a decrease in the amount of 
floating point operations in very significant, there 
was a reduction in total time of the program 
approximately 40%.  

With the selection of a threshold in percentage, 
which is only possible to be implemented when used 
as a basis for expansion of the Haar wavelet, we can 
eliminate some coefficients for the difference in 
modulus between� the largest positive and less 
negative, we obtained an improvement in the 
performance of program. In the case of square plane 
plate with 16 divisions, in each of the axes, and a 
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threshold of 0.01%, achieved a reduction in 
execution time of 33%.  

Applying the Cholesky decomposition, for a 
plane plate 16x16, 0.01% threshold, the average 
time to partial execution of the transactions between 
the matrixes, involved calculating the density of 
surface charge, reduced by approximately 10 times. 
 
References: 
 
[1]R. F. Harrington ,Field Computation by Moment 

Methods. 1.ed. New York, Macmillan Company, 
1968.  

 
[2]Constantine A. B., Advanced Engineering 

Eletromagnetics, 2.ed. New York, John Wiley & 
Sons, 1989. 

 
[3]Cohen A., Kovacevic J. Wavelets, The 

mathematical background. IEEE Proceedings of 
the IEEE, v84, n.4, p.514-522, 1996. 

 
[4]Morettin P. A. Ondas e Ondaletas, 1.ed. São 

Paulo, Edusp , 1999. 
 
[5]Morettin P. A., 7° Escola de séries Temporais e 

Econometria, 1.ed. São Paulo, Edusp, 1997. 
 
[6]Chui C. K.,  An  Introduction to Wavelets. 1. Ed., 

Texas, Academic Press, 1992. 
 
[7]Aboufadel, E., Schlicker S., Discovering     

Wavelets, 1.ed. New York, John Wiley & Sons,     
INC, 2000,  

 
[8]I. Daubechies, Orthonormal bases of compactly 

supported wavelets, Comm. on Pure and Appl. 
Math. XLI, 1988, pp. 909-996 

 
[9]Newland D. E.  Random Vibrations, Spectral and 

Wavelet Analysis. 3.ed. Edinburgh, Addison 
Wesley Longman Limited, 1993. 

 
[10]I. Daubechies, The wavelet transform, time-

frequency localization and signal analysis,IEEE 
Trans. on Information Theory 36,1990, pp. 
961-1005. 

 
[11]S. G. Mallat, Multiresolution approximations 

and wavelet orthonormal bases of L2(R), 
Trans. Amer. Math. Soc 315 ,1989, 69-87. 

 
[12]Benedetto J. J; Frazier M. W., Wavelets 

Mathematics and Applications. 1. Ed. London 
CRC Press, 1994. 

[13]Belardi  A.  A, Cardoso   J.    R., Sartori    C. F, 
Application of Haar´s Wavelets in the Method of 
Moment to Solve Electrostatic Problems, Poland,  

 Instytut Maszyn Elektrycznych I 
Transformatorów, ISEF, 2003, pp. 15-20. 

 
[14]Belardi A. A, Cardoso J. R., Sartori C. F., 

Wavelets Application in Electrostatic and their 
Computing Aspects. Germany, Electric and 
Magnetic Fields, EMF, 2003, pp. 43-46. 

 
[15]Belardi A. A, Cardoso J. R., Sartori C. F., 

Calculation of the Parallel Finite Plate 
Capacitance and the Electrical Fields using the 
Method of Moments and the Haar 
Wavelets,Italy Electric and Magnetic Fields, 
EMF, 2009, pp. 43-46. 

 
[16]Belardi A. A, Cardoso J. R., Sartori C. F., 

Contribuição a aplicação das wavelets na 
eletrostática, Brasil,2003, EPUSP. 

 
[17]Morettin L. G.  Estatística Básica (Inferência). 

2.ed. São Paulo, Makron Books, 1999. 
 
[18]Shao K. R.; Lavers J. D., Wavelet Based 

Multiresolution Algorithm for Integral and 
Boundary Element Equations in Electric and 
Magnetic Field Computations, IEEE 
Transactions and Magnetics, v38, n.5, p.2373-
2375, 2002. 

 
[19]Patterson D. A.; Hennessy J. L., Organização e 

Projeto de Computadores a Interface 
“ Hardware/Software”  , 1.ed. Rio de Janeiro, 
Livros Técnicos e Científicos - LTC, 2001 

 
[20]Stallings W., Arquitetura e Organização de 

Computadores. 5.ed. São Paulo, Prentice Hall, 
2002. 

 
[21]Frazier M. W., An Introduction to Wavelets 

Through Linear Algebra. 1. Ed. New York, 
Springer, 1999. 

 
[22]Datta B. N., Numerical Linear Algebra and 

Applications, 1. ed. New York, Brooks/Cole 
Publishing Company, 1995, pp. 222-225. 

 

WSEAS TRANSACTIONS on MATHEMATICS Aldo Artur Belardi, Jose Roberto Cardoso, Carlos A. Franca Sartori

ISSN: 1109-2769 617 Issue 8, Volume 9, August 2010




