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Abstract: - The effect of rotation and magnetic field on the thermal instability of Walters’ (modelB')

viscoelastic fluid permeated with suspended particles is considered. For stationary convection, Walters’ B’
viscoelastic fluid behaves like a Newtonian fluid. It is found that, for the case of stationary convection, the
rotation and magnetic field have stabilizing effect whereas the suspended particles has destabilizing effect on
the system. The principle of exchange of stabilities is satisfied in the absence of magnetic field. The magnetic
field, viscoelasticity and rotation introduce oscillatory modes in the systems which were non-existent in their

absence.
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1 Introduction

The theoretical and experimental results of the onset
of thermal instability in a fluid layer under varying
assumptions of hydrodynamics have been given by
Chandrasekhar [1]. Scanlon and Segel [2] have
considered the effect of suspended particles on the
onset of Benard Convection and found that critical
Rayleigh number was reduced solely because heat
capacity of pure fluid was supplemented by that of
the particles. The effect of suspended particles was
thus found to destabilize the layer. Bhatia and
Steiner [3] have studied the problem of thermal
instability of a Maxwellian viscoelastic fluid in the
presence of rotation. Sharma and Aggarwal [4] have
studied the effect of compressibility and suspended
particles on thermal convection in a Walters’ B’
elastico-viscous fluid in hydromagnetics. Spiegel
and Veronis [5] have simplified the set of equations
governing the flow of compressible fluids under the
assumption that the depth of the fluid layer is much
smaller than the scale height as defined by them, if
only motions of infinitesimal amplitude are
considered. Scanlon and Segel [6] studied the effect
of suspended particles on the onset of Benard
convection and found that the critical Rayleigh
number was reduced, solely because the heat
capacity of the pure gas was supplemented. Bhatia
and Steiner [7] have also studied the thermal
instability of a Maxwellian viscoelastic fluid in the
presence of a magnetic field. The importance of
non-Newtonian fluids in modern technology and
industries is ever increasing and the investigations
on such fluids are desirable. One such class of non-
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Newtonian fluids is Walters’ B’ fluid. Walters [8]
reported that the mixture of polymethyl

methacrylate and pyridine at 25° C containing 30.5g
of polymer per litre with density 0.98g per litre
behaves very nearly as the Walters’ B' elastico-
viscous fluid. Aggarwal and Prakash [9] have
studied the effect of suspended particles and rotation
on thermal instability of ferromagnetic fluids.

In the present paper, we have studied the
effect of suspended particles on the Walters’ B’
viscoelastic fluid heated from below in the presence
of rotation and magnetic field.

2 Problem Formulation

Consider an infinite horizontal layer of electrically
conducting Walters’ B’ elastico-viscous fluid layer
of thickness d permeated with suspended particles,
bounded by the planes z=0and z=d in the
presence of rotation. This layer is heated from below
so that, the temperature and density at the bottom

surface z=0 are T, p, and at the upper surface

z=d are T,, p,, respectively, and that a uniform
_ldT ) . o
adverse temperature ﬁ( ‘ 412‘ is maintained. A

uniform magnetic field A = (0,0,#) and gravity field

§(0,0,—g) pervades the system. The equations of

motion and continuity for Walters’ B’ viscoelastic
fluid in the presence of suspended particles and
magnetic field with rotation are
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ot 4rp,
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0

V.g=0 (2)
where p,p,T,q,q4,, N,,v,v' denote fluid
pressure, density, temperature, fluid velocity,

suspended particles velocity, suspended particles
number density, kinematic viscosity and kinematic
g (ana_g ) is
acceleration due to gravity and K =6zun', n'

being particle radius, is the Stokes’ drag coefficient.
Assuming a uniform particle size, a spherical shape
and small relative velocities between the fluid and
particles, the presence of particles adds an extra
force term in the equation of motion (1),
proportional to the velocity difference between the
particles and the fluid.

Since the force exerted by the fluid on the
particles is equal and opposite to that exerted by the
particle on the fluid, there must be an extra force
term, equal in magnitude but opposite in sign, in the
equations of motion for the particles. Interparticle
reactions are ignored because the distance between
particles are assumed to be quite large compared
with their diameter. The effects due to pressure,
gravity, Darcy's force and magnetic field on the
particles are small and so are ignored. If mN is the
mass of particles per unit volume, then the equations
of motion and continuity for the particles, under the
above assumptions are

viscoelasticity respectively. Here

oq ~ - -

mN{a—t"+ (@, -V)qd} =KN(G-4,) 3)
oN ~

~—+V(NgG,)=0. (4)
ot

If C,,C,,Tand q' denote the heat capacity of
fluid at constant volume, heat capacity of the
particles, temperature and effective thermal
conductivity of the pure fluid respectively.

Assuming that the particles and the fluid are in
thermal equilibrium, the equation of heat conduction
gives
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6))
=q'V°’T
The Maxwell’s equations yield
aa—fl —(AV)j+qv2i (©)
V.H=0. @)
The equation of state for the fluid is
p=pll-a(l-T,) (8)

where « is the coefficient of thermal expansion and
the subscript zero refers to values at the reference
level z=0. The kinematic viscosity Vv, kinematic
viscoelasticity V', electrical resistivity 7 and
coefficient of thermal expansion ¢ are all assumed
to be constants.

The basic motionless solution is

G =(0,0,0), G, =(0,0,0), T =T, - f,

€))
P =P, (1 +af z), N = N, = constant
Assume small perturbations around the basic
solution and let
op,op,0, qu,v,w), q,(,r,s),N(X,t) and

h(h,,h,,h.) denote respectively the perturbations

in fluid pressure p, density p, temperature T,

fluid  velocity (0,0,0) ,  suspended particles
velocity (0,0,0) , suspended particles number
density N, and magnetic field H (0,0,H).The
change in density Op caused mainly  the
perturbation @ in temperature is given by

op =—ap,0 (10)
Then the linearized perturbation equations of

Walters’ B' viscoelastic fluid become

% _ —LV@U + §@+(v—v'2jvzé
ot Po Po ot
-\ - KN
+L(Vxh)xH+ 0
47p, Po

(G, -d)+2G%)

(11)
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Vg=0 (12)
oq o
mNy = KN, (G -4,) (13)
‘ZZ (A5G +nv2h (14)
00 2
(1+h)at = B(w+ hs)+ kV20 (15)
V.h=0 (16)
where 77stands for electrical resistivity, x = 9
pOCv
mN,C
and h, = e p
IOOCV

Eliminating ¢, in equation (11) with the help of
equation (13), we obtain

)

Writing the scalar components of the equations (17),
(12) and (16), we obtain

ou 1 0 ,ueH(ﬁhz ahxj
m 0 —t——ow+ -
[;5+1j ot p, Ox 4rp,\ Ox Oz
- 2vQ)
Mo u _ (ﬂg + l][v — v’gjvzu
p, Ot k ot Ot
(18)
. ou Li§+,ueH(6hZ_8hx]
;5+1 ot p, Ox drp, \ Ox Oz
- 2vQ)

(19)
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(ﬂg_i_lj a_W Lié‘p_gae + MNO @
k ot ot p, 0z , Ot
= ﬂﬁJrl v—v'— |V?
k ot ot
(20)
o v o
ox Oy Oz
Oh
Oh, ,  Oh, 0 22)
ox Oy Oz

Multiplying (18) by —iand (19) by —i and
ox oy

adding the resulting equation, we get

o ou ov ), ]
B L P |
ot\ ox oy o oy
_62h2_62h2
(ma 1} wH| o oy
——+
k ot drp,| O (0Oh, Oh,
oz\ ox Oy
ol
| ox Oy
mNy 0 (_au_av
p, Ot ox Oy
:[ﬂi+lj(v—v’ijvz _Ou_ v (03
k ot ot ox Oy

Eliminating u, v, h, and h, from equation (23)

by using equation (21) and equation (22), we obtain

J(ow o> 0’
—| =t P
m 0 o\ oz Po\Ox" Oy
;54‘1 I
R 2y 4 o0¢
47p,

2 (%)
Ot 0z

(24)

mN, 0 (814/] (m 0 j{
+ =——+1
p, Ot\ Oz k ot
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52@—8—1/! is
ox Oy

where the z-component of
vorticity.

Eliminating dp between equations (20) and (24), we

obtain,
2 2
2Vzw—gOt 0 ?Jra ?
+1) ot ox* oy

Po

On substituting for s in terms of w with the help of
equation (13), equation (15) becomes,

oAz

K ot ot K ot
(26)
z - component of equation (14) becomes
0 ) ow
—-nV° |h. =H— 27
( = j = H— 27)
Equations (25)-(27) yield three perturbation

equations inw, @ and h,.

3 Problem Solution

3.1 Dispersion Relation
Analyze the perturbations into normal modes by
seeking the solutions in the form

[w, 0.6.¢, h.]=[W(2).0(2). 2(2), X (2), K ()}
.exp(ikxx +ik,y+ m‘)
(28)

where kx,ky are wave numbers along x and y

directions respectively k(= [k’ +kj) is the

resultant wave number of the disturbances and 7 is,
in general, the complex constant. Using expression
(28), equations (25) - (27) in non-dimensional form
become
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(29)
Equation (26) yields,

(1+ Jla)[D2 —a’ - H1p10]®

pd’

(30)
== (H +J oW
K

Equation (27) becomes

d

(D> -a> - po)k = —HTDW 31)

0
Operating equation (18) by — 8_ and equation (19)
y

by 82 and adding these two equations, we get
X
(ﬂéﬂj 95 | KM OG Hnow|, mN, Og
k ot ot 4nmp, Oz Oz p, Ot
= ﬂngl v—v'2 V&
k ot ot

The non-dimensional form of this equation is

(I—FO')(DZ—CZZ)—O' 1+ M Z
1+J,o
(32)
_ u,Hd DX_ZQd DWW
4mp,v v

Now x and y components of equation (14) are

(ﬁ —nvz)hx = Ha—”

ot oz
0 ) ov
R v s
(ﬁt 7 )y P
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Operating x-component by —— and y-

0
component by 8_ and adding these two equations,
X

we get

[2
Ot

The non-dimensional form of this equation is

v e =g e
ﬂng_Haz

:_H_dDZ

(D2 -a’ —pZO')X ”

(33)
where we have expressed the co-ordinates x, y
and z in the new unit of length d, time ¢ in the

new unit of length d% and put a==kd,

nd*
o= , J
Y

J_\;,M:mNO , p1:1 is
d Lo K

m oy
k

v
the Prandtl number, p, = — is the magnetic Prandtl

V. . . . .
number, F =—-Is the dimensionless kinematic
d

d

—
Eliminating®, Z, K and X from equations (29) to
(33), we obtain

(Dz—a2 ol 1+ M
1+J,o

~ Ra*(H, +J,0)
(1+J,0\D* -a*> -H,pc

viscoelasticity, #, =1+h, and p =

]+ (oF —=1)(D? —az)}W

)W

(1+J16)(D2 -a’ —pza)
(1-Fo)1+J,0)\D* —a*\D* —a* - p,o)

_TA

| —o(l+J,0)-Mo+0(1+J,0)D*

o220

. D’W =0
—a —p,o

(34
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gapd’
VK
2 72

_MHd
Arpyvi

where R =

is the Rayleigh number and

is the Chandrasekhar number.

Consider the case in which both the boundaries are
free from stresses, the medium adjoining the fluid is
perfectly conducting and temperatures at the
boundaries are kept fixed. The case of two free
boundaries is little artificial but allows us to have
analytical solution. The boundary conditions,
appropriate to the problem are

W=DW=0, DZ=0, ®=0at z=0, 1

(35)
and DX =0, K =0.

Using the above boundary conditions (35), it can be
shown with the help of equations (29)-(33) that all
the even order derivatives of W must vanish for

z=0and z=1 hence the proper solution
W characterizing the lowest mode is
W=W,sinrxz (36)

where W is a constant.

Substituting the proper solution (36) in equation
(34), we obtain the dispersion relation

M
—(1+x) l+in Jyog /4

Q1(1+x)

l+x+ipyo
( 2 1) +l'FIO'1(1+x)—(1+x)
1+x+]
+T, ( X IPZO-I)
(l—iFiO'I)(l+X)(1+x+lp201)—72+Q1
V4
R = >
.2 .
(1+l72' J101X1+X+1H1p10'1)
(37)
where,
2
. o R 4 0
X=—7,10| =?, R, =?3TA1 :?5Q1 =?,
F, =7’F.
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3.2 The Stationary Convection

When the instability sets in as stationary convection,
the marginal state will be characterized byo =0.
Puttingo =0, the dispersion relation (37) reduces
to

R = (I;chjl:(l +x)+0,+T, [%H

(3%)

To study the effects of magnetic field, suspended
particles and rotation, we examine the natures of

dR, dR, . dR,

40, dH and ar, analytically. Equation (38)
yields
dR, (l+xj 1+x) (39)
do, | xH "o, + (x|
1+x) +0
dR, I+x ( ) l
S 1+x) (40)
dH xHy ) +T, | ———"
0 +(1+x)
dR, _(1+x) (1+2x) ' @1
dTA] XH, (1 + x) +0,

It is clear from equations (39)-(41) that for
stationary convection the magnetic field and rotation
have a stabilizing effect whereas the suspended
particles have destabilizing effect on the thermal
convection.

Graphs have been plotted between the modified
Rayleigh number R, and magnetic field parameter

Q, for various values of wave numberx, rotation

parameter T, and suspended particles

parameter /| . It is evident from fig. (1) and (2)

that the magnetic field and rotation have a
stabilizing effect whereas from fig. (3) that the
suspended particles have a destabilizing effect on
the thermal convection.

3.3 Stability of System and Oscillatory
Modes

Multiplying equation (23) byW# ™, the complex
conjugate of W', integrating over the range of z and
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using equations (25)-(27) together with the
boundary conditions (35), we obtain

M
1 I +(1-Fo)l
G( +1+J10] +i=Fo,

_ gaxa’ (1+J10'*)
Sy (H1+J10*)

[, +H,po'1,]

2 4’;;72‘;]5 - p,0' 1, +(1—F0'*)I7
J*(1+L*jlg
I+J,o
+ 4/;;77‘} []9 +p20-*110]:()
0
(42)
where,
1= [low e i
0
=sz +2a*|DW|" +a* |’ ]
0
1
1= [(per +lef e
1
=l
1
1= [t + e e
0
1= (o).
0
:MD +a |Z|2}lz,
0
1
Ll
_ szK\z +24°|DK|” + a4|K|2]dz
0
=MDK|2 +a2|K|2)dz.
0 (43)
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The integrals 1,,1,,....,1,, are all positive definite.
Puttingo =io; and equating imaginary part of

equation (42), we obtain

1 M s FI
+ p—
1+IJIO'Z' ! 2
JI(HI_I) ;
2 2 273
gaxa” | H1 +/10;
+
. By 091+Jfa?)
io; +H1p1—2 55 =0
2 M
-d Pyl +Fly —| 1+ Ig
Hell
- paly
47rp0v

(44)

Equation (42) yields that o, =0oro, #0, which

means that modes may be non-oscillatory or
oscillatory. In the absence of viscoelasticity,
magnetic field and rotation, equation (44) reduces to

Ul
io; 2 2 2

M
(1+
Jl(Hl‘l) ;
3
gakaz Hy +Jyo;
pv

—0  (45)

2 2
(H1+J1°'i)

2 2 274

+H1p1

and the quantity inside the brackets is positive
definite. Thuso, = 0, which means that oscillatory
modes are not allowed and the principle of exchange

of stabilities is valid. The viscoelasticity, magnetic
field and rotation introduce oscillatory modes (as

0, may not be zero) in the systems which were non-
existent in their absence.

4 Conclusions

With the growing importance of non-Newtonian
fluids in chemical engineering, modern technology
and industry, the investigations on such fluids are
desirable. The Walters’ B’ fluid is one such
important non-Newtonian fluid. Keeping in mind
the importance of non-Newtonian fluids, the present
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paper considered the effect of suspended particles,
rotation and  magnetic field on  the
Walters’ B viscoelastic fluid heated from below.
For stationary convection, Walters’ B’ viscoelastic
fluid behaves like a Newtonian fluid. Here, we
found that, rotation and magnetic field postpones the
onset of convection whereas the suspended particles
hasten the onset of convection. The principle of
exchange of stabilities is satisfied in the absence of
magnetic field. The magnetic field, viscoelasticity
and rotation introduce oscillatory modes in the
systems which were non-existent in their absence.
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Nomenclature

x - dimensionless wave number a - coefficient of thermal expansion

C, - heat capacity of fluid at constant volume B - uniform temperature gradient

C,, - heat capacity of suspended particles n - electrical resistivity

n' - suspended particle radius

d - depth of layer K - thermal diffusivity

F - dimensionless kinematic viscoelasticity u - viscosity of the fluid

g - acceleration due to gravity L - magnetic permeability

ZI - magnetic field v - kinematic viscosity

K - Stokes’ drag coefficient 12 - kinematic viscoelasticity

k - wave number yo, - density of fluid.

k., - wave number along x-axis p - fluid pressure

k, - wave number along y-axis op - perturbation in fluid pressure p

m - mass of suspended particle dp - perturbation in fluid density p

N, - suspended particle number density 0 - perturbation in fluid temperature T

n - growth rate (complex constant) g(u, v, w) - perturbation in fluid velocity (0,0,0)
D - Prandtl number 5

p, - magnetic Prandtl number q,(,r,s) -perturbation in suspended particles
Q - Chandrasekhar number velocity (0,0,0)
R - Rayleigh number o Z(h ,h ,h.)- perturbation in magnetic field
gq' - effective thermal conductivity e

N (0,0,H)

q - fluid velocity & - z component of vorticity
q, - suspended particles velocity 0, - magnetic field parameter
T - temperature H, - suspended particles parameter
t - time T, - rotation parameter
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Fig.1 Magnetic Field Vs Rayleigh Number
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Fig. 1- Variaion of Rwith Qfor fixed H, =50,7, =20,for different values of
x(=2,4,6,8,10)and O, (=100,200....,600) .

Fig.2 Rotation Vs Rayleigh Number
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Fig. 2 - Variation of Rand T7,for a fixed H, =20,Q, =60, for different values of
x(=2,4,6,8,10) and T, (=100,200,...,600) .
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Fig.3 Suspended Particles Vs Rayleigh Number
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Fig. 3- Variation of R

and H, for a fixed T, =20,0 =50, for different values

x(=2,4,6,8,10) and H, (= 100,200,...,600).
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