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Abstract: - Transition theory has been used to derive the elastic-plastic and transitional stresses. Results 
obtained have been discussed numerically and depicted graphically. It has been observed that for disc with 
exponentially varying thickness (k=2), high angular speed is required for initial yielding at internal surface as 
compared to the flat disc and exponentially varying thickness for k=4 onwards. Thus we can conclude that flat 
disc (C=0.75) is on the safer side of the design as it requires high percentage increase in angular speed to 
become fully plastic as compared to the flat disc with the compressible factors (C=0,0.25,etc.).  
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Nomenclature of Symbols:- 
a and b  : Internal and external radii of disc u,v,w : Displacement components 

zyx ,,   : Cartesian co-ordinates   zr ,,θ  : Cylindrical polar co-ordinates 

ije  and ijT  : Strain and stress tensor   iie  : First strain invariant 

β   : Function of r only   Y  : Yield stress 
P  : Function of β  only   ijC  : Material constants 

μλ and  : Lame’s constants   R : Radial distance  
)/(),/( 0 baRbrR ==     C : Compressibility   

)/( YTrrr =σ  -  Radial stress components    

)/( YTθθθσ = - Circumferential stress components 
 

1 Introduction 
This paper is concerned with the analysis of a rotating 
solid disk made of isotropic material with exponentially 
varying thickness. There are many applications of such 
type of rotating disks, such as in turbines, rotors, 
flywheels and with the advent of computers, disk 
drives. The use of rotating disk in machinery and 
structural applications has generated considerable 
interest in many problems in domain of solid 
mechanics. The analysis of stress distribution in 
circular disk rotating at high speed is important for a 
better understanding of the behavior and optimum 
design of structures. The analysis of thin rotating discs 
made of isotropic material has been discussed 
extensively by Timoshenko and Goodier [1]. In the 
classical theory, solutions for such type of discs made 
of isotropic material can be found in most of standard 
text books [1-5]. Chakrabarty [2] and Heyman [6] 
solved the problem for the plastic state by utilizing the 
solution in the elastic range and considering the plastic 
state with the help of Tresca’s, Von-Mises or any other 

classical yield condition. Han [7] has investigated 
elastic and plastic stresses for isotropic materials with 
variable thickness. Eraslan [8] has calculated elastic 
and plastic stresses having variable thickness using 
Tresca’s yield criterion, its associated flow rule and 
linear strain hardening. Wang [9] has investigated 
deformation of elastic half rings. Enescu [10] give some 
numerical method for determining stresses in rolling 
bearings while Mahri [11] calculated stresses by using 
finite element method for wind turbine rotors. 
Transition is a natural phenomenon and there is hardly 
any branch of science or technology in which we do not 
come across transition from one state to another. At 
transition, the fundamental structure of the medium 
undergoes a change. The particles constituting a 
medium re-arrange themselves and give rise to spin, 
rotation, vorticity and other non-linear effects. This 
suggests that at transition, non-linear terms are very 
important and neglection of which may not represent 
the real physical phenomenon. Therefore transition 
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fields are non-linear, non-conservative and irreversible 
in nature and should not be treated as superposition of 
effects. Elasticity-plasticity, visco-elastic, creep, 
fatigue, relaxation are some of the examples of 
transition. At present, such problems like elastic-plastic, 
creep and fatigue are treated by assuming ad-hoc, semi-
empirical laws with the result that discontinuities, 
singular surfaces, non-differentiable regions have to be 
introduced over which two successive states of a 
medium are matched together. In a series of papers, 
Bohra [17] has given an entirely different orientation to 
this interesting problem of transition. He has discussed 
about ‘transition theory’ of elastic-plastic and creep 
deformation. Transition theory neither requires the 
yield criterion nor the associated flow rules to derive 
the transitional and plastic stresses. The transition 
theory utilizes the concept of generalized principal 
strain measure and asymptotic solution at critical points 
or turning points of the differential equation defining 
the deformed field and has been successfully applied to 
a large number of problems [14-26]. The generalized 
principal strain measure [12] is defined as, 
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where n  is the measure and A

ije  is the principal 
Almansi finite strain components. For n = -2, -1, 0, 1, 2  
it gives Cauchy, Green, Hencky, Swainger and Almansi 
measures respectively. 
In this paper an attempt has been made to study the 
behavior of isotropic thin rotating disk with 
exponentially variable thickness and edge load using 
transition theory. The thickness of the disc is assumed 
to vary along the radius in the form  
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where 0h  is the constant thickness, k  is the geometric 
parameter and b is the radius of the disk. 
 
 
2 Objective of the Present Study  
In order to explain the elastic-plastic deformation, it is 
first necessary to recognize the transition state as an 
asymptotic one and in this work; it is our main aim to 
eliminate the need for assuming semi-empirical laws, 
yield condition. We also obtain the constitutive 
equation corresponding to the transition state. 
Borah [17] identified the transition state in which the 
governing differential system shows some criticality. 
The general yield condition of transition is identified 
from the vanishing of the Jacobian of 

transformation, ( )
( ) 0

,,
,,

=
∂
∂

zyx
ZYX , where (X,Y,Z), (x,y,z) 

are the coordinates of a point in the undeformed and 
deformed state respectively.  
3 Governing Equations   
We consider a thin disk of constant density with central 
bore of radius ‘a’ and external radius ‘b’. The disc is 
rotating with angular speed ‘ω ’about an axis 
perpendicular to its plane and passed through the center 
of the disc. The thickness of the disc is assumed to be 
constant and is taken to be sufficiently small so that it is 
effectively in a state of plane stress, that is, the axial 
stress ZZT is zero. The disk is assumed to be symmetric 
with respect to the mid plane, and the geometry of the 
consideration is presented in figure 1.  
 
 
 
 

        
 
   

 
 
 
 
 
 

Fig.1 Isotropic disc having exponentially variable 
thickness. 

 
The displacement components in cylindrical polar co-
ordinates are given by [12]. 

dzwvru ==−= ;0);1( β                     
      (2) 

where β  is a function of 22 yxr += only and d 
is a constant. The finite strain components are given as, 
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where
dr
dββ =' . 

On substitution of equation (3) in (1), the generalized 
components of strain are given as 
 
 
 

r = a 

r = b
   r 
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The stress-strain relations for isotropic material are 
given as, 
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where ijij eandT are the stress and strain components 
respectively, μλ and are the Lame’s constants and 

kkk eI =  is the first strain invariant, ijδ  is the 
Kronecker’s delta. 
Equation (5) for this problem becomes  
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Substituting equation (3) in (5), the strain components 
in terms of stresses are obtained as  
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where E is the Young’s modulus and C is the 
compressibility factor of the material. In terms of 
Lame’s constant they are given as 
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Substituting equation (4) in (6), we get the stresses as  
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Equations of equilibrium are all satisfied except 

( ) 022 =+− hrhThrT
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                       (9)  
where ρ  is density of the material and h is the 
exponentially variable thickness of the disc.  
Using equation (8) in (9), we get a non-linear 
differential equation in β  as 
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where Pr ββ ='  (P is a function of β  and β  is a 
function of r). Transition or turning points of P  in 
equation (10) are ±∞→−→ PandP 1 . The 
boundary conditions are: 
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4 Solution Though the Principal Stress 
It has been shown in large number of cases that the 
asymptotic solution through the principal stress leads 
from elastic to plastic state at the transition 
point ±∞→P , we define the transition function R as 
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Taking the logarithmic differentiation of equation (12) 
with respect to r and using equation (10), we get 
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Taking the asymptotic value of equation (13) as  
±∞→P  and integrating, we get 
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where 1A  is a constant of integration, which can be 
determined by the boundary condition. From equation 
(12) and (14), we have 
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Substituting equation (15) in (9) and integrating, we get 
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where 1B is a constant of integration and 
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Substituting equations (15) and (16) in second equation 
of (7), we get 
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Substituting equation (17) in (2), we get 
k

b
r

e
rh
B

rf
rC

C
E

rru
⎟
⎠
⎞

⎜
⎝
⎛

⎭
⎬
⎫

⎩
⎨
⎧

−⎟
⎠
⎞

⎜
⎝
⎛

−
−

−−=
0

1
2

)(
2
121 ρω

               
    (18) 

where 
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 is the Young’s modulus in 

terms of compressibility factor. Using boundary 
condition (11) in equation (16) and (18), we get 
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Substituting the values of constant of integration A1 and 
B1 from equation (19) in equations (15), (16) and (18) 
respectively, we get the transitional stresses and 
displacement as 
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From equation (20) and (21), we get 
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4.1 Initial Yielding 
From equation (23), it is seen that θθTTrr −  is 
maximum at the internal surface (i.e. at ar = ), 
therefore yielding will take place at the internal surface 
of the disc and equation (23) become, 
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and the angular speed necessary for initial yielding is 
given by 
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4.2 Fully Plastic State  
The disc becomes fully plastic ( )0→C  at the external 
surface (i.e. at r = b) and equation (23) become 
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Angular speed required for the disc to become fully 
plastic is given by 
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We introduce the following non-dimensional 
components as 
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Transitional stresses, angular speed and displacement 
can be obtained from equation (20)-(22) and (24) in 
non-dimensional form as, 
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Stresses, displacement and angular speed for fully-
plastic state ( )0→C  are obtained from equation (26)-
(28) and (25) as 
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5 Numerical Illustration and Discussion 
In figure 2, curves have been drawn between angular 
speed ( )2

iΩ  and various radii ratios ( )baRo =  for 
different compressibility factors ( )75.0,5.0,25.0,0=C . It 
has been observed that for flat disc (k = 0), high angular 
speed is required for initial yielding at internal surface 
for incompressible material as compared to 
compressible material. For compressible material, high 
percentage increase in angular speed is required for 
material to become fully plastic. As thickness of the 
disk varies exponentially (decreasing radially), high 
angular speed is required for initial yielding at internal 
surface (k = 2) for incompressible material as compared 
to compressible material. It has been seen that with the 
increase of k from 2 onwards, less angular speed is 
required for fully plasticity at internal surface as 
compared to the disk with thickness at k = 2. 
It can be seen from table 1, as thickness of disc 
decreases radially, high angular speed is required for 
the compressible material (C = 0.75) to become fully 
plastic. As the thickness of disc decreases radially, 
angular speed required for fully plastic state is much 
less as compared to the flat disc (k = 0).         
In figures 3-6, curves have been drawn for transitional 
stresses and displacement. For flat disc- radial, 
circumferential transitional stresses are maximum at 
internal surface. For disk made of incompressible 
material, radial as well as circumferential stresses, is 
maximum at internal surface as compared to disk made 
of compressible material. The displacement is 
maximum at external surface for incompressible/ 
compressible material. The displacement is large for 
incompressible material as compared to compressible 
material. For disk with exponentially varying thickness, 
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radial stress is maximum at internal surface while 
circumferential stress and displacement is maximum at 
external surface. Circumferential stress is going on 
increasing as the thickness of disc decreasing radially. 
Circumferential stress is decreasing as compressibility 
of disc increases i.e. C = 0, 0.25, 0.5.  
For flat disc (k = 0), radial and circumferential plastic 
stresses are maximum at internal surface as can be seen 
from figure 7. For disc whose thickness varying 
exponentially (decreasing radially), radial stress is 
maximum at internal surface while circumferential 
stress is maximum at external surface. As the thickness 
of the disk decreases radially, the circumferential stress 
increases.  
 

Table 1 
Angular speed required for Initial Yielding and Fully 

Plastic state with Variable thickness 
 
 

 
 
5 Conclusions:  
For disk with exponentially varying thickness (k = 2), 
high angular speed is required for initial yielding at 
internal surface as compared to the flat disk and 
exponentially varying thickness for k = 4 onwards. 
Thus we can conclude that flat disc (C=0.75) is on the 
safer side of the design as it requires high percentage 
increase in angular speed to become fully plastic as 
compared to the flat disc with the compressible factors, 
i.e. C = 0, 0.25, 0.5, etc. and the disc in which thickness 
decreases radially (i.e. for k = 3, 4, 5, etc.).    
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Fig.2 Angular speed required for initial yielding at the internal surface of the rotating disc with variable thickness 

(k=0, 2, 4). 
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Fig.3 Transitional stresses and displacement in a thin rotating disc along various radii ratio (R = r/b) with 

compressibility (C = 0) for variable thickness (K=0, 2, 4). 
  

 
 
 
 
 
Fig.4 Transitional stresses and displacement in a thin rotating disc along various radii ratio (R = r/b) with 

compressibility (C = 0.25) for variable thickness (K=0, 2, 4). 
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Fig.5 Transitional stresses and displacement in a thin rotating disc along various radii ratio (R = r/b) with 
compressibility (C = 0.5) for variable thickness (K=0, 2, 4).  

 

 
 
 
 
 
 
Fig.6 Transitional stresses and displacement in a thin rotating disc along various radii ratio (R = r/b) with 

compressibility (C = 0.75) for variable thickness (K=0,2,4). 
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Fig.7 Plastic stresses and displacement in a thin rotating disc along various radii ratio (R = r/b) for variable thickness 

(K=0, 2, 4). 
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