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Abstract: - Multidimensional unreplicated linear functional relationship model (MULFR) with single slope is
considered where p-dimensional measurement errors are introduced. When the ratio of error variances is
known, the parameters’ estimation can be considered as a generalization of the unreplicated linear functional
relationship model. However, investigation on unbiased property of the estimators are not strict-forward. Taylor
approximation is applied to show the intercept and slope estimators are approximately unbiased. The
consistency property is discussed using Fisher Information Matrix. The coefficient of determination for
MULFR model and its properties are also studied. A simulation study is carried out to evaluate the proposed
estimators of the intercept and slope, and the coefficient of determination. This coefficient of determination
provides a useful analysis tool for many image processing applications. A numerical example for JPEG
compressed image quality assessment is explained.
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considered. A number of multivariate unreplicated
linear functional relationship models have been

1 Introduction
Over the centuries, linear regression model has

become the focus of study for many applications to
investigate the relationship between a response
variable and a set of explanatory variables. In
certain applications such as engineering, economics,
psychology, chemistry and biology, a situation
arises where this relationship is obscured by random
fluctuations associated with both variables (Sprent,
1969). Fuller (1987) made the same comment where
the assumption that the explanatory variable can be
measured exactly may not be realistic in many
situations. Such experience had lead to the
development of a new type of linear relationship
when both variables are subject to error or so called
functional relationship although other names have
also been used such as ‘law-like relationship’,
‘regression with errors in x’, ‘errors-in-models’ and
‘measurement error models’.

Adcock (1877, 1878) is the first to investigate
the problem of fitting a linear relationship when
both dependent variable and independent variable
are subject to error (Sprent, 1990). However, this
bivariate functional relationship is not appropriate in
many real situations where multivariate data is
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proposed to fit data. Sprent (1969), for example
discussed the multidimensional (multiple) functional
relationship with a single linear functional
relationship given by
Yi=a+pBX,+B,X,++B,X,. In Sprent’s
model, there is at least one or more independent

linear relationships or replication, each represents a
space of p—1 dimensions. Chan & Mak (1983,

1984) considered a multivariate linear functional
relationship, in which the error variances and

covariances need not be  homogeneous;
X, 0 1 o,
= + X, + where
yi| la] |B &
X, 0 1 0 0| X, oy
X, = =l:]+|0 0l : [+
X, 0] |10 0 1] X, 0,
and
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There was also interest in considering several
simultaneous linear relationships between p variates
subject to error by Gleser & Watson (1973). These
simultaneous relationships frequently occurred in
economics and physical sciences where it often
involves large measurement errors. An excellent
work on functional data analysis had also been done
by Ramsay and Silverman (1997). They had
considered a wide range of functional linear models
which includes functional canonical correlation
analysis, relationship of the response y and the

covariate X is modelled by
v()=a(t)+ [ x()p(s.t)ds.  functional
Y.)(

responses with multivariate covariates, functional
linear models for scalar responses and functional
linear models for functional responses.

This paper considers a new functional linear

relationship model where the (X l.,Y:.) observations

are p-dimensional with single slope. It can be
considered as a generalization of the unreplicated
linear functional relationship (ULFR) model
proposed by Adcock (1877) where the bivariate
observations are only one-dimensional. The
essential difference of the proposed model and the
multivariate model of Chan & Mak (1983, 1984) is
the new model considers different elements in the

!
intercept vector a :(al,az,...,a p) and the slope

matrix B is replaced by a single slope f. These

ULFR and MULFR models and their coefficient of
determination are particular useful in many image
processing applications where the relationship or
similarity between two images are concerned, such
as full reference image quality assessment,
performance evaluation and feature matching in
pattern recognition. For example, Chang et al.
(2008) applied the coefficient of determination for
ULFR model to assess the quality of JPEG
compressed image and to evaluate the performance
of various de-noising filters.

The remaining parts of this paper are organized
as follows. Section 2 discusses the parameters
estimation using maximum likelihood approach.
The properties of the estimated intercept and slope
are also investigated. We show that the maximum
likelihood estimators are approximately unbiased
using Taylor approximation and they are consistent

ISSN: 1109-2769

Chang Yun Fah, Omar Mohd Rijal, Syed Abdul Rahman Abu Bakar

estimators.

Section 3 derives the coefficient of

determination for the proposed model and its
properties are investigated. A simulation study is
carried out to evaluate the proposed estimators and
coefficient of determination in Section 4. The

application of the proposed coefficient

of

determination in assessing the quality of JPEG
compressed image will be discussed in Section 5.

Lastly, conclusion will be drawn in Section 6.

2 Multidimensional
Linear Functional
Model with Single Slope

Y.:(Y. Y,

i

Suppose that

and X, :(Xh.,XZ,.,...,

1> 200000 pi)

Unreplicated
Relationship

X, )I are two linearly related

unobservable true values of two variables with p-

dimensions such that
Y=a+pX,,i=1...,n

(1

’
where a:(al,az,...,ap) are intercepts and £ is

the slope of the linear function. The

two

corresponding random vectors y, = ( ViisVajoeeesy pl.)

!

and x, :(xh.,le.,...,xp,.) are observed with errors
0,=(0,.0,.....0,/) and & =(g,.ey,....,) such
that,
x, =X, +0, _
i=1...,n. 2)
Y=Y +g

Both x; and y; can be observed in such a way

that they are from two independent processes,
especially in image processing. Assuming both error
vectors are mutually and independently normally

distributed with

(i) E(6)=0=E(¢)

(i) var(é,)=0¢> and  var(g,)=7’
k=1....p; i=1,...,n

(ii1) cov(ék,.,ékl.)=0=cov(8k,.,8k/.), for
i#=j;, i,j=1...,n

cov(ékl.,éhl.) =0= cov(g,a.,ehl.) , for

h#k, hk=1...p,i=1,...,n

for

all

all

and cov(éki,ghj):o for all 4,j=1,...,n and

hk=1...p
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That isd, ~IND(0,Q,) and & ~IND(0,Q,)
20 0 0
0 72 0
where Q)| = =71,
@ 0 0 0
0 0 0 ¢
s> 0 0 0
0 > 0 0 , P
= =0l and let v.=| ' |,
%=y o o ’ (6,)
0 0 0 o

Q, Q,
Q, Q,

variance-covariance matrices, Q,=Q, =0, Q,

then cov(vl.,v,. ) =Q= [ J are diagonal

and Q,, are positive definite.

2.1 Maximum Likelihood Estimators
We start with the joint probability density function

of J, and ¢,

f(x.3)= m g
exp[-g{[(y,.-x)’ (xf—Xf)'}“‘l(f—_;JH

G)
E(x,)=E(X,+d)=X, and

E ( Vi ) =k (K +¢& ) =Y,. The likelihood function for
Equation (3) is

1 | r ~-l1

i=1

where r=2p,

(e px ) Q5 (, -“‘ﬁxf)m

where K =(2n)% and the log-likelihood function
is

L= —an—£1n|Q|
2

1&& '
_E [(xi_Xi) ngl (xi_Xi)

i=1

+(yi_a_ﬁXi)’ Ql_ll(yi_a_ﬂXf)] (4)

To overcome the unbounded problem of
Equation (4), an additional constraint following
(Kendall & Stuart, 1979) will be added as follow

iv) Q,=1Q,, Q] =%Q§; st = 0’
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where the ratio of error variances A is a known
constant. In this case, Equation (4) becomes

r =—an—%ln/1” —nln|Q,,|

1< (xi _Xi)'Q;;(xi _Xi)

1 [J
23 +;(yl. —a—ﬁXi) Q;;(y,- —a—ﬂXi)

( | ZJ
Szll SQ'ZZ

There are (np +p+ 2) parameters to be estimated,
which are X, X,,....X,, «, #,and ¢°.

From the vector derivative formula for quadratic
matrix equation evaluating to a scalar, we have

oL S -1 Y
5(ﬂXf— ») :_% =1 {(922)+(922) }X
[(ﬁX,. —yl.)+aJ
1

=372 20, (pX, - y,)+a]

where
Q= i

=|le)22| = |/1§222922| =17 |§222

1 n
= _ZZQ; [ﬁX, - +a]
i=1

and the tangent vector to curve (X, —y,):R > R"

o(pX. -y,
is —(ﬁ ’ y’):X..
op '
By using the Chain rule, we have
oL oL A(BX,-y)

Foopx-y) P
1 n ’ B
= _EZ(ﬁX' -V +a) Qzéxi
i=1

1 n ’ B
:ZZ(J’I' —a _ﬁXi) Qzéxi
=

Therefore, differentiate Equation (5) with respect to

*

[ and set the result equal to zero (66_; = Oj , yields

n

Za—lz(yi —a—pBX,)1(X,)=0

i=l1

Q=01
(v 0 =071)

Zn:y;Xi _a'zn:Xi _ﬁiXi’Xi =0
i=1 i=1 i=1
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(6)

Similarly, differential Equation (5) with respect a,
X, and o give the following results

aL* 1 _292(x1 _Xi)
—=-=1 2 _ =0
X, 2 +Egzé(yi —a—ﬂXl.)(—ﬁ)

1

Iﬁ(yi_a_ﬁXi)zo

—(2+87) X, +(x, + By, - pa) =0

(x,.—Xl.)Jr

. Jx+f(y—a
Lx o Pa) ™
i+ B’

oL 1S -2,
—=—=) —Q (y,—a-X,)=0
oa 24 22(3’1 B l)
Z(yi_a_ﬂXi):O
i=1
~Q,, is positive definite and diagonal and
Q, =01

iyi —na—ﬁin. =0
i=1 i=1

LY A1 5
sa :_ny —ﬂ—ZX,.
noio n =g
Substitute Equation (5.7) yields

®)

where 5=[7, 7,7, ] and ¥=[% %,--%, ] .

oL 2n | '
a—a=—7+o3{;(xi—Xi)(xl.—Xi)
1 '
+EZ(yi_a_ﬁXi) (yi_a_ﬁXi)}=0
i=1
2n 1|

XY (5-X,)

ISSN: 1109-2769

Chang Yun Fah, Omar Mohd Rijal, Syed Abdul Rahman Abu Bakar

1 n
B a= ) (5 -a- )|
i=1
N 1 A\ A
2 =E{;(xi_Xl) (xl —X,-)
+Z;(yi_a_ﬁXf) (yi_a_ﬁXi)} (9)
Since 6 is a inconsistent estimator of o’

(Kendall & Stuart, 1979), we multiply Equation (9)

by 2—’12 yields the consistent estimator

+%§(y,. - px) (» —&—ﬁff,.)} (10)

Substitute Equations (7) and (8) into Equation (6)
yields

1

. A2
o =
n-2

c rj'xi+3(yi_&) _un }'xi+£(yi_a’\)
ﬁ;y'[ i J Z[ L
i jxi+ﬁ(yi_&)l j~"7f+:‘g(.}’i_&)
i=1 },-l-’gz l+£2

. (/1 e ){/ISxy +BS,, + infEE + n[}%—c%}
Y xix, + 2B, + B°S,, + 200> X% + np' X%

i=1

n n
' < 4 TIET)
where S, :Zx,.x,. -nxx, S, ZZ.V,-.V,- —nyy
i=1 i=1
n
p— ! ey
and §,, = Zx,.y,. -nxy.
i=1

This implies that

B, +B(1S, =S, )-8, =0 (11)
Solving the quadratic Equation (11) yields
5 (75, -5,) i\/(inx -8, ) +4:82,
- 25,
5 (48, —Syy)+\/(/1Sxx -8, ) +482, a2
- 28,

The positive sign is used in Equation (12) because it
gives a maximum to the likelihood function in
Equation (5) as shown below. From the previous
result, we
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have
aL l ( i_a_ﬁXi)'Q;;Xi
aﬁ l =

= E(Z yi,Q;;Xi - a’ZQ;;Xi - ﬁZXi,Q;;Xi )
and the second order derivative yields

a L :—ZX QX = _12
Ao

( Q,= O'ZI)
Since Y XX, >0 (practically X #0) and 1>0,

2 ¥

—<0. The ,@s are local

this implies that

maximum points. Now, we let
2 2
he (S, — 28, )= \/(syy — I8, ) +41S,
28

xy

A
28

Xy

Furthermore, it could be shown that A=24S_>0

must be non-negative and therefore the positive
square root must always be taken.

Result 1: Given the Multidimensional ULFR
model with single slope defined by Equations (1)
and (2). The maximum likelihood estimators of a,

B, X, and o, are

G=y-px
P ~(48, -5,,) \/(ASM—S ) +4is;
- 28,
Xizﬂxi+ ({),.—&)
I+ B
A 1 - 5\ 2
and 2=n_2{i=l(x,—X,~) (xi—Xl)
1 & N oAay! oA
+Z§(yi _a_ﬁXi) (yi —a—ﬁX,.)}
where 1 1s the ratio of error variances, and
Zxx nx'x, =zn:yi'y,.—n§'f and
i=1
:in'yi_n}'f-

i=l1

2.2 Unbiased Estimators
The following two sections discuss the properties of

a and £, i.e. their unbiasedness and consistency.
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Result 2: Given the MULFR model stated in
Equations (1) and (2), then the maximum likelihood
estimators of @ and f are approximate unbiased

estimators, i.e.

E(ﬁ)iﬁ and E(a)=a

Proof. Note that Equation (12) can be written as

. S =S
B=0+607+2 where 0(x,,y,)= yy2S =

xy

Thus, the expected value of [} is
E(B)=E(0-4N0* +2)=E(0)+ E(No*+ 2] (13)

Since Equation (13) cannot be solved explicitly, we
solve it by wusing the first order Taylor
approximations (or Delta method) (Bain &

Engelhardt, 1992) for the mean of 6(x,,y,). The

first expected value in Equation (13) can be
obtained by the following

G(xi,yl.)zﬁ(Xl.Jrél.,Yi+si) (from Equation (2))
iH(X,.,Y)wL(S'ﬁ + i'%

ox, X, oy, ey
=0(X,,Y,)+4,0, \ +2/0,| _ (14)

where the partial derlvatlves are evaluated at the
mean (X,,Y,). Since

XA

P
Z Xife
k=1

£(a'o,],

1

(6,)=0

Xig = XA

(wE(s)=0=E(5,

ik

)=0)

) =0. Therefore,
yi=Y

Similarly, we have FE (8,.' 0,

Equation (14) becomes

E[0(x.0,)]= E[0(x,.%)]+E(9' 0

i x::X:)
+E(si' Qy_‘ Y)
Hyi=k

Syy — AS
2SXY
(15)
where Sy, =Y ¥Y¥, —n¥Y, S, => XX, -nXX

and Sy, => XY, -nX'Y .

=0(X,.Y,)=

i
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Now let o(x,y,)=40"(x.y)+4.

) / 6 . We have
ax.

i i

This

implies that %ﬂ = (9

q)(xi’yi): (/)(X,. +9,.Y, +8i)

» Op.
ox.

1

+g.'%

=0(X,,Y)+0,
(X..X) "oy,

x;=X; yi=Y;

-1
“o(x,%)+(0°+2) 0010,
-1
+(67+4) %
Hence, the second expected value in Equation (5.13)

E[go(xl.,y,.)] = E[go(Xl.,Y. }-1-0(02 +ﬁ,)% x

ilx;=X;

1y =Y;

E((s,.'ex,x=x)+9(92+z ( .
:g,,(xl.,yl.)w(ez+A)%(o)+9(92+z)4(o)
=0 (X,.Y,)+ 2

2
:\/(—SYY‘ZSXXJ 2 (16)
25,

From the Equations (15) and (16), hence Equation

(13) becomes
2
[ S =2 |
28y

S,y — Sy
25,

(Syy = A8y ) +[(Syy —ASyy )’ +4487,
- 28,y

el

7
=pS,, and

S,y =B°Syy =BSyy as also stated in (Lindley,
1947).

SX,,=ZXI.'Y,.—n)?'I7
:ZX,.'(a+ﬁX,.)—nX"(a+ﬁ)?)
=Z(Xl.’a+ﬁXi'Xl.)—n)?’a—nﬁ)?K’
=a’ZXI_+ﬁZX,.'XI.—na’X’—nﬁX’K’

=a’(ZXl_ —n)?)+ﬁ(ZXi'X,. —n)???)

The next step is to show that §,,

—n(a+ﬁ)?),(a+ﬁ)_()
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_ Z(a'a +2pa’X, + /;ZX,.’X,.)
—n(ada+2pa’X +p*XX)

=nd'a+2pa"Yy X, + > X'X,
—n(da+2pa’X + XX

=p> X'X, -np’XX

- ﬁz(ZX,.'X,. _n;‘w‘()

=p ZSXX = ﬁSxy
Therefore, Equation (17) can be reduced to

£(5):
(B Sy —;LSXX)+\/(/325XX

ASy ) +4A8°S%

2pSxx
) (B =25 +\/(ﬁ25XX + 28 )
) 268
(Foa ) _ap
= 23 = 28 =
From the Equation (7), we have
i=y - %

= E(&)=E(y - fX)=y-%E(p)=y- fx=a
2.3 Consistency Property

2.3.1 Variance of the expected parameters
Result 3: Given that & and $ are MLE of a
and f, respectively for the MULFR model, then

Var(f)= 16" {ZX X, ——(ZX )(Z)%,.)T
]

iR E R (TR
-1 -1
-z (o]
Proof. To find the variance of the & and ,é , We

consider the Fisher Information Matrix (FIM) of
parameters a and f. The first order partial

Var(&

derivatives for log-likelihood function are given by

—Z

—a-pX,) Q)
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And ai:l

o A
The second order partial derivatives for log-
likelihood function and their negative expected

values are given by
2 r* 2 r*
oL :—EQ; , hence E(— oL jzﬁﬂzé
A

(yi —a _ﬁXi), Q;;X:

dada’ dada' ) A
2 *
oL __ 1 (X,.'Q;), hence
oa'op A
oL 1
E| - =) (X,
( 6a’6ﬁj /IZ< @)
2 *
6—L2=—l (Xl.'Q;X,.), hence
op A
oL 1 o
E[_ 8ﬂ2 JZZZ(X: QZ;Xi)
oL 1
and =——Y)(Q,!X ), hence
dBoa /12( 2 X))

oL ) 1
E|- =—> (X,
( aﬁan /12( 2X)
Next, we find the estimated FIM for a and ,8 given

1

%Z(Xvil ; ;21) ZZ(X:'QZX,)

where Aisa px p matrix given by

) %fl’é %Z(sz) 4 B
< o)

Q.. B

S

. . 1 A .
is a px1 matrix given by ZZ(Q;X,.), Cis a

. . 1 A . .
Ix p matrix given by ZZ(X}.’Q;) in which
C'=B, and D is a Ixl matrix given by
1 S5 A ] O
ZZ(Xl.szlX,.).
Thus, the inverse of F is

(4- BD*IC)‘1 ~A"'B(D- CA*B)‘1

F'=
-p'c(4-BD7c)’  (D-C4B)
Therefore, we obtained the following results:
var(B)=(D- c4™'B)’
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2.3.2 Consistent estimators
Definition 1: An estimator én of 0 based on a
random sample of size n is a consistent estimator of

0 if limP(‘én —9‘ >a))=0f0revery w>0.
n—0
It has been shown in Result 2 that estimators a
and ,3 are approximately unbiased. From
Chebyshev’s inequality, we see that

P(ﬁ—ﬁ‘za))gm;—(f) 21)

Without loss of generality, we remove the equality
inside the probability in Equation (21) and
combined with Definition 1, yields

limP(‘ﬁ—ﬁ‘ >w)slanar(;ﬁ)=o

n—® a)z n—»0

& lim Var(ﬁ) =0

n—>x0

for every > 0.

In order to show that the estimator ﬁ is consistent,
we need to indicate Var( ﬁ)—)O as n— . This

can be easily obtained from the results in Section
4.1 as follows

Issue 5, Volume 9, May 2010



WSEAS TRANSACTIONS on MATHEMATICS

i ()= Aim| T
ZX:', i_; ZX:")(ZXI)
=i+=0
ZXi,Xi

=
A
S
%
S
NS
8

Similarly, we can show Var(

2.3.3 Confidence Interval for ¢ and /S

For a p-dimensional ULFR model defined in
Equations (1) and (2), we have 2mp-independent
observations that are available to estimate

(np +p+ 2) -parameters of the population, i.e. p

parameters from a and one from /. Hence, the

number of degrees of freedom is np—(p+2).
Now, we can define the (1—a)100% confidence

intervals for @ and S as

se(a,) (22

a, —t se(oAc,()SoszOAck+tﬂ

a
np—p-2
S PP

—,np—p-2
S PP

and

A

- B\< B<p B
B t;np_p_zse( Bl<B<p +t;’np_p_zse( B) @3
where a is the level of significance, the standard

errors  se(a, )=+/Var(a,) and Se(ﬁ’):JV&r(,é)

can be obtained from Result 5.

3 Coefficient of Determination for

MULFR Model

Re-write the Equations (1) and (2) as

y,=a+pX +¢&=a+px, +(8,. —ﬁéi)=a+ﬂx,. +V,
(24)

where the errors of the model

V.=¢g -0, =y,—a-px,,i=12,..,n (25)

is a normally distributed p-dimensional random

variable with

E(V,)=E(e,—po,)=E(e)—-BE(s,)=0
(- E(2)=E(8)=0)

and Var(V,)=Var (s, - o))

= Var(ai)+ﬁzVar(éi)—2Cov(s,.,ﬁ6,.)
=0, +/°Q,, (- Cov(e,,0,)=Q,, =0)

If a and ,é are estimators of a and S,
respectively, then from Equation (25) we have
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~

Vi=y,—9i=y,—a-px,,i=12...n
1s the residual of the model. Since
Var(l}i) = Var(si —,@51.)
=Var(g,)+ ﬁzVar(Jl.)— 2C0v(si,,35i)
=Ql1 +32922
= /K)zz +ﬁ2922
=(2+5)Q,,
wVar(e)=Q,, Var(8)=Q,, Cov(s,B8,)=0

Qll = /1922

The residual sum of squares is divided by (/I + ﬁz)

yields
1 ~ 1 a2
SSE = /1+ﬁ2 Zsz = /1+ﬁ2 Z(yx _a_ﬁxi)
2 vy —28yy,
- /1:’22 —2,§Zx,ly,. +24a' x,
+nd'a+ B x/x,
1

- Sy 2 (5 ) 7
~2BY 'y, + 2mp (5 - ) %
n{y ) (7 ) v |

1 I:Zyi,yi_n?'f:l_

A+ B 2ﬁ[2xl.'yl. - m—c'f} +p [Zx[xl. - m_c'?c]

S, =2pS, + S,
- A+ B
We only consider the case A=1 that is when
Q,=Q,, . For those cases when A#1, we can
always reduce it to the case of 1 =1 by dividing the
observed values of y, by \/Z as the ULFR
(Kendall & Stuart, 1979). Hence,
N N2
55, = A —2ﬁSWA+ p°S.. 26)
1+
Then the coefficient of determination can be defined
as

S, —SS
— ‘;SR :l_ivSE — WS £ (27)

Yy Yy yy
For the case 4 =1, Equation (27) becomes

2
Rp
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S
R’ P (28)

S

yy
Result 4: Let the ratio of the error variances
be known and equals one (A=1), then the
coefficient of determination of the MULFR model is
R2 — SS R — ﬁ Sx.V

78 S

y y

Proof: we need to show

%:% & 88, =5S,, .
Jy yy
By definition,
SS, =S, —SS,
g _[SW ~2fS, + S, J
¥ 1+ 2

(Syy + ;GZSW)—(SW ~2fS,, + stxx)
- 1+ B
- B’S,.

_ B’S,, +25S,,
1+/§2
-8, )+258,
1+,§2

From Equation (11) and 4=1, we have
SoB*=(S, S )B+S, (30)
Substitute Equation (30) into Equation (29) yields

’gz (S.V.V

(29)

/?{[(Syy -S,.)A +Sxy]+Sw}
SS, = ,
1+ p?
s, es,) ps,(F)
1+ B 1+ B2 ¥
3.1 Properties of Coefficient of
Determination when A =1
3.1.1 Confident Interval
BS ~BS
Note that E(R?)=E P | Sy 2 E(B)= P
S.V.V S.V.V S.V.V
and
S| S2 5
Var(R2 ) =Var Py z%V&r(ﬁ)
’ S.V.V S.V.V
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Equation (23) and let
se(ﬁ) and U, ﬁ+tﬁw . 1se(ﬁ).
There are four possible cases:

Case I: when U, > L, >0

Then the (1—a)100% confidence interval for the
population R is

X s NS
ey Zo yar(p) < po
Syy E’nPﬂH SW ( ) Syy
S, S e (G
< ) 4
_ﬁS Enp p-1 S2 ar(ﬁ)
. 2SS,
[ﬁ_tan i (ﬁ)}gy SﬁS_y
2" w »w
n A S
<| B+t, Se(ﬁ) ~
Sop=p-l S,
LySy < S—”s UsSe (31)
Syy Syy Syy
Case II: When U, >0>L, and [U,|>|L,|, then
Equation (31) holds.
Case IIIl: When U, >0>L, and |U,|<|L,|, then
L
USy _ Sy LSy 52
S S S

»y Jy y

Case IV: When OZUﬂZL

;> then Equation (32)
holds.

Result 5: Let the of the
covariances be known and equals one (4 =1), then

ratio error

the (1-a)100% confidence interval for the
population R is
L
Sxy <p= "y <
Syy S
U S

Xy

S

y

L i |U,| 2|,
L,S
= if |U,] <|L,]-

y

<ﬁS*T<
S

3.1.2 Range: 0<R> <1

From the regression sum of squares, we have
0<S8S,=§,-S5,<S,
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3.1.3 Non-symmetry Property
Given the MULFR model defined by Equations (1)
and (2) with A =1, we have

; (S, ~Su )+ \/(Syy ~S,.) +4s2,

25,
and
e B8y (S5-8 )+(5,, =5..) +45:
! » 2S.V.V
- \/(Syy -5, ) +452 =25, R (5, ~5..) (33)

Now we consider a MULFR model by replacing
Equation (1) with

X =a +pY, i=1,2,....n (34)

It can be shown that the estimated slope ( ﬁ*) and

coefficient of determination, say ﬁ; for the new

model when A=1 are

i (S.. —SW)+\/(SXX -S, ) +48?

28,,
and
A —Syy)+\/(Sxx -5,) +482
PSS 28
(s, —Sxx)+\/(s ~S,.) +4s;

from Equation (33)

1
—EP(SW Sec) =
:&Rz _(Syy _Sxx)

S 7 S,

Let S, =kS,, and k>0, then

=kR} —k+1=k(R} -1)+1

2SR]

wor

(35)
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Result 6: Given S, =kS,, where k>0. Let

Rf, and ﬁ; be the coefficient of determination for

MULFR model with A=1 as defined by Equation
(1) and Equation (34), respectively. Then

R} =k(R; —1)+1.
R,

symmetric otherwise.

Hence, is symmetric when k=1 and non-

3.1.4 Range of R; (an improvement of Section

3.1.2)
Let S, =kS,, S,20 and S >0, we

consider £ > 0. From Equation (28), we have

Bs, (S, -82) (8, -5.) +4s®

. Since

>
Ry = » 28,

(kS —Sxx)+\/(kax ~5,) +48°

2kS
(k=1)S +\(k=1)’S? +45
2kS
52 +48?
\/ 4k*S?
kzkl 4k252 (1455 >0)
k-1 k-1 1

-! 2% .4 2% ):17
Since OSRIZJ <1, then OSI—%SR; <1. We

consider the following two cases:

Case I: when 0< k<1

As k—0", then Rizl—%e—oo. However we

have R’ >0, this implies that 0< R> <1.

As k—17, then R’ 21—%—)0. Hence, we have
2

0<R <I.

As k=1, then R;zl—l:O. Hence, we have

0<R><I.

p
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Case II: when £ >1

As k — o, then R;zl—l—ﬂ. Hence, we have

0<1—%SR§31.

Result 7: Let S, =kS,, for k>0 and R, be

the coefficient of determination for MULFR model
when A=1. Then

[1—%} <R <1
. c, ¢>0 1
where ¢ = and c=1-——.
, ¢<0 k

3.1.5 The Coefficient of Determination for
ULFR Model, R; is a Special Case of R’
When p=1.

From Chang et al. (2007), the coefficient of
determination for ULFR model when 1=1 is

(5, =25, ) +{(5,, - 25..) +415, }%
25

yy

where S, = Z yi-ny*, S,

Sxy = inyi —l’lﬁ .
From Result 3 of MULFR model, we have

2 _
R =
x> —nx

1

2

and

2

_ 4 =
S, —Zx,.xl -nxx
i=l1
4
= I:xli Xi xpi:“:xlt Xai xpi:l
_ _ _ _ _ !
—n[x1 X, xp][x1 X, xp]
= (x2+x2+ +x2)—n(372+)?2+ --+7cz)
1i 2i pi 1 2 P
_ 2 =2 2 =2 B 2 =2
(5 ) (B s (T )

=S +82 +--+8”
When p=1,then S_ =S, =S

xx *

S

we have =

Similarly,

Sy = S_iy =S, -

(s, —Sxx)+\/(sw -5, ) +4s2
28

yy

(s, - Sm)+\/(SW -8, ) +4s?
28

Jy

Therefore, R =

— =R?

2
= Rp:1 -
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Result 8:

When p =1, then
R =R;

4 Simulation study

In this section, we demonstrate some simulation
results. Parameter values are chosen to reflect those
that may occur in practice. Without loss of
generality, it is fixed that A=1, & =[0,0] and f=1
for 2-dimensional model. This resulted in ¥ =X,
which is true in many image processing applications
that the two images being compared are identical if
noise is not present. Some variations from these
parameters setting will also be considered, i.e.

4=0.5,1.5,5,10 and

a=[-0.5,-1],[-11],[0.5,1] and

of A and s(4) verified that the two random errors

0 and ¢ are properly generated where the ratio of
the error variances close to one with smaller
standard deviations when sample size increased.

The fourth and fifth columns indicate that the ,é is a
good estimator of S even when the sample size is

10. The expected standard deviation of ,é denoted

by s( ,é) = ,/V&r(/}) is also shown to be consistent

when its variance is asymptotically approaching
zero. The average a in columns seventh and eighth
also approaches the true value for large sample size.

The R; is expectably close to its desired value one.

Tables 2, 3 and 4 (see Appendix) display the
mean and standard deviation of estimates of the true
parameter values which varied from the ideal case.
It appears that the estimated parameters are very
close to all true value of parameters with reasonably
small standard deviations. This suggests that the

305 Issue 5, Volume 9, May 2010

Given that A=1.Let R; and R’ be

the coefficient of determination for ULFR model
and p-dimensional MULFR model, respectively.

[10,10];
B=0.5,1.5 and 10. Random errors ¢ and ¢ are

generated as independent normal distribution using
the quadratic transformation method (Pooi, 2003
and Ng, 2006). These random errors are added into
the fixed X and Y to obtain the observed values x
and y, respectively. Samples size of n =10, 50, 100,
250, 1000 and 4000 are drawn repeatedly. In each
case, the number of simulated realizations is 10000.

Table 1 (see Appendix) provides the mean and
standard deviation of estimates of the ideal true

parameter valuesA=1, =1, a= [0,0] . The columns
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estimators can still perform for different true
parameter values when the ratio of error variances is
one.

Many researchers assumed the ratio of error
variances is know and equals one. For the case
A#1, Kendall and Stuart (1979) suggested to
reduce it to the case A=1 by dividing the observed

values of y, by \/Z . In this study, the effect of

A#1 is investigated using simulation approach.
Table 5 show the simulation results obtained from
true parameters value f=1,a= [0,0] and varying

A values. Top row indicates the true A used in the
simulation and the second column gives the average
A calculated from the simulation works. Note that
the larger the sample size, the smaller the
differences between calculated 4 value and the true
A value. Table 5 (see Appendix) shows that there is

a drop in performance of the estimators /;’ and a,
and R; to achieve the desired true value when the
ratio of the error variance A increased. However,
the performance of ﬁ and Rf, are still considered

good for large deviation of 1 not more than 20.

5 Numerical Example: JPEG

Compressed Image Quality

In this section, the coefficient of determination,
R}_, for two-dimensional MULFR model is used to

measure the similarity between a reference
(original) image and its JPEG compressed image,
which in turn reflects the quality of the compressed
image. Six standard test images are considered and
examples of their compressed images are shown in
Figure 1. These standard test images are compressed
using JPEG algorithm with compression factor
range from 1 to 100.

Two 1image quality factors, namely image
luminance (mean value) and image contrast
(variance value) are calculated for both reference
image and compressed image. These image quality
factors were also used in a well-known image
quality metric called mean structural similarity
(MSSIM) (Wang et al., 2002) because they carry
important physical meaning of an image. The

confidence interval for R;=2 is also displayed where

upper limit (red color) and lower limit (blue color)
are set to 1 and 0, respectively when R;zz value is

not computable.
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Fig. 1:
256%256),
512x512)), Bridge (size 145x145), Boat (size 512x512) and
Peppers (size 512x512). Left to Right: original, decompressed
images with compression factor 90, 70, 50, 30 and 10.

Standard test images. Top to Bottom: Lena (size
Baboon (size 256x256), Airplane (size

Figure 2 shows the plots of quality index
(Rp2 :R;ZZ) versus the JPEG compression factor,
say Q., range from 1 to 100 obtained for various
test images. In general, R;zz works very well for

large compression factors (usually greater than 30)
with small confidence intervals. As the JPEG
compression factor increases, the quality measure

R;ZZ shows an increasing index in decompressed

image quality. For example, the decompressed Lena
image (see Figure 1) at compression factor O, =30

has a quality value of R;zz =0.3856 (confidence
interval, [ :[0.3654,0.4057]). At compression

factor O, =50, the Lena decompressed image

quality increases to Rf,zz =0.6106;
(I = [0.5884,0.6327]). The decompressed quality
values increases to R, =0.7962

(1=[0.7781,0.8144]) and

Issue 5, Volume 9, May 2010
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R, =0.9655 (1=[0.9574,0.9736])

compression factors are O, =70 and @, =90,

respectively (see Fig. 2 for Lena image). It is noted
that there are some small fluctuations along the
increasing monotonic trend in Figure 2. This
phenomenon is mainly caused by the error
generated from the decompression process and it is
acceptable in any good quality measure (Avcibas,
2002).

It is observed that the measure R;zz seems to be

when  the

not stable for compression factors less than 30. With
small compression factors, R>_, performs well in

some images (e.g. image Airplane, Boat and
Peppers) but it performs poorly or cannot produce
value for certain images (e.g. Lena, Baboon and

Bridge). For those compression factors where R;zz

cannot produce value, the upper and lower
confidence limits are set to one and zero,
respectively. Referring back to Figure 1 reveals that
most images are badly-compressed at compression
factor Q =30 or lower. Some decompressed images
at these levels are totally not identifiable from their

origin, thus it is not significance to make inferences
of the image quality.

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

W % w 70 8 0 W0 2 % 40 % @ 70 8 w1
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Fig. 2: (Qi,R;:z) plots and 95% confidence intervals (red line:

upper confidence limit. blue line: lower confidence limit) for
various standard test images. R;ZZ
luminance and contrast factors. (From left to right) Top: Lena,
Baboon. Middle: Airplane, Bridge. Bottom: Boat, Peppers.

was computed using
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5.1 Mean Opinion Score at Low
Compression Factors

Another subjective test is carried out to simulate the

human observers’ performance when compression

factors are low. This mean opinion score (MOS) is
to address the problem of unstable R;=2 values for

low compression factors. The six standard test
images were compressed at compression factors 10,
20, 30 and 40. At each compression factor level, 20
human observers are requested to match the
compressed images to its reference images
provided.

Table 6. Accuracy rate (%) for matching the compressed image
to its reference image.

Reference Image | Q=10 | Q=20 | Q=30 | Q=40
Lena 25 20 95 100
Baboon 30 15 95 100
Airplane 70 85 100 100
Bridge 80 100 100 100
Boat 70 100 90 100
Peppers 65 90 95 100

Table 6 shows the results of this experiment
where the figures indicate the percentage of the 20
human observers matched the compressed image to
its reference image correctly. For example, only
25% of the human observers matched the Lena
image correctly at compression factor Q=10.

While at compression factor 20, 20% of the human
observers are able to match the Lena compressed
image to its reference image. This is followed by
95% and 100% accuracy for compression factor 30
and 40, respectively. In general, the accuracy rate of
matching the compressed image to its reference
image increased when the compression factor
increased. Human observers are still able to
recognize the compressed image perfectly at
compression factor, 0>40. For the compression

factor below 30, more human observers matched the
compressed image to wrong reference image. This
finding explains the reason why the quality values
obtained from any quality metric may not be reliable
for compression factor below 30.

3 Conclusion

This study proposed a solution to the practical
image processing problem of how to investigate the
relationship between two images or two sets of
features extracted from these images. One example
is to evaluate the quality of a compressed image by

Issue 5, Volume 9, May 2010
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comparing its reference image, where both images
contain noise. Since there are many image features
such as image luminance, contrast and entropy can
be extracted from an image, hence the
multidimensional ¥ and X are used to represent the
reference  image and compressed image,
respectively. Nevertheless, these image features
should not be assessed separately, but a single value
indicating the overall image quality is required
(Keelan, 2002). This constraint leads us to consider
a single slope in the proposed multidimensional
unreplicated linear functional relationship model,
which is an analogous to the unreplicated linear
functional relationship model.

Estimation of parameters has been obtained by
maximum likelihood estimation assuming there is a
known ratio of error variances. Since the closed-
form expression for each estimate is available,
estimates can be obtained analytically. Due to the
complexity of the model, we have only showed the

estimates @ and f are approximate unbiased using

Taylor approximations. This result can be easily
extended to other estimates. Further to this, the

asymptotic properties of a and ,@ can be obtained

from Fisher’s information matrix. Simulation study
has been carried out to verify the results where the
performance of the estimators remains good for the

A not more than 20. Lastly, the Rf, for two-

dimensional MULFR model was applied to evaluate
the quality of JPEG compressed image. The

numerical examples indicate that Rf, is a good

measure for comparing two images satisfied the
three criteria stated by Avcibas et al. (2002), which
are prediction monotonic, predication consistency
and prediction accuracy. Furthermore, Rﬁ is a

sensitive measure at low JPEG compression factors,
which is closer to human’s judgment.
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Table 1. Mean and standard deviation S() of estimates of the desired true values A=1,=1,a= [0, 0]

Chang Yun Fah, Omar Mohd Rijal, Syed Abdul Rahman Abu Bakar

Appendix

n 7 s(4) B S(ﬂ) V&r(ﬂ) o a R S(Ré)
10 | 1.0629 | 0.3869 | 0.9946 | 4.04E-03 | 6.50E-06 | 0.5205 | 0.6183 | 0.9997 1.58E-04
50 | 1.0102 | 0.1480 | 0.9987 | 1.01E-03 | 8.43E-07 | 0.1642 | 0.1665 | 0.9998 3.08E-05
100 | 1.0063 | 0.1029 | 0.9990 | 7.95E-04 | 4.65E-07 | 0.1302 | 0.1318 | 0.9998 | 2.58E-05
250 | 1.0023 | 0.0641 | 0.9993 | 5.47E-04 | 1.97E-07 | 0.0833 | 0.0901 | 0.9998 1.67E-05
1000 | 1.0005 | 0.0318 | 0.9997 | 2.60E-04 | 4.63E-08 | 0.0427 | 0.0447 | 0.9998 | 8.37E-06
4000 | 1.0001 | 0.0158 | 1.0000 | 2.16E-04 | 1.15E-08 | 0.0002 | 0.0002 | 0.9998 | 4.13E-06

Table 2. Mean and standard deviation S() of estimates of true values 1 =1, §=0.5 and varying a

A=1,$=05a=[0,0]

n 2 s(4) B S(ﬂ) V&r(ﬁ) d 6 1_313 S(RIZ’)
10 | 1.0613 | 0.3871 | 0.4997 | 3.87E-03 | 4.23E-06 | 0.0535 | 0.0605 | 0.9992 | 3.75E-04
50 | 1.0111 | 0.1462 | 0.4998 | 1.50E-03 | 9.12E-07 | 0.0310 | 0.0304 | 0.9993 | 1.51E-04

100 | 1.0047 | 0.1016 | 0.5000 | 1.10E-03 | 4.45E-07 | 0.0001 | 0.0008 | 0.9993 | 1.04E-04

250 | 1.0022 | 0.0638 | 0.4999 | 6.50E-04 | 1.79E-07 | 0.0200 | 0.0237 | 0.9993 | 6.28E-05

1000 | 0.9999 | 0.0315 | 0.4999 | 3.36E-04 | 4.60E-08 | 0.0096 | 0.0091 | 0.9993 | 3.14E-05
4000 | 1.0004 | 0.0157 | 0.4999 | 1.68E-04 | 1.13E-08 | 0.0117 | 0.0124 | 0.9993 | 1.61E-05
A=1,p=05a=[-05-1]

n 2 s(4) B S(ﬂ) V&r(ﬁ) d 6 1_313 S(RIZ’)
10 | 1.0625 | 0.3907 | 0.5000 | 4.01E-03 | 4.09E-06 | -0.5018 | -1.0015 | 0.9992 | 3.85E-04
50 | 1.0123 | 0.1470 | 0.4998 | 1.46E-03 | 9.78E-07 | -0.4628 | -0.9745 | 0.9992 | 1.54E-04

100 | 1.0039 | 0.1020 | 0.5000 | 9.94E-04 | 4.84E-07 | -0.4979 | -0.9965 | 0.9993 | 9.84E-05

250 | 1.0011 | 0.0641 | 0.4996 | 6.70E-04 | 1.89E-07 | -0.4336 | -0.9241 | 0.9992 | 6.97E-05

1000 | 1.0008 | 0.0314 | 0.4997 | 3.46E-04 | 4.63E-08 | -0.4433 | -0.9397 | 0.9993 | 3.24E-05
4000 | 1.0002 | 0.0159 | 0.4997 | 1.68E-04 | 1.17E-08 | -0.4570 | -0.9506 | 0.9993 | 1.65E-05
A=1,p=05a=[-11]

n 2 s(4) B S(ﬂ) V&r(ﬁ) d 6 1_313 S(RIZ’)
10 | 1.0620 | 0.3946 | 0.5000 | 3.07E-03 | 6.68E-06 | -1.0015 | 0.9973 | 0.9992 | 3.98E-04
50 | 1.0125 | 0.1466 | 0.4996 | 1.65E-03 | 1.08E-06 | -0.9241 | 1.0449 | 0.9992 | 1.54E-04

100 | 1.0032 | 0.1017 | 0.4996 | 1.03E-03 | 4.65E-07 | -0.9060 | 1.0491 | 0.9993 | 1.01E-04

250 | 1.0012 | 0.0634 | 0.4997 | 6.78E-04 | 1.92E-07 | -0.9360 | 1.0351 | 0.9992 | 6.71E-05

1000 | 1.0009 | 0.0318 | 0.4998 | 3.35E-04 | 4.50E-08 | -0.9633 | 1.0211 | 0.9993 | 3.33E-05
4000 | 1.0004 | 0.0158 | 0.4998 | 1.66E-04 | 1.15E-08 | -0.9606 | 1.0218 | 0.9993 | 1.63E-05
A=1,$=05a=[051]

n 2 s(4) B S(ﬂ) V&r(ﬁ) d 6 1_313 S(RIZ’)
10 | 1.0671 | 0.3946 | 0.4974 | 3.28E-03 | 4.49E-06 | -0.4863 | 1.3417 | 0.9992 | 3.77E-04
50 | 1.0133 | 0.1496 | 0.4998 | 1.48E-03 | 9.08E-07 | -0.9587 | 1.0212 | 0.9993 | 1.33E-04

100 | 1.0059 | 0.1023 | 0.4999 | 9.81E-04 | 4.39E-07 | -0.9765 | 1.0067 | 0.9993 | 9.72E-05

250 | 1.0030 | 0.0639 | 0.4999 | 6.27E-04 | 1.84E-07 | -0.9800 | 1.0088 | 0.9993 | 6.30E-05

1000 | 1.0002 | 0.0313 | 0.4998 | 3.22E-04 | 4.71E-08 | -0.9470 | 1.0283 | 0.9993 | 3.10E-05
4000 | 1.0002 | 0.0158 | 0.5000 | 1.70E-04 | 1.15E-08 | 0.5005 | 0.9997 | 0.9993 | 1.62E-05
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A=1,$=05a=[10,10]

P S 2 2 (1 (0 O S S B B )
10 | 1.0584 | 0.3832 | 0.5000 | 3.36E-03 | 4.88E-06 | 9.9931 | 9.9928 | 0.9993 | 3.51E-04
50 | 1.0085 | 0.1457 | 0.5001 | 1.55E-03 | 9.59E-07 | 9.9830 | 9.9870 | 0.9993 | 1.47E-04

100 | 1.0054 | 0.1017 | 0.5000 | 1.22E-03 | 4.40E-07 | 10.0014 | 10.0014 | 0.9992 | 1.13E-04

250 | 1.0018 | 0.0634 | 0.5000 | 6.67E-04 | 1.86E-07 | 9.9899 | 9.9941 | 0.9993 | 6.62E-05

1000 | 1.0007 | 0.0317 | 0.5000 | 3.37E-04 | 4.58E-08 | 9.9924 | 9.9909 | 0.9993 | 3.34E-05
4000 | 1.0004 | 0.0157 | 0.5000 | 1.68E-04 | 1.15E-08 | 9.9932 | 9.9932 | 0.9993 | 1.63E-05

Table 3. Mean and standard deviation s () of estimates of true values 1 =1, f =1.5 and varying a

A=1,p=15a=[0,0]

P S 3 2 L 0 O W B B )
10 | 1.0615 | 0.3810 | 1.5000 | 5.39E-03 | 4.23E-06 | 0.0065 | 0.0066 | 0.9999 | 3.97E-05
50 | 1.0095 | 0.1497 | 1.5000 | 2.66E-03 | 8.90E-07 | -0.0118 | -0.0086 | 0.9999 | 1.68E-05

100 | 1.0058 | 0.1008 | 1.5000 | 1.86E-03 | 4.14E-07 | -0.0025 | -0.0022 | 0.9999 | 1.14E-05

250 | 1.0015 | 0.0637 | 1.5001 | 1.04E-03 | 1.76E-07 | -0.0158 | -0.0161 | 0.9999 | 7.58E-06

1000 | 1.0005 | 0.0319 | 1.5001 | 5.29E-04 | 4.61E-08 | -0.0114 | -0.0104 | 0.9999 | 3.66E-06
4000 | 1.0001 | 0.0158 | 1.5001 | 2.75E-04 | 1.15E-08 | -0.0096 | -0.0104 | 0.9999 | 1.83E-06
A=1,8=15a=[-0.5-1]

P I 20 N O O O S 2 )
10 | 1.0669 | 0.3926 | 1.4999 | 4.45E-03 | 5.27E-06 | -0.4804 | -0.9938 | 0.9999 | 3.49E-05
50 | 1.0121 | 0.1472 | 1.5000 | 2.55E-03 | 8.81E-07 | -0.4973 | -0.9973 | 0.9999 | 1.96E-05

100 | 1.0056 | 0.1010 | 1.4999 | 1.83E-03 | 4.37E-07 | -0.4803 | -0.9691 | 0.9999 | 1.13E-05

250 | 1.0021 | 0.0633 | 1.5000 | 1.07E-03 | 1.70E-07 | -0.4943 | -0.9909 | 0.9999 | 7.25E-06

1000 | 1.0005 | 0.0315 | 1.4999 | 5.36E-04 | 4.52E-08 | -0.4888 | -0.9833 | 0.9999 | 3.55E-06
4000 | 1.0004 | 0.0157 | 1.4999 | 2.72E-04 | 1.13E-08 | -0.4934 | -0.9888 | 0.9999 | 1.82E-06
i=1,8=15a=[-11]

P I 20 N O O O S I 2 )
10 | 1.0656 | 0.3897 | 1.5001 | 4.84E-03 | 3.77E-06 | -1.0059 | 0.9953 | 0.9999 | 2.63E-05
50 | 1.0129 | 0.1491 | 1.5000 | 2.44E-03 | 9.38E-07 | -0.9964 | 1.0035 | 0.9999 | 1.62E-05

100 | 1.0048 | 0.1005 | 1.5000 | 1.56E-03 | 4.32E-07 | -0.9988 | 0.9982 | 0.9999 | 1.03E-05

250 | 1.0018 | 0.0649 | 1.5000 | 1.15E-03 | 2.00E-07 | -1.0027 | 0.9971 | 0.9999 | 7.84E-06

1000 | 1.0007 | 0.0320 | 1.5000 | 5.45E-04 | 4.44E-08 | -0.9947 | 0.9993 | 0.9999 | 3.67E-06
4000 | 1.0004 | 0.0158 | 1.5000 | 2.69E-04 | 1.15E-08 | -0.9982 | 0.9923 | 0.9999 | 1.81E-06
A=1,p=15a=[051]

P S 20 N O O O S I 2 )
10 | 1.0645 | 0.3862 | 1.5000 | 3.96E-03 | 3.32E-06 | 0.5045 | 1.0054 | 0.9999 | 2.61E-05
50 | 1.0105 | 0.1482 | 1.5000 | 2.26E-03 | 8.48E-07 | 0.5015 | 1.0022 | 0.9999 | 1.39E-05

100 | 1.0057 | 0.1012 | 1.5002 | 1.72E-03 | 4.82E-07 | 0.4644 | 0.9630 | 0.9999 | 1.28E-05

250 | 1.0013 | 0.0632 | 1.5001 | 1.14E-03 | 1.85E-07 | 0.4824 | 0.9807 | 0.9999 | 7.33E-06

1000 | 1.0009 | 0.0318 | 1.5001 | 5.31E-04 | 4.49E-08 | 0.4818 | 0.9834 | 0.9999 | 3.68E-06
4000 | 1.0002 | 0.0158 | 1.5001 | 2.75E-04 | 1.15E-08 | 0.4891 | 0.9899 | 0.9999 | 1.83E-06
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A=1,8=15a=[10,10]

! LCAIN N O O I R NS O 0 O )
10 | 1.0663 | 0.3929 | 1.5012 | 7.09E-03 | 4.76E-06 | 9.8193 | 9.7600 | 0.9999 | 3.89E-05
50 | 1.0098 | 0.1476 | 1.5000 | 2.58E-03 | 9.33E-07 | 9.9927 | 9.9982 | 0.9999 | 1.62E-05

100 | 1.0034 | 0.1004 | 1.5001 | 1.78E-03 | 4.76E-07 | 9.9807 | 9.9702 | 0.9999 | 1.12E-05

250 | 1.0019 | 0.0635 | 1.5002 | 1.13E-03 | 2.01E-07 | 9.9705 | 9.9753 | 0.9999 | 7.77E-06

1000 | 1.0003 | 0.0315 | 1.5001 | 5.42E-04 | 4.54E-08 | 9.9799 | 9.9847 | 0.9999 | 3.53E-06
4000 | 1.0004 | 0.0157 | 1.5001 | 2.73E-04 | 1.15E-08 | 9.9803 | 9.9803 | 0.9999 | 1.81E-06

Table 4. Mean and standard deviation s() of estimates of true values

A=1, f=10and varying a

A=1,4=10,a=[0,0]

n A s(4) p S(ﬂ) V&r(ﬁ) & 6 1_313 S(RIZ’)
10 | 1.0606 | 0.3920 | 9.9999 | 1.80E-02 | 3.88E-06 | -0.0223 | -0.0234 | 1.0000 | 6.58E-07
50 | 1.0100 | 0.1471 | 10.0002 | 1.57E-02 | 8.23E-07 | -0.0174 | -0.0179 | 1.0000 | 4.10E-07

100 | 1.0055 | 0.1016 | 10.0003 | 9.90E-03 | 3.88E-07 | -0.0585 | -0.0390 | 1.0000 | 2.77E-07

250 | 1.0028 | 0.0636 | 10.0014 | 5.90E-03 | 1.76E-07 | -0.2228 | -0.2450 | 1.0000 | 1.61E-07

1000 | 1.0008 | 0.0317 | 10.0007 | 2.97E-03 | 4.65E-08 | -0.1483 | -0.1148 | 1.0000 | 8.08E-08
4000 | 1.0001 | 0.0158 | 10.0009 | 1.52E-03 | 1.14E-08 | -0.1516 | -0.1462 | 1.0000 | 4.10E-08
A=1,4=10,a=[-0.5,~1]

PR S GO 20 (O 0 O S 200 W
10 | 1.0662 | 0.3874 | 10.0003 | 3.56E-02 | 5.24E-06 | -0.5201 | -1.0094 | 1.0000 | 1.27E-06
50 | 1.0095 | 0.1465 | 10.0000 | 1.29E-02 | 8.58E-07 | -0.4869 | -0.9832 | 1.0000 | 3.48E-07

100 | 1.0054 | 0.1012 | 10.0007 | 8.91E-03 | 4.21E-07 | -0.6219 | -1.0894 | 1.0000 | 2.47E-07

250 | 1.0031 | 0.0640 | 10.0005 | 6.06E-03 | 1.88E-07 | -0.5776 | -1.0964 | 1.0000 | 1.65E-07

1000 | 1.0004 | 0.0317 | 10.0007 | 3.02E-03 | 4.52E-08 | -0.6266 | -1.1183 | 1.0000 | 8.14E-08
4000 | 1.0002 | 0.0158 | 10.0007 | 1.52E-03 | 1.13E-08 | -0.6154 | -1.1340 | 1.0000 | 4.06E-08
A=1,8=10,a=[-11]

PR S GO 0 (O 0 O S 200 W
10 | 1.0609 | 0.3874 | 10.0003 | 4.90E-02 | 3.51E-06 | -1.0572 | 0.9690 | 1.0000 | 1.20E-06
50 | 1.0106 | 0.1453 | 10.0005 | 1.52E-02 | 8.54E-07 | -1.0889 | 0.9438 | 1.0000 | 3.65E-07

100 | 1.0053 | 0.1012 | 10.0013 | 1.00E-02 | 4.57E-07 | -1.2634 | 0.8377 | 1.0000 | 2.65E-07

250 | 1.0019 | 0.0641 | 10.0017 | 6.23E-03 | 1.84E-07 | -1.3168 | 0.7473 | 1.0000 | 1.66E-07

1000 | 1.0007 | 0.0316 | 10.0009 | 3.09E-03 | 4.54E-08 | -1.1530 | 0.8598 | 1.0000 | 8.06E-08
4000 | 1.0002 | 0.0158 | 10.0010 | 1.51E-03 | 1.16E-08 | -1.1662 | 0.8301 | 1.0000 | 4.04E-08
A=1,p=10,a=[0.5,1]

PR IS GO 0 (O 0 O S 200 W
10 | 1.0562 | 0.3865 | 9.9999 | 3.72E-02 | 3.22E-06 | 0.5407 | 1.0394 | 1.0000 | 6.50E-07
50 | 1.0097 | 0.1469 | 10.0000 | 1.07E-02 | 8.22E-07 | 0.4918 | 0.9917 | 1.0000 | 3.51E-07

100 | 1.0045 | 0.1008 | 10.0000 | 9.55E-03 | 4.62E-07 | 0.4988 | 1.0004 | 1.0000 | 2.71E-07

250 | 1.0015 | 0.0640 | 10.0005 | 5.71E-03 | 1.94E-07 | 0.4259 | 0.8876 | 1.0000 | 1.58E-07

1000 | 1.0005 | 0.0316 | 10.0007 | 3.05E-03 | 4.70E-08 | 0.3743 | 0.8895 | 1.0000 | 8.18E-08
4000 | 1.0001 | 0.0158 | 10.0011 | 1.53E-03 | 1.16E-08 | 0.3142 | 0.8271 | 1.0000 | 4.15E-08
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A=1,£=10,a=[10,10]

w |z s | G | ) el) |G | | B (R
10 | 1.0630 | 0.3837 | 10.0003 | 3.64E-02 | 3.01E-06 | 10.0060 | 10.0118 | 1.0000 | 9.03E-07
50 | 1.0091 | 0.1460 | 10.0022 | 1.34E-02 8.48E-07 9.5371 9.7276 | 1.0000 | 3.52E-07

100 | 1.0039 | 0.1009 | 10.0000 | 9.60E-03 4.48E-07 | 10.0067 | 10.0051 | 1.0000 | 2.63E-07

250 | 1.0016 | 0.0632 | 10.0010 | 6.20E-03 1.90E-07 9.8176 9.8648 | 1.0000 | 1.76E-07

1000 | 1.0005 | 0.0318 | 10.0008 | 2.91E-03 4.53E-08 9.8482 9.8647 | 1.0000 | 7.85E-08
4000 | 1.0001 | 0.0159 | 10.0010 | 1.50E-03 1.15E-08 9.8388 9.8274 | 1.0000 | 4.06E-08
Table 5. Mean and standard deviation s () of estimates of true values f=1,a = [0,0] and varying 1
2=0.5

n 7 s(4) B S(ﬂ) V&r(ﬁ) 0571 0‘72 I_Q; S(Rlz’)
10 0.5307 0.1954 | 1.0001 | 4.92E-03 | 3.24E-06 | -0.0096 | -0.0088 | 0.9998 | 8.38E-05
50 0.5038 0.0735 | 1.0000 | 1.26E-03 | 6.35E-07 | -0.0011 0.0025 | 0.9999 | 2.22E-05

100 0.5016 0.0508 | 1.0000 | 1.05E-03 | 2.77E-07 0.0055 0.0017 | 0.9999 | 1.60E-05

250 | 0.5009 | 0.0316 | 1.0000 | 6.64E-04 | 1.09E-07 0.0064 0.0032 | 0.9999 | 1.02E-05

1000 | 0.5003 0.0158 | 1.0000 | 3.49E-04 | 2.91E-08 | -0.0017 | -0.0010 | 0.9999 | 5.30E-06
4000 0.5000 0.0079 | 1.0000 | 1.70E-04 | 7.19E-09 | -0.0010 [ -0.0007 | 0.9999 | 2.55E-06
A=15

n |z s | g | s ) | | G | R (R
10 1.5862 0.5675 | 0.9998 | 5.81E-03 | 8.45E-06 0.0188 0.0138 | 0.9996 | 1.99E-04
50 1.5129 | 0.2183 | 0.9999 | 2.54E-03 | 1.72E-06 0.0052 0.0097 | 0.9997 | 6.17E-05

100 1.5064 | 0.1532 | 1.0000 | 1.84E-03 | 6.62E-07 0.0013 | -0.0002 | 0.9997 | 4.28E-05

250 1.5028 0.0953 | 0.9999 | 1.06E-03 | 3.03E-07 0.0052 0.0037 | 0.9997 | 2.64E-05

1000 1.5000 0.0480 | 0.9999 | 541E-04 | 7.28E-08 0.0096 0.0108 | 0.9997 | 1.34E-05
4000 1.4997 0.0239 | 0.9999 | 2.71E-04 | 1.86E-08 0.0043 0.0049 | 0.9997 | 6.64E-06
A=5

n |2 s | po | sl eld) | & | & | RO )
10 5.3069 1.9575 | 0.9987 | 1.30E-02 | 4.10E-05 0.1984 0.2054 | 0.9982 | 8.45E-04
50 5.0708 | 0.7366 | 0.9991 | 5.82E-03 | 1.31E-05 0.0706 0.0174 | 0.9977 | 4.67E-04

100 5.0299 0.5094 | 0.9998 | 4.65E-03 | 6.12E-06 | -0.0512 | -0.0667 | 0.9977 | 3.32E-04

250 5.0131 0.3190 | 0.9996 | 2.90E-03 | 2.40E-06 | -0.0209 | -0.0332 | 0.9978 | 1.98E-04

1000 | 4.9993 0.1597 | 0.9992 | 1.49E-03 | 6.02E-07 0.0333 0.0516 | 0.9978 | 1.00E-04
4000 5.0004 | 0.0792 | 0.9991 | 7.50E-04 | 1.47E-07 0.0691 0.0605 | 0.9977 | 5.19E-05
2=10

n 7 s(4) B S(ﬂ) V&r(ﬁ) 0571 0‘72 I_Q; S(Rlz’)
10 | 10.6549 3.8835 | 1.0039 | 2.52E-02 | 2.44E-04 | -1.4585 | -0.7262 | 0.9945 | 2.59E-03
50 | 10.1052 1.4766 | 0.9939 | 1.53E-02 | 4.34E-05 0.7222 0.5801 | 0.9905 | 1.92E-03

100 | 10.0566 1.0119 | 0.9942 | 9.90E-03 | 2.41E-05 0.6047 0.5176 | 0.9904 | 1.36E-03

250 | 10.0233 0.6387 | 0.9967 | 5.55E-03 | 8.90E-06 0.2138 0.1526 | 0.9912 | 7.78E-04

1000 | 10.0062 | 0.3180 | 0.9957 | 2.96E-03 | 2.19E-06 0.3404 0.3644 | 0.9911 | 3.94E-04
4000 9.9981 0.1572 | 0.9958 | 1.43E-03 | 5.67E-07 0.3430 0.3237 | 0.9909 | 2.02E-04
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A=20

n 7 s(2) B S(ﬂ) V&r(ﬁ) 0571 gz I_Q; S(Rlz’)
10 | 21.2793 7.8167 | 0.9833 | 5.78E-02 | 5.05E-04 2.3245 2.6933 1 0.9760 | 1.14E-02
50 | 20.2105 2.9715 | 0.9907 | 2.70E-02 | 1.95E-04 0.2606 | -0.6120 | 0.9661 | 6.87E-03

100 | 20.0936 | 2.0276 | 0.9775 | 1.81E-02 | 8.73E-05 | 2.0631 | 2.4795 | 0.9645 | 5.00E-03

250 | 20.0350 | 1.2739 | 0.9868 | 1.11E-02 | 3.62E-05 | 0.5793 | 0.6664 | 0.9659 | 3.04E-03

1000 | 20.0098 | 0.6333 | 0.9826 | 5.42E-03 | 8.52E-06 1.3173 1.5826 | 0.9659 | 1.52E-03
4000 | 20.0034 0.3156 | 0.9824 | 2.79E-03 | 2.14E-06 1.4379 1.5035 | 0.9650 | 7.84E-04
A=30

P I N N 2 (4 I U0 O O RS R B )
10 | 31.9325 | 11.8250 | 0.9968 | 6.39E-02 | 1.25E-03 | -1.6135 | -1.3343 | 0.9394 | 2.85E-02
50 | 30.3112 | 4.3741 | 0.9639 | 3.48E-02 | 3.48E-04 | 2.5995 | 3.5091 | 0.9241 | 1.51E-02

100 | 30.2073 | 3.0410 | 0.9685 | 2.50E-02 | 1.84E-04 1.6028 | 2.2684 | 0.9304 | 9.86E-03
250 | 30.0776 | 1.9222 | 0.9588 | 1.67E-02 | 7.84E-05 | 3.0734 | 3.5746 | 0.9216 | 6.91E-03

1000 | 30.0211 | 0.9461 | 0.9583 | 8.06E-03 | 1.94E-05 | 3.4321 3.3594 | 0.9214 | 3.45E-03

4000 | 29.9989 | 0.4709 | 0.9618 | 4.04E-03 | 4.71E-06 | 2.9392 | 2.9980 | 0.9249 | 1.65E-03

A=100

n 7 S(’l) ,é S(ﬂ) V&r(ﬁ) 0571 0‘72 I_Q; S(Rlz’)
10 | 106.170 | 39.0276 | 0.6567 | 2.47E-01 | 9.49E-03 | 34.3571 | 40.7447 | 0.5027 | 1.86E-01
50 | 101.399 | 14.8294 | 0.6570 | 9.39E-02 | 2.22E-03 | 31.7548 | 20.8756 | 0.4674 | 8.81E-02

100 | 100.410 | 10.1099 | 0.5464 | 5.99E-02 | 9.68E-04 | 55.8788 | 46.0113 | 0.3982 | 6.52E-02

250 | 100.168 | 6.3306 | 0.5626 | 3.89E-02 | 4.12E-04 | 46.0424 | 41.2834 | 0.4056 | 4.12E-02

1000 | 100.067 | 3.1353 | 0.5714 | 1.90E-02 | 1.01E-04 | 43.0090 | 45.0621 | 0.4170 | 2.02E-02
4000 | 100.019 | 1.5917 | 0.5749 | 9.64E-03 | 2.55E-05 | 43.3167 | 42.5100 | 0.4192 | 1.03E-02
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