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Abstract: One way to increase the approximating quality of the High Dimensional Model Representation
(HDMR) truncations is to increase the truncation order. However this is not generally desired for practical
reasons if the order climbs to the multivariances beyond the bivariance. In these circumstances the other alter-
native is preferred. It is to change the structure of HDMR. This can be done either by using a different but again
orthogonal geometry or by changing the structure of the weight function. Weight optimization is based on the
constancy maximization and in fact gives different importances to the function values at different points of the
HDMR domain. Weight function is considered as the square of a linear combination of certain basis functions
and the linear combination coefficients are determined to maximize the constancy. The resulting equations are
nonlinear. This work attempts to solve these equations by expanding unknowns around their certain nominal
values.
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1 Introduction
In last two decades there has been significant devel-
opments in High Dimensional Model Representation
(HDMR) based algorithms. They were used to ap-
proximate a given mutivariate function in terms of
some other less variate functions. The HDMR is
based on a divide–and–conquer idea and was first de-
signed by Sobol in 1993 [1].

After Sobol’s epochal proposal, Rabitz and his
group studied on this topic and they generalized the
HDMR’s domain from Sobol’s unit cube to any, finite,
semi-finite, or infinite orthogonal hyperprismatic re-
gions. They also brought the weight function concept
to the HDMR definition. In this perpective Sobol was
using the constant weight function having the value of
1. The weight functions to be used in HDMR ought
to be a product of univariate weight functions each of
which depends on a different independent variable of
HDMR [2–4]. Demiralp and his group developed var-
ious new methods based on the HDMR philosophy,
each of which is designed to work well for a different
specific purpose [5–9].

According to the Sobol’s suggestion, a multivari-
ate function of N independent variables can be ex-
pressed as follows

f(x1, ..., xN ) = f0 +
N∑

i1=1

fi1(xi1)

+
N∑

i1,i2=1
i1<i2

fi1i2(xi1 , xi2)

+ · · · + f1...N(x1, ..., xN ) (1)

where f(x1, ..., xN ) denotes the target multivariate
function of HDMR. The functions appearing at the
right hand side of the equation are called HDMR com-
ponents. These are a constant term, univariate terms,
bivariate terms and so on respectively.

The HDMR components at the right hand side of
(1) are mutually orthogonal. That is, its right hand
side is an orthogonal decomposition to the original
function. The orthogonality is defined via the follow-
ing inner product over H, the Hilbert space of the
functions square integrable over the orthogonal hy-
perprism defined as the direct product of the intervals
[ ai, bi ] (i = 1, 2, ..., N ).

(g, h) ≡
∫ b1

a1

dx1...

∫ bN

aN

dxNW (x1, ..., xN )

×g (x1, ..., xN ) h (x1, ..., xN ) (2)

where g (x1, ..., xN ) and h (x1, ..., xN ) are any two
functions chosen from H while W (x1, ..., xN ) stands
for a given weight function.
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The HDMR components in Sobol’s case can be
uniquely determined by using the following vanishing
conditions first proposed by Sobol.

∫ bi

ai

dxifi (xi) = 0, i = 1, 2, ..., N (3)

These conditions are not peculiar only to the univari-
ate terms. As Sobol imposed, the integral of each
HDMR component between 0 and 1 inclusive over
anyone of its independent variables should vanish.
These enable us to uniquely determine all HDMR
components. (3) can be rewritten as follows
∫ b1

a1

dxN ...

∫ bN

aN

dxNfi (xi) = 0, i = 1, 2, ..., N

(4)
through a tricky mathematical idea. This implies the
orthogonalities of all univariate components to the
constant function of 1 value and therefore to the con-
stant component of HDMR. On the other hand (3) can
also be rewritten as follows∫ b1

a1

dxN ...

∫ bN

aN

dxNfi (xi) fj (xj) = 0,

i, j = 1, 2, ..., N, i �= j (5)

by using a similar consideration to the one we have
used to create (4). These equalities prove the existence
of the orthogonalities amongst the univariate compo-
nents. Similar considerations allow us to show the ex-
istence of the orthogonality amongst the all HDMR
components when the vanishing conditions are im-
posed.

The generalization of (4) to the case of nonunit
weights can be expressed as follows

∫ b1

a1

dxN ...

∫ bN

aN

dxNW (x1, ..., xN ) fi (xi) = 0,

i = 1, 2, ..., N (6)

The weight function appearing in these conditions is
assumed to be a product of univariate functions each
of which depends on a different independent variable.
That is,

W (x1, . . . , xN ) ≡
N∏

j=1

Wj(xj),

xj ∈ [ aj , bj ] , 1 ≤ j ≤ N (7)

where each univariate weight factor is assumed to sat-
isfy the following integral normalization condition to
facilitate the determination of the HDMR components

∫ bj

aj

dxjWj(xj) = 1, 1 ≤ j ≤ N (8)

The generalized forms of the vanishing conditions for
the other HDMR components are not given explic-
itly here since truncation at univariance is most pre-
ferred approximation as long as its quality is suffi-
ciently high. However, it is not hard to guess the struc-
ture. The only thing to be changed is the addition of
the weight function as a new factor. We find this in-
formation sufficient for our purpose in this work.

To facilitate the analysis we can use certain pro-
jection operators. We can start by defining the fol-
lowing projection operator to determine the constant
HDMR component, f0.

P0g (x1, ..., xN ) ≡∫ b1

a1

dx1...

∫ bN

aN

dxNW (x1, ..., xN )

×g (x1, ..., xN ) (9)

where g (x1, ..., xN ) can be any function in the Hilbert
space H. The orthogonality of all higher-than-zero-
order multivariate components to f0 implies that the
integrals of those components over one of their inde-
pendent variables over the related interval under the
corresponding univariate weight function vanish (van-
ishing property proposed by Sobol) as we have men-
tioned above. If we now apply the projection operator
P0 on both sides of (1) and then utilize the vanishing
properties of the higher-than-zero-variate terms, and
the normalized nature of the univariate weight factors
then we can write

f0 = P0f (x1, ..., xN ) (10)

To determine the univariate terms, fi(xi)s, some other
projection operators, Pis (1 ≤ i ≤ N ) are defined by
following the same philosophy of the constant term
determination case. If we apply these projection oper-
ators on both sides of the equation (1), we obtain the
univariate terms of HDMR as follows.

fi (xi) = Pif (x1, ..., xN ) − f0, 1 ≤ i ≤ N (11)

Bivariate terms and higher variate HDMR compo-
nents can be found by defining some other projection
operators in the same manner.

According to the HDMR algorithm, the N -di-
mensional multivariate function under consideration
can be represented by a constant term, N univariate
terms, N(N − 1)/2 bivariate terms, N(N − 1)(N −
2)/6 trivariate terms and so on. Hence, the total num-
ber of HDMR components for a given N -variate func-
tion is 2N . Although this number is finite, it may
climb to a very high number as N increases. Hence,
we intend to truncate HDMR at rather small multi-
variances as long as the truncation has a good repre-
sentation quality. For this purpose, the HDMR ap-
proximants and the additivity measurers are defined
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as follows.

s0(x1, ..., xN ) ≡ f0

s1(x1, ..., xN ) ≡ s0(x1, ..., xN ) +
N∑

i=1

fi(xi)

...

sk(x1, ..., xN ) ≡ sk−1(x1, ..., xN )

+
N∑

i1,...,ik=1
i1<···<ik

fi1...ik(xi1 , ..., xik )

1 ≤ k ≤ N (12)

Additivity Measurers are defined for measuring the
quality of these approximants for the characterization
of the original function within a desired numerical
precision.

σ0 ≡ 1
‖f‖2 ‖f0‖2

σ1 ≡ 1
‖f‖2

N∑
i=1

‖fi‖2 + σ0

...

σN ≡ 1
‖f‖2 ‖f12...N‖2 + σN−1

(13)

Here, σ0 is called Constancy Measurer and it defines
the contribution percentage of the constant term to the
HDMR expansion’s norm square. As a generalization,
σk called kth Order Additivity Measurer and it defines
the contribution percentage of the all terms from con-
stant term to kth order term inclusive to the HDMR
expansion’s norm.

As we have previously mentioned, we intend to
truncate the HDMR terms at most bivariate terms, but
we also intend to represent the original function as ac-
curate as possible in this work. For this purpose, we
can find an appropriate weight function by using op-
timization rules. This paper aims to realize an opti-
mization via constancy measurer. After optimization
we obtain a parametric linear equation together with a
nonlinear algebraic equation, whose right hand side
is a ratio of the quadratic forms over the unknown
vector, to define the unknown parameter of the linear
equation. These equations are attempted to be solved
with the help of a perturbation expansion.

The rest of the paper is organized as follows. The
second section covers the derivation of the optimiza-
tion equations through constancy measurer. These
equations can be solved by using perturbation expan-
sion and this issue will be presented in the third sec-

tion of the paper. The final section involves the con-
cluding remarks about this work and the future steps
to more maturize the issue.

2 The Weight Optimization
The weight function to be optimized could be struc-
tured as a linear combination of the certain elements
from a complete orthonormal basis function set. How-
ever, this structure does not guarantee the nonnegative
nature of the weight function. To provide the nonneg-
ativity for the weight function and to use the benefits
of linear algebraic facilities we use a squared linear
combination of certain basis functions as follows

w(x) =

⎛
⎝ m∑

j=1

αjwj(x)

⎞
⎠

2

(14)

where αjs stand for certain arbitrary parameters. If
this weight function is used to determine the constant
HDMR term, the following structure is obtained

f0 =
m∑

j=1

m∑
k=1

αjαka
(1)
jk (15)

where a
(1)
jk symbolizes the following integral

a
(1)
jk ≡

∫ b

a
dxwj(x)wk(x)f(x),

j, k = 1, 2, ...,m (16)

To determine the constancy measurer, σ0, the expres-
sion ||f ||2 has to be determined. It has the following
expression

||f ||2 =
m∑

j=1

m∑
k=1

αjαka
(2)
jk (17)

where a
(2)
jk is defined as follows

a
(2)
jk ≡

b∫
a

dxwj(x)wk(x)f(x)2,

j, k = 1, 2, ...,m (18)

The general structure of the constancy measurer is ob-
tained as follows after using what we have obtained
until now

σ0 =

(
m∑

j=1

m∑
k=1

αjαka
(1)
jk

)2

m∑
j=1

m∑
k=1

αjαka
(2)
jk

(19)

WSEAS TRANSACTIONS on MATHEMATICS Burcu Tunga, Metin Demiralp

ISSN: 1109-2769 233 Issue 6, Volume 8, June 2009



If the integral normalization condition of the weight
function and the orthogonality amongst the basis func-
tions of the linear combination appeared above are
used then the α parameters are found to satisfy the
following vector normalization condition

m∑
j=1

α2
j = 1 (20)

We need to construct a cost functional to be extrem-
ized for finding the optimum values of α parameters
by making constancy measurer maximum. Our needs
lead us to define the following one

J(α1, · · · , αm, λ) =

(
m∑

j=1

m∑
k=1

αjαka
(1)
jk

)2

m∑
j=1

m∑
k=1

αjαka
(2)
jk

+ λ

⎛
⎝ m∑

j=1

α2
j − 1

⎞
⎠ (21)

each of whose first order derivatives with respect to in-
dependent variables should be set equal to zero to get
the equations of the optimization. This produces the
following equations from differentiations with respect
to λ and αi

m∑
j=1

α2
j = 1 (22)

−2μ
m∑

k=1

αka
(1)
ik + μ2

m∑
k=1

αka
(2)
ik = λαi (23)

where μ is given as follows

μ ≡

m∑
j=1

m∑
k=1

αjαka
(1)
jk

m∑
j=1

m∑
k=1

αjαka
(2)
jk

(24)

The last two equations can be put into concise forms
by using certain matrix definitions. We can write(

−2μA1 + μ2A2

)
α = λα (25)

μ =
αT A1α

αT A2α
, μ� ≤ μ ≤ μu (26)

where A1 and A2 are the m×m type matrices whose
elements at the intersection of jth row and kth col-
umn are a

(1)
jk and a

(2)
jk respectively. The lower and up-

per bounds for the parameter μ, μ� and μu, are the
least and greatest eigenvalues of A1 under the weight
matrix A2. α stands for the m dimensional column

vector whose elements are α1,...,αm. (25) is an eigen-
value problem where λ and α symbolize the eigen-
value and the corresponding eigenvector of the matrix(−2μA1 + μ2A2

)
as long as (26) is not imposed as

an accompanying equation. Hence it is a linear eigen-
value problem as long as μ is considered as a given
parameter. However the face of the problem changes
when (26) accompanies (25). (26) brings nonlinearity
to the problem and all beatiful properties of the linear
algebraic eigenvalue problems may disappear depend-
ing on the natures of the given entities of the problem.

3 A Perturbation Expansion Around
a Chosen Value of the μ Parameter

It is numerically better to use a parameter between 0
and 1 inclusive instead of some other parameter be-
tween any two numbers. Hence we define

μ ≡ μ − μ�

μu − μ�
(27)

λ ≡ λ

μ
(28)

and

A1 ≡ (−2A1 + μ�A2)
A2 ≡ (μu − μ�)A2 (29)

These convert the equations (25) and (26) to the fol-
lowing ones (

A1 + μA2

)
α = λα (30)

μ =
αT (A1 − μ�A2)α

(μu − μ�)αTA2α
, 0 ≤ μ ≤ 1 (31)

If the right hand side of (31) were independent of α,
that is, a constant then the last two equations would
become just a linear algebraic eigenvalue problem
which can be at least numerically solved by using one
of well-known efficient methods. Hence, we can con-
sider a couple of more general equations having a new
parameter such that they match the last two equations
when the new parameter becomes 1 and they become
an algebraic eigenvalue problem when the new param-
eter vanishes. These are given as follows(

A1 + μ (ε)A2

)
α(ε) = λ(ε)α(ε) (32)

μ(ε) = μc

+ε

(
αT (ε)(A1 − μ�A2)α(ε)
(μu − μ�) αT (ε)A2α(ε)

− μc

)
(33)
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where we have three unknowns, μ (ε), λ (ε), α (ε) and
ε denotes the perturbation parameter. The parameter
μc is chosen in the domain of the parameter μ. To
solve these equations, each unknown will be assumed
to be expandable to a power series in the perturbation
parameter. That is,

μ (ε) ≡
∞∑
i=1

μiε
i (34)

λ (ε) ≡
∞∑
i=1

λiε
i (35)

α (ε) ≡
∞∑
i=1

αiε
i (36)

If we reorganize the resulting series in ascending pow-
ers of the perturbation parameter at the both sides of
the resulting equations after we use these expansions
in (32) and (33) then the coefficients of the same pow-
ers of the perturbation parameter at the both side of
the equations should be equivalent. This produces a
denumerably infinite number of equations to solve the
indexed unknowns. The zeroth order unknowns sat-
isfy the following equations

A1α0 + μ0A2α0 = λ0α0 (37)

μ0 = μc (38)

which can be combined to the following single eigen-
value problem

Aα0 = λ0α0 (39)

where
A ≡ A1 + μcA2 (40)

(39) represents an matrix eigenvalue problem whose
solutions can be obtained at least numerically by using
one of the efficient standard methods. If we denote
the eigenvalues and the normalized eigenvectors of the
matrix A by ξi and xi (i = 1, ...,m) respectively then
λ0 and α0 can take a pair from these values, say ξk
and xk. Therefore we write

λ0 = ξk, α0 = xk (41)

The first order perturbation equations can be obtained
by setting the coefficients of the first power of ε at the
both sides of each perturbation equation equal. The
results are given below

(A − ξkI)α1 =
(
λ1I − μ1A2

)
xk (42)

μ1 =
1

xT
k A2xk

xT
k [A1 − μuA2 − μcA2 ]xk (43)

where we have used (29), (31), (38), (40), and (41).
The coefficient matrix in the left hand side of (42)
is not invertible since its common left and right
nullspaces are spanned by ξk and therefore not empty.
This enforces the orthogonality of the right hand side
to this nullspace. That is, the right hand side should be
orthogonal to the eigenvector ξk. Thus we obtain the
following new algebraic equation over two unknowns
λ1 and μ1

λ1 = μ1x
T
k A2xk (44)

where we have use the fact that xT
k xk = 1. The reor-

ganization of the equation obtained after using (44) in
(42) enables us to write

(A− ξkI)α1 = −μ1

(
I − xkxT

k

)
A2xk (45)

which neatly shows that the right hand side is orthog-
onal to the left hand side’s nullspace. We can express
the solution to this equation can be written as follows

α1 = −μ1 (A− ξkI)
(−1,r)

(
I − xkxT

k

)
A2xk

+c1xk (46)

where the superscript of the matrix (A− ξkI)
(−1,r)

implies that the inverse of the matrix (A− ξkI) on its
range is taken. This inverse is explicitly expressed as
follows

(A− ξkI)
(−1,r) ≡

m∑
i=1,i�=k

1
ξi − ξk

xixT
i (47)

A careful investigation reveals the validity of the fol-
lowing identity

(A− ξkI)
(−1,r)

(
I − xkxT

k

)
≡(A− ξkI)

(−1,r) (48)

which allows us to rewrite (46) as follows

α1 = −μ1 (A− ξkI)
(−1,r) A2xk + c1xk (49)

c1 appearing here and in (46) stands for an arbitrary
constant and can be determined with respect to a given
criterion which is generally the normalization of the
vector whose perturbation series is under considera-
tion. It can be taken just 0 for simplicity and the vector
α can be normalized via an appropriate scaling after
the perturbation expansion is constructed. We follow
this approach here. The choice of c1 can also be real-
ized in such a way that the total perturbative scheme’s
convergence and therefore its approximation quality
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can be controlled. That procedure should be based on
optimization. We keep it outside the goal of this paper.

After the determination, or more realistically, the
choosing an appropriate value for c1 everything be-
comes uniquely determined. We can proceed to the
higher order exactly in the same way. If we are at
the nth order perturbation terms what we need to de-
termine is μn, λn, and αn. It is not hard to see that
the equation for μn depends on predetermined entities
only, that is, its expression does not contain none of
the unknowns undetermined yet. So it can be immedi-
ately evaluated in terms of the predetermined entities.

The equation derived from the perturbative ex-
pansion of the matrix eigenvalue problem produces
an equation whose left hand side is (A− ξkI) αn and
its right hand side contains all predetermined entities
together with the unknown λn. As it has happened
to be in the case of first order perturbation equations
the left hand side matrix of this equation has the same
nullspace as the first order case and enforces the right
hand side to be orthogonal to this nullspace, that is, to
the eigenvector xk. This determines the value of the
unknown λn in terms of predetermined entities. The
next step after this action is the inversion of the ma-
trix (A− ξkI) on its range and to obtain the unknown
vector αn within an uncertainty reflected by an addi-
tive term cnxk where the arbitrary constant cn should
be determined via same steps we mentioned about the
determination of c1 above. We do not intend to give
the explicit expressions of higher order perturbation
terms despite we use the second order terms in our
implementations.

4 Implementations

In this part, using various types of functions, several
numerical implementations are constructed to test the
performance of our new algorithm and all the com-
putations are done by using MuPAD [10] Computer
Algebra System with 10-digit precision. The program
codes are run under Linux (Ubuntu 7.10) Operating
System.

In Table 1, the zeroth, first, and second order per-
tubative results for the constancy measurer are pre-
sented. The constant and therefore univariate trunca-
tion of HDMR increase in quality as the constancy
measurer gets very close to 1. This is an expected
result coming from the optimization on the weight
function of the HDMR method. However, it can be
clearly seen that the abovementioned convergence of
the constancy measurer value is not enough to obtain
a reasonably acceptable representation for the original
function. Higher order perturbation terms are needed
in the algorithm to get higher quality results. This un-

Table 1: Obtained σ
(0)
0 , σ

(1)
0 , σ

(2)
0 values for different

structure of functions
1 − x2

√
1 − x2 ln(1 − x2) sin(1 − x2)

σ
(0)
0 0.5122 0.7870 0.2553 0.5391

σ
(1)
0 0.4627 0.7718 0.2468 0.4986

σ
(2)
0 0.7707 0.9163 0.2683 0.7104

desiredly increases the cost of the algorithm.

5 Concluding Remarks

The basic philosophy of this work is to construct a
new algorithm to represent a multivariate function by
using rather low-variate HDMR components. For this
purpose, HDMR expansion’s weight function is op-
timized and the equations obtained through the op-
timization are solved by a perturbation expansion
method.

We take the first three terms in perturbation ex-
pansion. The convergence of the expansion depends
on the inputs of the scheme and on the value of μc.
In many cases, the truncation level of the perturbation
expansion may climb to very high numbers or the ex-
pansion may diverge while certain cases enable us to
use only first few terms of the perturbation expansion.
To understand how perturbation expansion converges
we need to estimate the convergence radius of the per-
turbation series, that is, the least bound to the pertur-
bation parameter ε to get a convergence with a desired
speed.

We need computer based programming scripts
and applications because of the usage of many terms
in our algorithm. MuPAD can be used in these types
of calculations and this allows us to take 100 or 200
number of expansion terms into consideration in this
new method.

The need for the utilization of many expansion
terms in the application of the algorithm brings the
doubt to the convergence of the perturbation series.
After certain numerical and theoretical investigations,
we have seen that the perturbation series solutions to
the matrix eigenvalue problem portion of the weight
optimization problem may not converge even (26) is
not taken into consideration and the μ value in (25) is
assumed to be given.

There exists a weighted Rayleigh ratio in the
structure given in (26). A2 is a positive definite weight
matrix. Hence, the relation (26) bounds the possible
values of μ both from below and from top. We could
use μ as the perturbation parameter also. The investi-
gations show us that the employment of μ as a pertur-
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bation parameter does not guarantee the convergence
in that perturbation series for all possible μ values per-
mitted by the bounds of (26). This situation enforces
us to perturb the matrix of the eigenvalue problem via
different ways and gives different perturbation expan-
sions for different subintervals of μ. These expres-
sions depending on μ are then inserted into the equa-
tion (26) to determine algebraic equations for μ. The
piecewise nature of the results are unpleasent things
for continuity and therefore analyticity. One other im-
portant thing is the convergence analysis which may
be quite difficult because of the nonlinearity in the
equations.

The perturbation expansion we have proposed in
this work has not a linear structure due to the Rayleigh
quotient in the equation for μ and it is quite hard
to prove whether the convergence domain for ε in-
cludes the value 1 or not. The absence of the con-
vergence warranty for ε = 1 makes the method quite
unpleasent. Hence, we have come to the decision that
an attractive method based on the perturbation expan-
sion cannot be developed in this manner. We need
some other considerations to develop convergent and
efficient perturbation expansion.
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