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Abstract: High Dimensional Model Representation (HDMR) which was first proposed fifteen years ago is still
under development for the construction of its new varieties. It is a finite term representation of a multivariate
function in terms of less variate functions. Its truncation at certain level of variance serves as an approximation
to the target function and the truncation level is preferred to be kept at most bivariance for practical applications.
Plain HDMR is used for the functions highly additive while the Factorized HDMR is designed for dominantly
multiplicative functions. The Hybrid HDMR (HHDMR) combines these two HDMR varieties into a new ver-
sion of HDMR and is expected to work more efficiently than plain HDMR and FHDMR. The construction of
HHDMR basically uses the components of plain HDMR since FHDMR does the same. The definite integrals
appearing in the definition of these components are efficiently approximated by using the fluctuation free matrix
representation method which was recently developed by M. Demiralp.

Key–Words: Multivariate Functions, High Dimensional Model Representation, Approximation, Fluctuation Free
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1 Introduction
A multivariate function f (x1, ..., xN ) can be ex-
pressed as a sum of a constant term, univariate terms,
bivariate terms and so on via High Dimensional
Model Representation (HDMR) [1–4] as follows

f(x1, ..., xN ) = f0 +
N∑

i1=1

fi1 (xi1)

+
N∑

i1,i2=1
i1<i2

fi1,i2 (xi1 , xi2) + · · ·

+f12···N (x1, · · · , xN )
(1)

To obtain the right hand side HDMR components a
multiplicative weight functions is used

W (x1, . . . , xN ) ≡
N∏

j=1

wi(xi),

xi ∈ [ ai , bi ] , 1 ≤ i ≤ N

(2)

where each univariate factor should satisfy the nor-
malization condition

∫ bi

ai

dxiwi(xi) = 1, ai ≤ xi ≤ bi

(3)

HDMR components must also satisfy the condition
∫ bj

aj

dxjwj(xj)fi1i2...ik(xi1 , xi2 , . . . , xik) = 0

(4)

for xj ∈ {xi1 , xi2 , . . . , xiN }, 1 ≤ j ≤ k ≤ N . This
is called “vanishing under integration”condition and
it really means that all HDMR components are or-
thogonal to each other through an appropriately de-
fined inner product. If we assume that u(x1, . . . , xN )
and v(x1, . . . , xN ) are two arbitrary square integrable
multivariate functions, the inner product of these two
functions can be defined as

(u, v) ≡
∫ b1

a1

dx1w1(x1) . . .

∫ bN

aN

dxNwN (xN )

× u(x1, . . . , xN )v(x1, . . . , xN )
(5)
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With the help of the weight function W (x1, · · · , xN )
given in (2) and the normalization condition (3) to-
gether with orthogonality condition (4), the compo-
nents of the right hand side of the expansion in (1)
can be obtained as follows

f0 =
∫ b1

a1

dx1w1(x1) . . .

∫ bN

aN

dxNwN (xN )

× f(x1, . . . , xN )
(6)

fi(xi) =
∫ b1

a1

dx1w1(x1) . . .

∫ bi−1

ai−1

dxi−1

× wi−1(xi−1)
∫ bi+1

ai+1

dxi+1wi+1(xi+1)

. . . ×
∫ bN

aN

dxNwN (xN )f(x1, . . . , xN )− f0

1 ≤ i ≤ N

(7)

The remaining higher order terms can be calculated
in a similar manner. The right hand side of (1) can
be truncated at a desired level of terms for approx-
imation. These truncated representations are called
HDMR approximants and are given as below

s0(x1, ..., xN ) ≡ f0

s1(x1, ..., xN ) ≡ s0(x1, ..., xN ) +
N∑

i=1

fi(xi)

...
sN (x1, ..., xN ) ≡ sN−1(x1, ..., xN )

+fi1...iN (xi1 , ..., xiN )
(8)

2 Factorized HDMR
If a given multivariate function f (x1, . . . , xN ) has
dominantly multiplicative structure, Factorized High
Dimensional Model Representation, FHDMR, is rec-
ommended. FHDMR expansion of a multivariate
function f (x1, . . . , xN ) is given as follows

f(x1, . . . , xN ) = r0




N∏

i1=1

(1 + ri1(xi1))




×




N∏
i1,i2=1
i1<i2

(1 + ri1i2(xi1,i2))


×

. . . × [ (1 + r1···N (x1, . . . , xN )) ]
(9)

If a given multivariate function is purely multiplica-
tive then the following FHDMR terms survive in the
above product by leaving all factors containing the
other FHDMR terms having the value 1. That is,

r0 = f0 (10)

ri(xi) =
fi(xi)

f0
(11)

Using (10) and (11)

f(x1, . . . , xN ) = r0




N∏

i1=1

(1 + ri1 (xi1))




(12)

is obtained, so HDMR expansion given in (1) is
shaped in factorized form. If (12) is generalized, it is
clear that (9) will appear. It is also possible to truncate
the product in (9) at some level as we have already
done in HDMR expansion (1). If k-th order truncation
is shown as pk, FHDMR approximants are defined as
follows

p0 = f0

p1 = p0




N∏

i1=1

(1 + ri1 (xi1))




...
pN = pN−1 [ (1 + r12···N (x1, x2, . . . , xN )) ]

(13)

3 Hybrid HDMR using HDMR and
FHDMR

If the given multivariate function which is being
worked on is neither solely additive nor solely mul-
tiplicative, Hybrid HDMR method is expected to ap-
proximate the function better than plain HDMR or
FHDMR does. Obviously the following idendity
holds for any parameter α

f(x1, . . . , xN ) = αf(x1, . . . , xN )
+ (1− α)f(x1, . . . , xN )

(14)

If we replace the first f at the right hand side of (14)
with (1) and the second f with (9) the following ex-
pression is obtained.

f(x1, . . . , xN ) = α

[
f0 +

N∑
i1=1

fi1 (xi1) + · · ·
]

+(1− α)

[
r0

N∏
i1=1

(1 + ri1 (xi1)) · · ·
]

(15)
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Here α is called the hybridity parameter and usually
takes values between zero and one inclusive. Hybrid
HDMR approximants are defined using (8) and (13)
at the right hand side of equation (15) as follows

f (x1, . . . , xN ) ≈ hjk (x1, . . . , xN ; α)
= αsj (x1, · · · , xN )
+ (1− α) pk (x1, . . . , xN )

(16)

where sj comes from the HDMR expansion and pk

comes from the FHDMR expansion. Hence hjk is
called jk-th order HHDMR approximant and enables
us to form a table as follows

h00 · · · h0N
...

. . .
...

hN0 · · · hNN

Beside this, the qualities of these approximants are
measured by the entities defined below

qjk =
|f − hjk|2
|f |2 , j, k = 1, 2, ..., N

(17)

The best approximation quality for each approximant
is defined by the minimum of these entities. On the
other hand each of these entities depend on hybrid-
ity parameter through a quadratic function and hence
gives an optimum value for the hybridity parameter.
However the optimum value may not be in the inter-
val [ 0, 1 ]. One can expect the optimum values close
to 1 for additive functions whereas the multiplicative
functions may produce optimimum hybridities close
to 0. As long as the hybridity parameter value remains
between 0 and 1 it can be considered as a weight for
additivity while its complement to 1 can be interpreted
as the weight for multiplicativity. On the other hand,
the existence possibility of hybridity parameters out-
side the interval [ 0, 1 ] is the signal of the existence
of some other cases which can not be considered as a
linear combination of additivity and multiplicativity.

4 Fluctuation Free Matrix Represen-
tation

The fluctuation free matrix representation is based
on the fluctuationlessness theorem, [6–9] conjectured
and proven by M. Demiralp. This theorem is given
below

Theorem : If f̂ is an algebraic operator multiply-
ing its operand by f(x) where f(x) belongs to H, the

Hilbert space of univariate functions which are ana-
lytic and therefore square integrable on the interval
[ a, b ], and x̂ stands for the algebraic operator which
multiplies its operand by the independent variable x

then the matrix representation of f̂ over a finite sub-
space of H is equal to the image of the matrix rep-
resentation for x̂, the independent variable operator,
over the same subspace, under the function f(x), at
the fluctuationlessness limit.

If the dimension of the subspace in this theorem
increases unboundedly then its statement becomes
valid without considering the fluctuations since the
fluctuations are defined for the transitions between
the considered finite subspaceHn and its complement
with respect to H and the complementary space tends
to empty space as n goes to infinity. Otherwise, it
states an approximation which can be formulated as
follows

F(n) ≈ f
(
X(n)

)

(18)

where X(n) denotes the matrix representation of the
independent variable operator overHn and its explicit
definition is given below

X(n) ≡




X
(n)
11 · · · X

(n)
1n

...
. . .

...
X

(n)
n1 · · · X

(n)
nn


 ,

X
(n)
jk ≡ (uj , x̂uk) , 1 ≤ j, k ≤ n (19)

The notation F(n) introduced above symbolizes the
matrix representation of the function f(x) over Hn

and its explicit definition can be given as follows

F(n) ≡




F
(n)
11 · · · F

(n)
1n

...
. . .

...
F

(n)
n1 · · · F

(n)
nn


 ,

F
(n)
jk ≡

(
uj , f̂uk

)
, 1 ≤ j, k ≤ n (20)

The functions u1(x), . . . , un(x) appearing in (19) and
(20) are orthonormal basis functions spanning Hn.

5 HDMR With Fluctuation Free In-
tegrals

In this section we will try to compute the integrals en-
countered while calculating the components of (1). As
it was mentioned in the first section, a weight function
satisfying the conditions (2) and (3) can be considered
for HDMR. For simplicity, the weight function will
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be chosen as the constant function taking the value 1.
We also use the interval [ 0, 1 ] without any remark-
able loss of generality in finite intervals since any fi-
nite interval can be transformed to this universal in-
terval through an affine transformation. On the other
hand, we will focus on univariate integrals although
the HDMR integrals are in general multivariate, since
our main goal here to simply show the efficiency of
the fluctuation free matrix representation in the inte-
gration. So, the integral to be calculated can be ex-
pressed as follows

I ≡
∫ 1

0
dxf(x)

(21)

Our aim is to approximate this integral with the help
of the fluctuation free matrix representation given in
(18).

Using the definitions in (19) and (20), the F(n)

and X(n) matrix elements at the intersection of the i-
th row and j-th column can be expressed as follows

e(n)
i

T
F(n)e(n)

j =
∫ 1

0
dxui(x)f(x)uj(x)

e(n)
i

T
X(n)e(n)

j =
∫ 1

0
dxui(x)xuj(x)

(22)

where e(n)
i is i-th standard unit cartesian vector whose

element in the i-th position is 1 and all the other ele-
ments are 0.

ui basis functions can be obtained from the monic
polynomials set 1, x, x2,..., xn via an appropriate or-
thonormalization procedure by taking these terms into
the procedure in ascending powers. If this is done then
this orthonormalization will obviously leave u1 as the
constant function 1. With this tricky idea the original
integral is transformed into its new form as follows

I ≡
∫ 1

0
dxu1(x)f(x)u1(x) =

(
u1, f̂u1

)

= (u1, f (x̂) u1) ≈ e(n)
1

T
f

(
X(n)

)
e(n)

1

(23)

The symmetry in X(n) locates its spectrum on the real
axis. Beyond this, its spectrum is confined to the in-
terval [ 0, 1 ] since X(n) is the matrix representation of
x̂. If we denote the i-th eigenvalue and related eigen-
vector by λi and ξi respectively then the spectral de-
composition of X(n) can be expressed as follows

X(n) =
n∑

i=1

λiξiξ
T
i (24)

which enables us to write

f
(
X(n)

)
=

n∑

i=1

f(λi)ξiξ
T
i (25)

If (25) is premultiplied by e(n)
1

T
and postmultiplied

by e(n)
1 then the approximation to the integral in (21)

can be expressed as follows

I ≈
n∑

i=1

f (λi)
(
e(n)

i

T
ξi

)2

(26)

(26) leads us to understand the fact that we can ap-
proximate the integral of a univariate function by us-
ing the matrix representation of its independent vari-
able. So, we approximate a hard-to-compute integral
with the help of the fluctuationlessness approximation
in inner products.

6 Implementation
In this section, we try to approximately compute the
integrals appearing in High Dimensional Model Rep-
resentation components via Fluctuation Free Matrix
Representation Approximation. To measure the effi-
ciency of this method, numerical evaluations are per-
formed for a few univariate functions having different
kind of structures. These functions are ex, sin(x) and√

1− x2 respectively. As it can be seen from (16),
there will be no contribution provided by plain HDMR
when the hybridity parameter α is zero. This means
that all contribution to HHDMR expansion will come
from FHDMR portion. On the other hand when α
is one, FHDMR will not work and the approximation
will be handled only by plain HDMR terms. These ef-
fects can be easily seen in the four tables given in this
section such that when α is zero q00 and q10 become
equal and in the other case, when α is one, q00 and q01

are equal.

Table 1: Quality measurers of hybrid HDMR approx-
imants for f(x) = ex and n = 5

α q00 q10 q01 q11

0.0 0.0757656853 0.0757656853 0.0000000000 0.0
0.2 0.0757656853 0.0484900391 0.0030306274 0.0
0.4 0.0757656853 0.0272756472 0.0121225097 0.0
0.6 0.0757656853 0.0121225097 0.0272756472 0.0
0.8 0.0757656853 0.0030306274 0.0484900391 0.0
1.0 0.0757656853 0.0000000000 0.0757656853 0.0

The tables given in this section are constructed to
give the values of the quality measurers q00, q10, q01,
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and q11 for certain values of hybridity parameter α and
for the three functions mentioned above.

The first and second tables are for the functions ex

and sin(x) respectively. The quality measurer values
are given at six different hybridity parameter values,
0.0, 0.2, 0.4, 0.6, 0.8, and 1.0.

Table 2: Quality measurers of hybrid HDMR approx-
imants for f(x) = sin(x) and n = 5

α q00 q10 q01 q11

0.0 0.2250060642 0.2250060642 0.0000000000 0.0
0.2 0.2250060642 0.1440038810 0.0090002425 0.0
0.4 0.2250060642 0.0810021831 0.0360009702 0.0
0.6 0.2250060642 0.0360009702 0.0810021831 0.0
0.8 0.2250060642 0.0090002425 0.1440038810 0.0
1.0 0.2250060642 0.0000000000 0.2250060642 0.0

The functions of these two tables do not have any
singularity in the finite regions of the complex plane
for their arguments. Therefore they are analytic ever-
where in finite regions of that complex plane and ful-
fill the basic requirement of the fluctuation free ma-
trix representation approximation. Beyond this, the
analyticity is reflected to the approximation qualities
and makes the results highly accurate even in the five
dimensional subspace case.

The third and fourth tables are constructed for
the function

√
1− x2 for the five and ten dimensional

subspaces respectively.
The function in these tables has two branch points

located at the −1 and 1 values of its argument in
the complex plane of its independent variable. These
branch points affect the quality of the approximants
negatively because one of the branch points matches
one of the end points of the integration interval.

We have deliberately chosen the abovementioned
functions since their integrals analytically available
for comparison purposes. The comparison of Table
3 and 4 implies that increasing subspace dimension

Table 3: Quality measurers of hybrid HDMR approx-
imants for f(x) =

√
1− x2 and n = 5

α q00 q10 q01 q11

0.0 0.0747257950 0.0747257950 0.0000000000 0.0
0.2 0.0747257950 0.0478245090 0.0029890317 0.0
0.4 0.0747257950 0.0269012860 0.0119561271 0.0
0.6 0.0747257950 0.0119561271 0.0269012860 0.0
0.8 0.0747257950 0.0029890317 0.0478245090 0.0
1.0 0.0747257950 0.0000000000 0.0747257950 0.0

Table 4: Quality measurers of hybrid HDMR approx-
imants for f(x) =

√
1− x2 and n = 10

α q00 q10 q01 q11

0.0 0.0747246110 0.0747246110 0.0000000000 0.0
0.2 0.0747246110 0.0478237520 0.0029889844 0.0
0.4 0.0747246110 0.0269008600 0.1195593780 0.0
0.6 0.0747246110 0.0119559378 0.2690086000 0.0
0.8 0.0747246110 0.0029889844 0.0478237520 0.0
1.0 0.0747246110 0.0000000000 0.0747246110 0.0

(the order) in fluctuation free matrix representation
decreases the quality measurer values and therefore
the better approximation is obtained.

We performed the numerical evaluations by an In-
tel Centrino 1.6 Ghz processor under Windows XP OS
by using MATLAB R2006a [10]. All computations
were realized within ten digit precision.

7 Conclusion

In this work, we have used fluctuationlessness theo-
rem for univariate functions, to approximate the uni-
variate integrals. With the help of these integrals, we
tried to represent certain elementary functions whose
integrals can be analytically evaluated under HHDMR
algorithm. The results have been given through the ta-
bles where the approximation quality versus hybridity
parameter is given and the change in approximation
qualities with the value of chosen hybridity parame-
ter α is shown. Also we have noted that the increas-
ing fluctuationlessness order increases the quality of
approximation. Beyond these we want to comment
on the last columns of all tables. Since we choose
univariate functions in our work for simplicity and
deeper understanding, the hybridity approximant h11

will give the exact structure of the target function. So
the error in this approximant, q11, will be equal to
zero. Although we used univariate functions, same
processes can be realized for multivariate functions
using multivariate fluctuationlessness theorem. This
study is left as future work.
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