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Abstract: This work focuses on the construction of an error bound formula for the series solution to Okubo
Form of a set linear ordinary differential equation. Okubo Form is obtained using space extension concept
which introduces new unknowns into the equation under consideration at the expense of a dimension growth.
This is applied to the linear matrix ordinary differential equations in this work.

1 Introduction
In this work, we focus on the following form of matrix
differential equations since all linear ordinary differ-
ential equations (ODE), in matrix or vector form, can
be rewritten in that form

Ẋ(t) = A(t)X(t), (1)

where dot stands for the differentiation with respect to
the independent variable t, A(t) is a given square ma-
trix function of t, and X(t) represents the unknown
square matrix function of t which is same type with
A(t). The matrix X(t) does not have to be same
type of the matrix A(t). As long as the dimensions
of these two matrices are compatible, any rectangu-
lar type can be assumed for X(t). However, we pre-
fer the same type since the solutions for all the other
problems with different type unknowns, under appro-
priate initial conditions, can be expressed as the prod-
uct of an appropriate rectangular initial constant ma-
trix with the solution of the square unknown case for
unit matrix initial value. Those matrix solutions are
called propagators in many branches of science and
engineering since they characterize the evolution of
a system in time. On the other hand, it is not al-
ways possible to impose unit matrix initial condition
to (1). In the case where the coefficient matrix A(t)
and therefore the differential equation has a singular-
ity at the initial t value the behaviour of the solution
may not be a constant matrix. It may have certain sin-
gularities enforcing us to write an appropriate initial
t dependent matrix multiplying a power series which
is analytic in some region around the initial t value.
Even in that case, the leading term of the analytic fac-
tor of the solution can be initialized by the unit matrix.

All these discussions urge us not to specify the initial
form of the solution and to leave its specification after
the Okubo Form is constructed.

The matrix ODE given in (1) can be converted to
a certain universal form via a special technique which
puts the ODE structure to a desired form at the ex-
pense of increasing the number of unknowns. This
method we call “Space Extension Approach” takes us
to the linear ODEs with matrix coefficients in the form
which were first investigated by Okubo[1, 2, 3]. The
structure of these resulting equations after space ex-
tension gives the possibility of constructing two con-
secutive term recursions to get the coefficients of the
series solution in matrix algebraic analytical expres-
sions. The details of the space extension approach and
the conversion of the ODEs into Okubo Form can be
found in related papers[4, 5].

The rest of the paper is organized as follows. The
second section is devoted to obtain an error bound for
the coefficient matrix A(t) given in (1). In the third
section the construction of the error bounds for the
series solutions of Okubo Form is given. The fourth
section is about the truncations as approximants. The
fifth section finalizes the paper by presenting the con-
cluding remarks.

2 Error Bound For The Coefficient
Matrix

The bound construction for the coefficient matrix
A(t) is not so difficult issue as long as its power se-
ries exists and converges in a nonempty disk centered
at the t value, where the initial condition is imposed,
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in the complex plane of t. By using certain complex
analytical theorems it is always possible to construct
majorant series which can be summed up to a rational
function converging inside the convergence domain of
the function to be majorized. However, the result may
be too pessimistic in many circumstances. Hence we
may avoid to construct a bound for the coefficient ma-
trix function A(t). Instead we convert the original
matrix differential equation to Okubo form and then
try to majorize its certain elements. To this end we
are going to use the technique we call space exten-
sion in the solution of (1) where the matrices are all
n × n type. Its main idea is basically to change the
independent variable by powering. We define first a
new independent variable as follows

y ≡ tm+1 (2)

where m denotes any chosen positive integer, and
then, we write

X(t) ≡ X0(y) + tX1(y) + · · · + tmXm(y) (3)

which holds inside the analyticity domain of the solu-
tion matrix X(t) around t = 0. If the initial condition
given point is not 0 then we can deal with the pow-
ers of the differences between t and that initial point.
We intend not to get into these types of details here.
The right hand side component matrices in (3) are in
fact the subseries of the series expansion for the solu-
tion matrix X(t) in powers of t. In this connection,
X0(t) contains the terms whose t dependence can be
expressed via positive integer powers of tm+1. Sim-
ilarly, Xk(t) contains the terms whose t dependence
can be expressed via positive integer powers of tm+1

multiplied by tk where k is an integer varying between
0 and m inclusive.

If the series expansion of the matrix A(t) in non-
negative powers of t is truncated at the mth term and
(3) is used in the resulting equation then we obtain
an equation which contains tks for integer values of k
between 0 and m inclusive after reexpressing any tk

term with greater than m values of k as the product
of certain integer power of y with an appropriate term
tk where k is again between 0 and m inclusive. Since
the homogenized form of this equation contains m+1
unknown matrices and a linear combination of m + 1
terms each of which is proportional to a tk type term
with k values between 0 and m inclusive, the coef-
ficient matrices of this linear combination can be set
equal to zero. By reorganizing the resulting terms and
putting into an extended matrix algebraic form we ob-
tain the following Okubo form

Ż(y) =
[

1
y
A(m)

0 + A(m)
1

]
Z(y), (4)

where

Z(y)T =
[
X0(y)T ... Xm(y)T

]
. (5)

The explicit structures of A0 and A1 matrices are

A(m)
0 ≡ 1

m + 1

⎡
⎢⎢⎢⎢⎣

0 0 · · · 0

A0 −I
. . .

...
...

. . .
. . . 0

Am−1 · · · A0 −mI

⎤
⎥⎥⎥⎥⎦ , (6)

A(m)
1 ≡

⎡
⎢⎢⎢⎢⎣

Am Am−1 · · · A0

0 Am
. . .

...
...

. . .
. . . Am−1

0 · · · 0 Am

⎤
⎥⎥⎥⎥⎦ . (7)

Now we can write the following equality to investi-
gate the norm properties of last two matrices

∥∥∥A(m)
0

∥∥∥2

F
=

1
(m + 1)2

(
m∑

i=1

i ‖Am−i‖2
F

+
m(m + 1)(2m + 1)

6
‖I‖2

F

)
(8)

∥∥∥A(m)
1

∥∥∥2

F
=

m∑
i=0

(i + 1) ‖Ai‖2
F (9)

where the subscript F denotes Frobenius matrix norm
[6].

The analyticity of the coefficient matrix function
A(t) enables us to write

‖Ai‖2
F <

B2

r2i
, i = 0, 1, 2, ... (10)

where r stands for the radius of the disc centered at the
origin of the independent variable t’s complex plane.
It is assumed to be greater than T , the length of the
interval in which t lies. Or, in other words, we choose
the variation interval of t inside the convergence disk
of A(t) in the complex plane of t. The parameter B
above stands for the bound to the A(t)’s norm on the
circle centered at the origin with the radius r. It may
depend on r. We do not need the explicit values of r
and B for the moment since the present analysis is at
a quite abstract level just now.

The utilization of (10) in (9) results in the follow-
ing inequality∥∥∥A(m)

1

∥∥∥2

F
< B2

[
r4

(r2 − 1)2
(11)

+
(m + 1) − (m + 2)r2

r2m(r2 − 1)2

]
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which means that the Frobenius norm of the constant
matrix A(m)

1 remains finite for all m values as long as
the radius of analyticity is greater than 1. The same
thing can not be said for the matrix A(m)

0 . It is un-
bounded with respect to m.

3 Error Bound Construction for the
Series Solutions

It is possible to obtain a solution for the Okubo Form
by expanding its solution into a power series around
y = 0. There is a regular singular point at y = 0. So
it is convenient to use the general term as yn+r with
undetermined coefficients. This means that we can
write the following equalities

Z(y) =
∞∑

n=0

yn+rVn,

Ż(y) =
∞∑

n=0

(n + r)yn+r−1Vn. (12)

If (12) is substituted into (4) the following structure is
obtained

∞∑
n=0

(n + r)yn+r−1Vn =

∞∑
n=0

yn+r−1A(m)
0 Vn +

∞∑
n=0

yn+rA(m)
1 Vn.

(13)

This can be rewritten in a single series form as follows
after certain alterations are performed in sums

(
rI − A(m)

0

)
yr−1V0 +

∞∑
n=1

[ (n + r)Vn

− A(m)
0 Vn − A(m)

1 Vn−1

]
yn+r−1 = 0.

(14)

The coefficients of yr−1 and yn+r−1 should be indi-
vidually set equal to zero for the satisfaction of the last
equation. This gives the following recursion[

(n + r)I − A(m)
0

]
Vn = A(m)

1 Vn−1

n ≥ 0, V−1 ≡ 0. (15)

where A(m)
0 is not invertable due to its singular struc-

ture (it has a multiple zero eigenvalue).
The first equation in (15) takes the following form

when n = 0 [
A(m)

0 − rI
]
V0 = 0 (16)

which means that r can be equal to one of A(m)
0 ’s

eigenvalues. The spectrum of A(m)
0 is composed of

m different values, 0, 1/m, ..., (m − 1)/m, each of
which has a multiplicity equal to the dimension of the
matrix A(t). Only the zero eigenvalue is acceptable
since matrix Z(y) was assumed to be analytic in y.
Therefore we need to take r = 0. The eigenvectors
corresponding to the zero eigenvalues are composed
of m blocks each of which is a vector whose number
of elements is same as the dimension of A(t). All
blocks, except the first one which is completely arbi-
trary, vanish. This is reflected to the matrix V0 as a
square matrix arbitrariness with the same dimension
of A(t). In other words, the matrix V0 which is an m
element vector of square matrices whose dimensions
are same as the dimension of A(t), can have a non-
vanishing matrix block at its first element only. This
means that the solution will have the arbitrariness we
expect from the original matrix equation given in (1).

Now by taking r = 0 we can write the following
recursion without specifying the explicit structure of
V0

B0(n)Vn = B1Vn−1 (17)

where

B0(n) ≡
[
nI− A(m)

0

]
, B1 ≡ A(m)

1 n ≥ 0.
(18)

The matrix B0(n) here is invertible for all positive
integer values of n. This urges us to write

Vn = B0(n)−1B1Vn−1, n = 1, 2, ... (19)

which dictates us that all Vn matrices can be deter-
mined uniquely except a common rightmost factor
which is equal to V0.

Now we can proceed to construct a majorant func-
tion for the norm of Z(y). We can write the following
inequality

∥∥B0(n)−1
∥∥ ≤ 1

n

∞∑
k=0

1
nk

∥∥∥A(m)
0

∥∥∥k

=
[
nI−

∥∥∥A(m)
0

∥∥∥ ]−1
,

n > N (20)

where N stands for the least integer upper bound to
the A0’s norm and we have used the spectral norm to
make the unit matrix norm 1.

(20) and (19) imply

‖Vn‖ ≤ 1

n −
∥∥∥A(m)

0

∥∥∥ ‖B1‖ ‖Vn−1‖

(21)
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=
Γ
(
N+1−

∥∥∥A(m)
0

∥∥∥)
Γ
(
n+1−

∥∥∥A(m)
0

∥∥∥) ‖B1‖n−N‖VN‖ ,

n = N,N + 1, ... (22)

which means

∞∑
k=N

|y|k ‖Vk‖ ≤
⎛
⎝ ∞∑

k=N

|y|k
Γ
(
N + 1 −

∥∥∥A(m)
0

∥∥∥)
Γ
(
k + 1 −

∥∥∥A(m)
0

∥∥∥)
‖B1‖k−N

)
‖VN‖ .

(23)

This inequality reveals the fact that series solution of
the Okubo form convergences for all finite values of
its independent variable y as long as the dimensions of
the matrix algebraic entities remain finite. This urges
us to truncate this series solution by retaining a finite
number of its first terms and discarding the remaining
ones.

4 Truncations as Approximants and
Error Estimations

Now we can define the following approximants for
Z(y)

Zk(t) ≡
k∑

i=0

yiVi, k = 0, 1, 2, ... (24)

which allows us to define the following approximants
for X(t)

Xk(t) ≡ tTZk(t), k = 0, 1, 2, ... (25)

where

tT ≡ [ 1 t t2 ... tm−1
]
. (26)

Let us consider the sum of the discarded terms
when we define Zk(t) and write

Ek(y) ≡
∥∥∥∥∥

∞∑
i=k+1

yiVi

∥∥∥∥∥ , k = 0, 1, 2, ... (27)

as the norm of the error term. We can write the follow-
ing inequalities by keeping the limitation k > N − 1

in mind

Ek(y) <

(∞∑
i=0

Γ (k + 2 − N)
Γ (k + 2 − N + i)

‖B1‖i|y|i
)

|y|k+1 ‖Vk+1‖
=

(k − N + 1)! ‖Vk+1‖
‖B1‖k+1−N

|y|N
(
e‖B1‖|y| −

k−N∑
i=0

‖B1‖i |y|i
i!

)
,

(28)

where we have ignored the difference between the
least integer upper bound to norm of A(m)

0 and A(m)
0 ’s

norm without destroying the inequality. Although the
resulting inequality becomes more pessimistic it helps
us to express the infinite sum with a finite number of
well known terms. In this analysis the truncation or-
der k is assumed to be chosen greater than N − 1 to
be able to use the previous section’s inequalities. The
last error bound formula is constructed under this as-
sumption.

5 Concluding Remarks

We have analysed the convergence of the Okubo form
solutions to matrix ordinary differential equations in
this paper. To this end we have used certain bounds
to the matrices of the Okubo form for the construc-
tion of a majorant function to Okubo form solution.
The truncation of the series solution to Okubo form
at finite number of terms enabled us to use them as
approximations. We have also constructed a bound to
the error arising when we use these truncations. The
error bound constructed here is quite pessimistic. We
could construct much tighter error bounds by remov-
ing the requirement for k values to be greater than
N − 1 and/or by taking specific features of the matri-
ces appearing in the analysis given here into consider-
ation. However, we have not done so here because our
main purpose has been just to get an idea about the er-
rors, not to catch better explicit formulation (this may
be considered as a separate future work). Hence we
are not limited with the k values greater than N − 1
in fact. We are going to use all k values especially the
lowest ones for simplicity in our future applications.
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