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Abstract: An orthogonal hyperprismatic grid whose all nodes are accompanied by the given function values can
not be generally constructed due to the random nature of the given function data. This prevents the reduction of
the single multivariate interpolation to more than one univariate or bivariate interpolations even approximately.
It is generally quite difficult to determine an analytical structure for the target function in these problems. Lump-
ing HDMR method is an indexing based High Dimensional Model Representation (HDMR) algorithm used to
reconstruct these types of multivariate data by imposing an indexing scheme to obtain an orthogonal geometry
for the given problem. By this way, the training of the given data can be accomplished. The next problem is
to determine a reverse algorithm for the testing data. This work is about a new algorithm to find the correct
coordinate of the given testing data in the orthogonal geometry obtained through Lumping HDMR.

Key–Words: Data Partitioning, Multivariate Analysis, High Dimensional Model Representation, Lumping
HDMR

1 Introduction

High Dimensional Model Representation (HDMR) is
a divide–and–conquer algorithm and is used to rep-
resent given multivariate functions in terms of low
variate functions or to determine approximate analyt-
ical structures for the given multivariate interpolation
problems. This method allows us not to tackle with
the complexities of the standard mathematical meth-
ods coming with the multivariance. It also enables us
to deal with low variate interpolation problems instead
of the given multivariate interpolation problem.

This method is used in several works for differ-
ent research areas since 1993 [1]. Afterwards, Rab-
itz [2] and Demiralp [3] developed certain basics of
the HDMR method. HDMR based algorithms were
also applied to the multivariate interpolation problems
[4–7]. These methods are used to partition the given
multivariate data into low variate data sets, preferring
at most bivariate ones. The obtained low variate data
sets are employed to obtain analytical structure for the
sought multivariate function.

We deal with two different types of multivariate
interpolation problems for engineering issues in our
research areas. The first type covers the problems in
which the values of the sought multivariate function
are given at all nodes of an orthonormal hyperpris-
matic grid. That is, all nodes of the whole grid are

used in the analytical structure determining method
for the given problem. The HDMR method is used for
this purpose [4, 5].

The second type is related to the problems in
which all nodes of the predetermined grid are not in-
volved in the coordinates of the given data, that is,
the function values are given on the certain grid nodes
randomly without filling whole grid. This makes it
impossible to use the simplicity and the facilitation in
the case of the grids whose nodes are fully accompa-
nied by the given function values. In such cases, even
plain HDMR does not work. This time, another ver-
sion of HDMR, the Generalized HDMR (GHDMR) is
used for the interpolation [6, 7].

The GHDMR method has also some technical
problems in random data partitioning. There exists
a set of linear equations, whose unknowns are the
univariate GHDMR components of the sought func-
tion, to be solved in its algorithm. The number of lin-
early dependent equations appearing in this equation
set sometimes causes serious problems related to high
condition numbers of the matrices in the solution step.
To avoid the mentioned difficulty Lumping HDMR,
which is an indexing based HDMR algorithm, is de-
veloped by Tunga and Demiralp in 2008 [8]. That
work was the training version of the interpolation part,
that is, the determination of an analytical structure for
the given problem by using an indexing scheme which
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corresponds to the function value given original nodes
of the problem.

Our aim in this work is to develop a new algo-
rithm for the testing of the interpolation part. This
new algorithm is expected to reveal the corresponding
node for each index appearing in the indexing scheme
used by Lumping HDMR. Hence, here we are trying
to construct a reverse algorithm for Lumping HDMR
to go back to the function value given nodes of the
grid.

The HDMR and the Lumping HDMR methods
are given in the second and third sections, not in all
details. Our new algorithm is defined in the fourth
section. A number of numerical implementations are
also given before the concluding remarks to show the
performance of our new algorithm.

2 The HDMR Method
The following equality is given as the HDMR expan-
sion.

f(x1, ..., xN ) = f0 +
N∑

i1=1

fi1(xi1) +

N∑
i1,i2=1
i1<i2

fi1i2(xi1 , xi2) + · · · + f1...N(x1, ..., xN ) (1)

This expansion is a finite sum and is composed of a
constant term, univariate terms, bivariate terms and so
on. These are the HDMR components of a given mul-
tivariate function.

The following vanishing conditions are used to
uniquely determine the right hand side components of
that expansion∫ b1

a1

dx1 · · ·
∫ bN

aN

dxNW (x1, ..., xN )fi(xi) = 0 (2)

where 1 ≤ i ≤ N . The weight function appearing
in the vanishing conditions is assumed to be a product
of univariate functions each of which depends on a
different independent variable.

W (x1, . . . , xN ) ≡
N∏

j=1

Wj(xj),

xj ∈ [ aj , bj ] , 1 ≤ j ≤ N (3)

where each univariate factor is assumed to have 1-
valued integral with respect to the related variable
over the corresponding interval for easy determination
of the HDMR components.∫ bj

aj

dxjWj(xj) = 1, 1 ≤ j ≤ N (4)

Using these properties of the weight function and the
vanishing conditions, all components of HDMR can
be uniquely determined. However the general ten-
dency is to truncate HDMR at univariate or at most
bivariate terms for practicality as long as the target
function permits. Hence we deal with the determina-
tion of the constant and the univariate terms here.

To this end, the following operators can be writ-
ten by using an arbitrary square integrable function,
F (x1, . . . , xN ), to determine the general structures of
the constant HDMR term

I0F (x1, . . . , xN ) ≡
b1∫

a1

dx1W1(x1) · · ·

×
bN∫

aN

dxNWN (xN )F (x1, . . . , xN ) (5)

and the univariate HDMR terms

ImF (x1, . . . , xN ) ≡
∫ b1

a1

dx1W1(x1) · · ·

×
∫ bm−1

am−1

dxm−1Wm−1(xm−1)

×
∫ bm+1

am+1

dxm+1Wm+1(xm+1) · · ·

×
∫ bN

aN

dxNWN (xN )F (x1, . . . , xN ) (6)

where 1 ≤ m ≤ N . Other operators can be defined in
a similar philosophy to determine the structures of the
other HDMR terms, such as bivariate terms and so on.

When these operators are acted onto the both
sides of the HDMR expansion by taking the vanish-
ing conditions given in (2) under the product type
weight function into consideration the following gen-
eral structures for the constant and univariate terms
are obtained respectively

f0 = I0f(x1, ..., xN )
fm(xm) = Imf(x1, ..., xN ) − f0 (7)

where 1 ≤ m ≤ N . If we truncate HDMR by keeping
constant term only then the approximation is called
“Constant Approximation”. The “Univariate Approx-
imation” is defined by retaining the constant and uni-
variate terms of HDMR. These HDMR truncations
can be written more specifically as follows.

s0(x1, ..., xN ) = f0

s1(x1, ..., xN ) = f0 +
N∑

i1=1

fi1(xi1) (8)
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3 Lumping HDMR

We assume that the given data are random or, in other
words, not given at all points of a grid which is con-
structed via direct product of univariate meshes. That
is, the information is randomly distributed over the
nodes. The rational number obtained via dividing the
number of given function values by the total number
of grid nodes determines the sparsity of the informa-
tion distribution. Especially in the case of sparsely
distributed data, it is better to somehow gather all in-
formation in a cluster-like data structure. For this pur-
pose, a virtual space where this clustering is realized
can also be used. Each datum which is an (N + 1)-
tuple whose (N + 1)-th component is the function’s
given value while the all remaining components form
an N -tuple characterizing a point in N dimensional
cartesian space of the independent variables, is in-
dexed by a positive integer in an appropriate order-
ing which is of course not unique. Then the original
coordinates are forgotten and the abovementioned in-
dex becomes the only variable to identify each datum.
This univariance can be folded to create multivari-
ance. If the number of indexes permits, an orthogonal
hyperprismatic grid in a more than one dimensional
virtual space is constructed such that its total number
of nodes is equal to the number of indexes and there is
a one-to-one relation between this grid’s and the orig-
inal one’s nodes. Then HDMR can be applied to this
orthogonal virtual geometry and its at most bivariate
but preferably univariate truncation is used as an ap-
proximation for the partitioned data. In other words
data given points of the original grid is lumped into the
corresponding grid of the virtual space. We call this
method “Lumping HDMR” [8] and the virtual space
mentioned above “Index Space”.

To better understand how an index space is built,
we can consider the case where the number of given
function values is 12. 12 has the prime factors, 2, 2,
and, 3. Each factor can be considered as the number of
the planes perpendicular to one of the edges of three
dimensional orthogonal prismatic grid. This urges us
to define three coordinates such that x1 ∈ {1, 2},
x2 ∈ {1, 2}, and x3 ∈ {1, 2, 3}. Then, the nodes
of the grid are given by the triples (1, 1, 1), (1, 1, 2),
(1, 1, 3), (1, 2, 1), (1, 2, 2), (1, 2, 3), (2, 1, 1),
(2, 1, 2), (2, 1, 3), (2, 2, 1), (2, 2, 2), (2, 2, 3).

In this example we construct a 2 × 2 × 3 type
grid in a three dimensional space. We could of course
exchange the definitions of the independent variables
x1, x2, x3 and obtain 6 different grids. However, each
of these grids are obtained from one of others by an
appropriate rotation. In this sense, one can bring the
uniqueness by choosing one of these possibilities as
the essential index space.

The other flexibility for the index space construc-
tion is the choice of the dimension. We have con-
structed three dimensional spaces above. However we
could use some binary products of the prime factors
as single entities and reduce the index space dimen-
sion. For example, we could consider the expression
12 = 3×4 and a related two dimensional space where
the independent variables are defined as x1 ∈ {1, 2, 3}
and x2 ∈ {1, 2, 3, 4}. Then the grid nodes would be
given by the ordered pairs (1, 1), (1, 2), (1, 3), (1, 4),
(2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4).
We could also consider the two dimensional index
space where the grid is 2 × 6 type beside the one
dimensional space having 12 node linear grid. All
these mean that there is a flexibility in the construc-
tion of the index space and the orthogonal prismatic
grid embedded into this space. This nonuniqueness
may be used to get most efficient lumping. What we
know about the HDMR from experimentations is that
it seems to work well in higher dimensions and higher
node numbers in each direction defined by the inde-
pendent variables.

The next step after the construction of the in-
dex space and the embedded orthogonal hyperpris-
matic grid is the indexing. It is of course not unique.
However by choosing an appropriate ordering over the
nodes of the original grid and over the index space’s
grid a one-to-one correspondence can be established
between the node sets of these two grids.

To explain in general notation, first let us give the
definition of the data of the variable xj in index space
as follows

Dj ≡
{
ξ
(kj)
j

}kj=nj

kj=1
=
{
ξ
(1)
j , . . . , ξ

(nj )
j

}
(9)

where 1 ≤ j ≤ N . The cartesian product of these sets
contains N -tuples as the elements and defines the grid
of the index space whose dimension is N

D ≡ D1 ×D2 × · · · × DN (10)

Now all points of this grid are accompanied by a given
function value. Therefore we have a discrete struc-
ture which will be partitioned via HDMR. To provide
the discreteness the following univariate weight func-
tions are selected as the components of the overall
weight function appearing in the HDMR algorithm.
The Dirac delta function [9] is used in these structures
because of the need for dealing with only the values
of the sought function at the nodes of the above grid
for the interpolation problem.

Wj(xj) ≡
nj∑

kj=1
α

(j)
kj

δ
(
xj − ξ

(kj)
j

)
,

xj ∈ [ aj , bj ] , 1 ≤ j ≤ N (11)
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Using this weight function the operators mentioned in
the previous section can be applied to the both sides
of the HDMR expansion by the help of the vanish-
ing conditions and the given multivariate data is parti-
tioned into low–variate data sets. In this work we deal
with constant, univariate and at most bivariate terms.

After several integrations a constant value and
univariate partitioned data set are obtained [5, 6].

The following equality is obtained to determine
constant term, f0

f0 ≡
∑
τ∈D

ζ(τ)f(τ) (12)

where

τ =
(
ξ
(k1)
1 , ..., ξ

(kN )
N

)
ζ(τ) = α

(k1)
1 · · ·α(kN )

N ,

1 ≤ kj ≤ nj, 1 ≤ j ≤ N (13)

The structure of the univariate components after some
number of calculations is obtained as follows

fm(ξ(km)
m ) =

∑
τm∈D(m)

ζm(τm)f(τm, ξ(km)
m )

−
∑
τ∈D

ζ(τ)f(τ) (14)

where

D(m) ≡ {τm|τm = (x1, ..., xm−1, xm+1, ..., xN ) ,

xj ∈ Dj, 1 ≤ j ≤ N, j �= m} ,

τm =
(
ξ
(k1)
1 , ..., ξ

(km−1)
m−1 , ξ

(km+1)
m+1 , ..., ξ

(kN )
N

)
,

ζm(τm) = α
(k1)
1 · · ·α(km−1)

m−1 α
(km+1)
m+1 · · ·α(kN )

N ,

ξ
(km)
m ∈ Dm, 1 ≤ km ≤ nm, 1 ≤ m ≤ N (15)

To this end, we have a constant value and nm ordered
pairs for the univariate function fm(xm) [5, 6]. The
next step is to interpolate these partitioned data to de-
termine an analytical structure for the sought function.

4 Interpolation
To determine the overall structure of the function, an
analytical structure should be defined or a calculation
rule should be imposed on the interpolation. For this
purpose, first a polynomial representation should be
built for fm(xm).

pm(xm) =
nm∑

km=1

Lkm(xm)fm

(
ξ(km)
m

)
,

ξ(km)
m ∈ Dm, 1 ≤ m ≤ N (16)

Here Lkm(xm)s are Lagrange polynomials [10] which
are independent of the function’s structure. The ex-
plicit structures of these polynomials are given below

Lkm(xm) ≡
nm∏
j=1

j �=km

(
xm − ξ

(j)
m

)
(
ξ
(km)
m − ξ

(j)
m

) ,

ξ(km)
m ∈ Dm, 1 ≤ km ≤ nm, 1 ≤ m ≤ N (17)

After the construction of Lagrange polynomials, uni-
variate functions given by the relation (16) are
uniquely determined within continous polynomial in-
terpolation. These functions can be considered as
univariate components of HDMR for the multivariate
function, f(x1, ..., xN ). The expansion formed by the
summation of these functions and the constant term
provides the following multinomial approximation.

f (x1, ..., xN ) ≈ f0 +
N∑

m=1

pm(xm) (18)

This should be considered as a univariate additive de-
composition approximation.

5 Reverting Lumping HDMR Re-
sults

The reverse algorithm for Lumping HDMR is based
on the distance evaluations between the testing data
and the training data. We use training data to construct
an HDMR which is valid everywhere in an orthogo-
nal hyperprismatic grid of the considered index space.
Test data is also distributed in this grid but not at the
nodes, instead, at certain internodal locations which
are not known yet since the test data function values
are not expressed in terms of the index coordinates.
Therefore we need to find the appropriate locations
for each test datum in the index space. To this end we
can use the distances between each test datum and the
all training data and evaluate the minimum distance.
A single minimum value may not suffice to locate the
testing datum in the index space. Then not only the
shortest distance but first few shortest distance can
be used to locate the testing point in the index space.
This is done in a way such that there remains no doubt
about the location. This holds of course for the crite-
rion of shortest distance and some other criteria may
be used in some other circumstances. We use shortest
distance criterion in this work.

Using the structures of the training and the test-
ing nodes as (ξ1, ξ2, . . . , ξN ) and (μ1, μ2, . . . , μN ) re-
spectively, we can rewrite the Euclidean distance for-
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mula for our algorithm as follows.

d =

√√√√ N∑
i=1

(ξi − μi)2 (19)

Now, first, we will take the first testing node into
consideration and evaluate the distances between this
node and all training nodes. Then, we will find out the
minimum distance value and select that training node
as our source to determine the location of our testing
node in our index space and say source index node for
the index node of this determined training node. Next,
for example, if we obtain a distance value of 0.6 and
we have 5 independent variables, then we add 0.12 to
each component of the source index node and assign
this new node as an index node to the testing node.
Of course, this addition process is not the only solu-
tion. This part must be improved to determine more
realistic results. In this work, we deal only with the
process. New algorithms for this step is left for the
future work. However, this new node is the location
of the testing node for the rest of our algorithm. This
procedure will be repeated for all testing nodes to de-
termine a location in the index space of our problem.

Once the location of the testing datum in the index
space is determined then the rest is just a straightfor-
ward task, the evaluation of the function value via the
analytic formula constructed by the univariately de-
composed multivariate interpolation. Here we assume
that all coordinate contributions are equally weighted.

These are, of course, very introductory steps for
the reverse algorithm related to the Lumping HDMR.
We still conduct certain works on this topic and show
efforts to improve the efficiency of this algorithm.

6 Error Analysis
To examine the performance of this new method, in
other words, to understand whether the obtained rep-
resentations are or are not the acceptable solutions for
the given engineering problems the following relative
norm

N =
||forg − fnew||

||forg|| (20)

is evaluated. Here, fnew stands for the multivariate
function obtained via Lumping HDMR method.

The norm values obtained close to zero by using
this relation should be interpreted as the high perfor-
mance of this new representation technique.

7 Numerical Implementations
The results of the numerical implementations given
in this section are obtained by using certain program

codes (scripts) written in MuPAD 4.0, Multi Process-
ing Algebra Data tool [11, 12]. MuPAD codes have
been run in 20 decimal digits numerical precision en-
vironment. These scripts are run on a PC of Core Duo
T2050 1.60 GHz with a RAM capacity of 512 MB.

We select testing functions and the domains for
independent variables of these testing functions to ex-
amine the performance of this new method. The an-
alytical structures of our testing functions are as fol-
lows.

f1(x1, . . . , x5) =
5∑

i=1

xi,

f2(x1, . . . , x5) =

[
5∑

i=1

xi

]2

,

f3(x1, . . . , x5) =

[
5∑

i=1

xi

]5

(21)

We have kept same the domains for each independent
variable in all numerical implementations for simplic-
ity. These domains are as follows. Each domain has
a grid constructed by 1 increments starting from the
lower bound up to and including the upper limit.

1 ≤ x1 ≤ 6, 3 ≤ x2 ≤ 7, 4 ≤ x3 ≤ 8,
2 ≤ x4 ≤ 6, 5 ≤ x5 ≤ 8 (22)

The data set may have at most 3000 nodes when
all nodes of the hyperprismatic grid corresponding
to the prescribed domains are given in the problem.
We construct different interpolation problems, having
1000 training nodes over this mentioned grid. These
1000 nodes are selected by a random function writ-
ten by the authors. This selection is repeated several
times and several different interpolation problems are
constructed for each testing function having different
nodes for training in order to examine the performance
of the method more carefully. The relative error value
is evaluated for each costructed problem. In average,
as a result, the following relative error values are ob-
tained for each testing function.

Nf1 = 0.11
Nf2 = 0.21
Nf3 = 0.48 (23)

The additive nature of the HDMR expansion causes
obtaining better results for the multivariate interpola-
tion problems having additive nature. As the nature of
the problem begins to be less additive then the perfor-
mance of the HDMR method hence, the performance
of the Lumping HDMR method gets worse. This can
be easily examined from the relative error values given
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Table 1: Relative error values for the reverse algo-
rithm.

# of Testing Nodes
500 400 200

f1(x1, . . . , x5) 0.15 0.15 0.16
f2(x1, . . . , x5) 0.28 0.29 0.30
f3(x1, . . . , x5) 0.56 0.59 0.62

in (23) The main part of this work is the testing part
of the Lumping HDMR, that is the reverse part of the
method. The relative error results obtained for several
interpolation problems having 500, 400 and 200 test-
ing nodes through the reverse algorithm of the Lump-
ing HDMR are given in Table 1. These results are the
relative error values of the reverse algorithm including
at most bivariate HDMR approximants. These results
again are the averages of several runnings of the new
algorithm through the constructed interpolation prob-
lems.

8 Concluding Remarks

This new algorithm is developed to bypass the dis-
advantages of the Generalized HDMR method. It by-
passes the deadlock appearing in modelling, that is ob-
taining an analytical structure for the mentioned type
of interpolation problems given in this work through
Generalized HDMR. We always obtain an approxi-
mate analytical structure for the given multivariate in-
terpolation problem. The training part and the reverse
one, the testing part, of the algorithm gives acceptable
results for the interpolation problems having additive
nature.As the additivity of the function decreases and
the multiplicativity nature of the sought function be-
comes more dominant then the performance of the al-
gorithm gets worse.

For the future work, a better reverse algorithm
should be developed for Lumping HDMR in order to
have better approximations for the interpolation prob-
lems.
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