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Abstract: According to the fluctuationlessness theorem the matrix representation of a function can be approxi-
mated by the image of independent variable operator’s matrix representation under that function. The indepen-
dent variable operator’s action is defined as the multiplication of the operand by the independent variable. Hence
itself and therefore its matrix representation is universal, do not depend on the function. The application of this
approximation to numerical integration forms a quadrature whose structure can be manipulated by changing the
basis set of an n-dimensional Hilbert space. This work focuses on reflecting the effects of a complementary
Hilbert space to a restricted Hilbert subspace by forming the basis set as certain linear combinations of some
basis functions in order to improve the accuracy of the numerical integration based on fluctuationlessness theo-
rem.
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1 Introduction
Fluctuation expansion is a universal tool to approx-
imate the matrix representation of functions [1–10].
It may be used to construct a quadrature rule for nu-
merical integration [4–7]. A quadrature is a formula
expressing an integral’s value as a finite linear combi-
nation of the kernel function values as follows

∫ b

a
dx f(x) =

n∑

i=1

wif (xi) (1)

where growing n values are expected to increase the
numerical accuracy of the integration [11–23]. A
growth in n is equivalent to increasing the size of the
matrix representation of the independent variable op-
erator x̂. If n is increased, the formation of the quadra-
ture rule and its application for numerical integration
becomes computationally challenging. There are two
approaches in literature to improve the accuracy with-
out increasing the size of the matrix. One approach
is to take the fluctuation terms in fluctuation expan-
sion into consideration and this approach seems to be
computationally inefficient at this point due to slow
convergence [6–10]. The other approach is to work
on the integrand in a universal manner to form sev-
eral integrals converging faster when quadrature is uti-
lized [5, 6].

In this work, steps are taken towards improving
the accuracy of the utilization of fluctuationlessness

theorem for numerical integration by forming the ba-
sis functions of Hilbert Space as certain linear com-
binations of some other orthonormal functions. By
such an approach, the basis set is somehow extended
to better represent the effect of the x̂ operator used in
the calculation of the quadrature rule.

2 Fluctuation Expansion and Nume-
rical Integration

This work focuses on the functions which are ana-
lytic and therefore square integrable in a given finite
interval. Here we prefer to deal with finite intervals
because the continuity implies the boundedness and
therefore square integrability. We could equivalenty
use semi-infinite or infinite intervals with the aid of
appropriate weights, although we keep them out of the
scope of this work for the simplicity of the presenta-
tion. These abovementioned functions can be consid-
ered as the elements of an infinite Hilbert space sym-
bolized byHwhere the inner product of any two func-
tions f(x) and g(x) is defined as

(f, g) =
∫ 1

0
dx w(x)f(x)g(x) (2)

which induces the norm definition as follows

‖f‖ =
√

(f, f) (3)
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where w(x) is an appropriate weight function. The fi-
nite integration interval is chosen as the most widely
used one, [ 0, 1 ] since any finite interval can be con-
verted to this one by using an affine transform on the
independent variable of the integration. w(x) is as-
sumed to be normalized to have the value of 1 for its
integral over [ 0, 1 ].

The orthonormal basis functions can be symbol-
ized by

U ≡ {ui(x)}∞i=1 (4)

Although there is no limitation on the selection of
the linearly independent basis functions to construct
a basis set for H principally we prefer to tackle with
polynomials of increasing degree. The basis func-
tions may be formed by the orthonormalization of
x0, x1, . . . , xn, . . . by appropriate methods. It is im-
portant to get the very first basis element as the con-
stant function of 1 value after such an orthonormaliza-
tion, that is, the equality

u1(x) = 1 (5)

needs to be acquired. This is necessary for the link be-
tween the fluctuationlessness theorem and the numer-
ical integration. If one desires to extend what we are
going to develop here to the most general case then
the other basis functions may be chosen arbitrarily
as long as they satisfy the orhonormality conditions.
What we want to get here is a quadrature like for-
mula for numerical integration. The structure of the
basis set will change the node and the weight values
of this formula. According to the fluctuationlessness
theorem, the matrix representation of a function sym-
bolized by M

(
f̂
)

on a finite subspace of H can be
approximated by the matrix representation of x̂ oper-
ator on the same finite subspace under the image of
the function. In mathematical language, this approxi-
mation can be given by

M
(
f̂
)
≈ f (M (x̂)) (6)

where M stands for a superoperator which maps from
the space of linear bounded operators transforming
betweenH andH to the space of n×n matrices where
n is the dimension of the subspace Hn on which ma-
trix representation is defined. M is called “Matrix
Representation Operator”. The algebraic x̂ operator
multiplies its operand by independent variable x. The
elements of M (x̂) are explicitly given below

eT
i M (x̂) ej ≡ (ui, x̂uj) =

∫ 1

0
dxw(x)ui(x)xuj(x)

(7)
where ei and ej stand for the ith and jth standard
cartesian unit vectors respectively, their only nonzero

elements are 1 and located in the ith and jth positions
respectively.

The approximated matrix representation in accor-
dance with the fluctuationlessness theorem may be
improved by adding the fluctuation terms to the ap-
proximation’s expression as corrections. The whole
equality is as follows

M
(
f̂
)

= f (M (x̂)) +
∞∑

k=1

fk

[
M

(
x̂ k

)
−M (x̂)k

]

(8)
where fk coefficients can be uniquely determined, as
a matter of fact, they are the Taylor series expansion
coefficients of the function f(x) at x = 0. Using the
fact that the first basis function is equal to 1, the inte-
gral of the given function f(x) can be expressed as

I ≡
∫ 1

0
dx w(x)u1(x)f(x)u1(x) (9)

The utilization of the previously given inner product
definition and the application of the fluctuationless-
ness theorem

I ≈ eT
1 f (M (x̂)) e1 (10)

is obtained.
The image of M (x̂) under the function may be

calculated by using the spectral decomposition of this
matrix.

M (x̂) =
n∑

k=1

ξkxkxT
k (11)

where ξk and xk (k = 1, ..., n) represent the real val-
ued kth eigenvalue and its corresponding eigenvector
for this matrix respectively. The validity of this de-
composition comes from the symmetric nature of the
matrix and is because of the hermitian character of
the operator x̂. One can also prove that all eigenval-
ues here are discrete interior points of the [ 0, 1 ] in-
terval [11]. All these imply that the image under the
function can be shown to be

f (M (x̂)) =
n∑

k=1

f (ξk)xkxT
k (12)

Since the numerical integral corresponds to the
left uppermost element of the matrix representation
of the function, the approximation can be written as
follows

I ≈
n∑

k=1

f (ξk)
(
eT

1 xk

)2
(13)

This approximation may be considered as a quadra-
ture because of its formula’s structure. Here ξk values

are corresponding to the nodes and
(
eT

1 xk

)2
values

form the weights of the quadrature.
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3 Fluctuation Expansion and Gauss
Quadrature

The matrix representation of the x̂ operator is closely
related to the Jacobi matrix used in the construc-
tion of Gauss quadrature in recent modern perspec-
tives. It is possible to show that under unit weight and
with a basis set formed by the orthonormalization of
x0, x1, . . . , xn over the [ 0, 1 ] interval, the quadrature
formed by the fluctuationlessness theorem is Gauss
quadrature (this remains valid also for some other in-
tervals and some type of weight functions). For that
purpose, it is necessary to investigate the three consec-
utive term recursion of the basis set whose elements
are denoted by u1(x),...,un(x),... The x̂ operator in-
crements the degree of its polynomial operand by 1.
Therefore,

xun(x) =
n+1∑

i=1

ciui(x) (14)

If an inner product is performed to both sides of this
equality,

cj = (uj , xun) , j = 1, . . . , n + 1 (15)

is observed using the orthogonality of the basis set.
Since x̂ is a Hermitian operator, this equality can also
be written as

cj = (un, xuj) , j = 1, . . . , n + 1 (16)

un is an (n − 1) degree polynomial. xuj is a (j − 1)
degree polynomial multiplied by its independent vari-
able, therefore a j degree polynomial. Since a poly-
nomial is orthogonal to all polynomials of smaller de-
gree,

cj = (un, xuj) = 0, j = 1, . . . , n− 2 (17)

Therefore the contributions up to j = n− 1 are all 0.
This implies that the multiplication of a polynomial by
its independent variable can be expressed by a linear
combination of itself, the orthonormal polynomial of
one smaller degree and the orthonormal polynomial
of one greater degree. Using the above expression,
the coefficients of this linear combination are found
as

cn+1 = (un+1, xun) ≡ αn

cn−1 = (un, xun−1) ≡ αn−1

cn = (un, xun) ≡ βn (18)

Using α and β parameters to form a compact expres-
sion, the recursion becomes

xuj(x) = αjuj+1(x) + βjuj(x) + αj−1uj−1(x)
α0 = 0, j = 1, 2, . . . (19)

Utilizing the recursion to form the matrix representa-
tion of x̂ operator, it can be observed that

M (x̂) =




β1 α1

α1 β2 α2

. . . . . . . . .
αn−2 βn−1 αn−1

αn−1 βn




(20)

In Gauss quadrature, the weights of a quadrature are
given by

wi =
∫ b

a
dx w(x)Li(x) (21)

where Li is the Lagrange polynomial. A Lagrange
polynomial may be expressed in terms of a Lagrange
polynomial of one smaller degree by

Li(x) = (x− xi)Li(x) + 1 (22)

Multiplying both sides of this expression by Li(x) and
integrating,

∫ b

a
dx w(x)Li(x)2

=
∫ b

a
dx w(x)Li(x) (x− xi)Li(x)

+
∫ b

a
dx w(x)Li(x) (23)

The rightmost term is the definition of the weights
of the quadrature wi. The first term at the right of
this equation vanishes since (x− xi) Li(x) is propor-
tional to un+1(x) which is orthogonal to any polyno-
mial whose degree is less than n and since Li(x)’s
degree is (n − 2). Therefore an integral expression
is obtained for the weights of the quadrature. Since
the kernel of the integral is positive, the weights of
the quadrature are also positive as expected in quadra-
ture approximations. The first n equations in three
consecutive term recursion given above can be written
as a vector equation whose vector unknown contains
u1(x),...,un(x) as its elements while its matrix coeffi-
cient is the matrix representation of x̂ operator minus
x times n dimensional unit matrix and the right hand
side vector’s only nonzero element is located at the
bottommost location and is proportional to un+1(x).
In order to annihilate the right hand side and make
the vector equation an eigenvalue problem un+1(x)
should vanish. That is, it should be the characteristic
polynomial of the matrix. Therefore the nodes are the
eigenvalues of this matrix.

In research areas related to Gauss quadrature the
matrix representation of x̂ matrix is also known as
Jacobi matrix. The only difference is that the Gauss
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quadrature by convention uses the orthonormal poly-
nomials in [−1, 1 ] (it can also be extended to some
other intervals and weight functions but always re-
mains limited to the polynomials) interval, whereas
in this work, [ 0, 1 ] interval is utilized. One other
important restriction in Gauss quadrature is that the
use of polynomials with one by one increasing de-
grees is compulsory. However, the present method is
not limited by these restrictions; nonpolynomial func-
tions and arbitrarily degree changing polynomial basis
functions can be comfortably used as well.

Considering the formulation for the nodes and the
weights of Gauss quadrature, it is observed that in-
creasing the size of the Hilbert subspace results in an
equal increase in the number of nodes of the quadra-
ture. Instead of increasing the number of nodes in the
quadrature, forming a basis set to better approximate
the effect of the x̂ operator is expected to construct
more efficient quadratures.

4 The Extended Basis Set
The basis set of the n-dimensional Hilbert space may
be constructed as certain linear combinations in order
to better approximate the effect of the operators de-
fined in infinite Hilbert space. For that end, the nth
basis function may be replaced by a linear combina-
tion of the nth and (n+1)th basis functions. By doing
so, a basis function from (H−Hn), the complemen-
tary space of the subspace Hn, is reflected to Hn. In
a more general case, the new nth basis function sym-
bolized by u∗n(x) will be

u∗n(x) ≡ g1un(x) + · · ·+ gk+1un+k(x) (24)

where the g coefficients should be chosen in such a
way that the orthonormality is preserved. Since a
polynomial is orthogonal to all polynomials of smaller
degree, the introduction of u∗n(x) does not violate the
orthogonality condition. For the normalization of the
basis function, the necessary and sufficient condition
is √

g2
1 + · · ·+ g2

k+1 = 1 (25)

For determining the g values, the objective is chosen
as to annihilate many fluctuation terms as much as
possible. The use of fluctuation expansion for numer-
ical integration gives

I = eT
1 f (M (x̂)) e1

+
∞∑

k=0

fkeT
1

(
M

(
x̂ k

)
−M (x̂)k

)
e1 (26)

The fluctuations are represented by the infinite sum
and are named as the contributions of the integral fluc-
tuations. The integral fluctuation corresponding to the

ith term of the series is the ith order integral fluctua-
tion. They are given by

Rk = eT
1

(
M

(
x̂ k

)
−M (x̂)k

)
e1 , k ≥ 0 (27)

If all integral fluctuations are 0, then the numerical
integration is exact. Experiments have shown that us-
ing n = 2 and substituting the second basis function
with a linear combination of the second and the third
basis function, the integral fluctuations can be sup-
pressed. Leaving g1 and g2 arbitrary, it is observed
that the first two integral fluctuations vanish. For an-
nihilating the third order integral fluctuation, the nec-
essary condition was observed to be taking g1 = 1 and
g2 = 0. This behavior is due to the definition of the
integral fluctuations. There the Jacobi matrix is mul-
tiplied by itself as many times as the order of fluctua-
tion. The rightmost column and the bottommost line
will have an effect on the left uppermost element sig-
nifying the effect on the numerical integral. Therefore
an increase in n will delay this effect and this is ob-
servable by only the investigation of matrix multipli-
cation. Annihilating the (2n−1)th order integral fluc-
tuation leaves g2 as 0 and therefore creates the basis
set of Gauss quadrature. Instead, leaving this integral
fluctuation nonzero and annihilating the 2nth fluctua-
tion is possible. It was observed that such an approach
also decreases the absolute value of the higher integral
fluctuations. The linear combination coefficients were
chosen as to annihilate 2nth order integral fluctuation.
The other equation to solve for g1 and g2 is obtained
from the normalization condition. The integral fluctu-
ations for n = 2 is obtained as given in Table 1.

Order Regular B. Set Extended B. Set
0 0 0
1 0 0
2 0 0.007455721
3 0 0
4 0.005555555 -0.006089339
5 0.013888888 -0.007843812
6 0.022486772 -0.006301896
7 0.030092592 -0.002896843
8 0.036265432 0.001327769
9 0.040972222 0.005730764

10 0.044355592 0.009951743

Table 1: The comparison of the first ten integral fluc-
tuations for the regular and extended basis sets con-
structed from the orthonormal polynomials mentioned
above.

The drawback due to the (2n− 2) integral fluctu-
ation is compensated by the higher order terms. Note
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that the integral fluctuations have the Taylor expan-
sion coefficients as multiplier. Therefore, the exten-
sion of the basis set better reflects the effects of the
higher derivatives of the function on the integral with
the exception of 2n− 2 derivative. Since the value of
the derivatives of the function is closely related to the
smoothness of the function, it is possible to conjecture
that as the steepness of the function in the interval in-
creases, the advantage of the quadrature formed by the
extended basis set will be more apparent.

5 The Algorithm
The algorithm for the formation and use of the quadra-
ture with extended basis set comprises the following
steps.

1) Numerical integration problem with the inter-
val [ 0, 1 ] and unit weight is considered. The polyno-
mials x0, x1, . . . , xn are orthogonalized by Cholesky
decomposition and normalized. For that purpose, the
Gram matrix with the definition

G =
(
u,uT

)
(28)

where u is a vector with the elements

u ≡




x0

...

xn




(29)

is formed. The orthogonalization is performed by first
considering the Cholesky decomposition of the Gram
matrix as

G = LLT (30)

After the decomposition L−1u is calculated and the
elements of the resulting vector are the orthogonal
polynomials.

This method is preferred in the algorithm since
MuPAD programming language has predefined pro-
cedures which simplify the programming effort [24].

2) The un basis function is replaced by the linear
combination of un and un+1 with the form

u∗n(x) ≡ g1un(x) + g2un+1(x) (31)

3) The integral fluctuations are determined for
both the original basis set and the extended basis set.

4) The (2n − 1) order integral fluctuation is set
equal to zero and the resulting equation is simultane-
ously solved with the equality arising from the nor-
malization of the basis function.

5) The M(x̂) matrix for the extended basis set is
formed by the insertion of the linear combination co-
efficients.

6) The eigenpairs of M(x̂) are calculated for the
original basis set (Gauss quadrature) and the extended
basis set case to determine the nodes and the weights
of the two quadratures.

7) The quadratures are utilized to numerically in-
tegrate any given function.

8) The Maclaurin expansion term with (2n−2)th
derivative is subtracted from the function to be inte-
grated. The quadrature is applied to this new function
and the integral of the Maclaurin term is calculated an-
alytically and added to the integral by the quadrature.
The reason for such an approach is that it is known
that the quadrature formed from the extended basis set
only increases this integral fluctuation. Therefore, the
Maclaurin term exclusion may be expected to form a
quadrature that outperforms Gauss quadrature for all
functions. It was observed that it was not the case.

9) The relative error is calculated and visualized
for all cases.

6 Numerical Results
First, the application of the fluctuation expansion with
extended basis set to numerical integration of poly-
nomials is investigated. The polynomial (1 + αx)20

is chosen for that purpose. The graph of the integral
values in the domain [ 0, 1 ] for different Hilbert space
dimensions is given in figure 1. This is a plot of the
integral values for different α. α parameter changes
the steepness of the polynomial and as α increases the
use of the extended basis set is expected to be more
profitable. As exemplified by this integration, the in-

Exact value
Extended basis set, n=2
Extended basis set, n=3
Extended basis set, n=4
Extended basis set, n=5

0 1 2 3 4 5
0

5e+13

1e+14

1.5e+14

2e+14

alpha

y

Figure 1: The plot of the integral values against the α
parameter for (1 + αx)20.

crease in the number of nodes increases the accuracy
of the numerical integration. It is also important to
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compare the results of the integration with extended
basis set to the results without the extended basis set,
or namely the Gauss quadrature with the same number
of nodes. The plot of the integral values of (1+αx)20

in the domain [ 0, 1 ] for the two different quadratures
is given in figure 2. Five nodes are utilized in both of
the quadratures.

Gauss quadrature, n=5
Extended basis set, n=5

1 2 3 4 5 6 7 8 9 10
0.000

0.002

0.004

0.006

0.008

0.010

0.012

alpha

Rel. err.

Figure 2: The plot of relative error against the α pa-
rameter for the numerical integration of (1 + αx)20.

The relative error is calculated by

ε =
Iexact − Iapprox.

Iexact
(32)

The results for the exponential function eαx also
show the high numerical precision provided by the ex-
tended basis set. The relative error formed by the three
different methods are provided in figures 3, 4, 5 and
6. These methods are

• The application of the fluctuation expansion for
numerical integration without the extended basis
set, or namely the Gauss quadrature,

• The application of the fluctuation expansion for
numerical integration with the extended basis set,

• The application of the fluctuation expansion for
numerical integration with the extended basis set
and Maclaurin term exclusion.

It is observed that the effect of the Maclaurin term
exclusion is rather small. Yet, the extended basis set
outperforms Gauss quadrature for this example.

As the size of the Hilbert space increases, the ex-
tended basis set still forms more accurate results as
given in figures 5 and 6. The quadrature formed by
the extended basis set is expected to approach Gauss
quadrature as the number of basis functions imposed
on the basis function of the finite Hilbert space with
the highest index is held constant.

Gauss quadrature, n=2
Extended basis set, n=2
Extended basis set with term exclusion, n=2

2 3 4 5 6 7 8 9 10
0.0

0.1

0.2

0.3

0.4

alpha

Rel. err.

Figure 3: The plot of relative error against the α pa-
rameter for the numerical integration of eαx for α in
[ 1, 10 ] where n = 2.

Gauss quadrature, n=2
Extended basis set, n=2
Extended basis set with term exclusion, n=2

10 11 12 13 14 15 16 17 18 19 20

0.2

0.4

0.6

0.8

alpha

Rel. err.

Figure 4: The plot of relative error against the α pa-
rameter for the numerical integration of eαx for α in
[ 10, 20 ] where n = 2.

Gauss quadrature, n=10
Extended basis set, n=10
Extended basis set with term exclusion, n=10

1 2 3 4 5 6 7 8 9 10
0.0e+00

1.0e−12

2.0e−12

3.0e−12

4.0e−12

5.0e−12

alpha

Rel. err.

Figure 5: The plot of relative error against the α pa-
rameter for the numerical integration of eαx for α in
[ 1, 10 ] where n = 10.
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Gauss quadrature, n=10
Extended basis set, n=10
Extended basis set with term exclusion, n=10

10 11 12 13 14 15 16 17 18 19 20
0.0e+00

5.0e−08

1.0e−07

1.5e−07

alpha

Rel. err.

Figure 6: The plot of relative error against the α pa-
rameter for the numerical integration of eαx for α in
[ 10, 20 ] where n = 10.

Also, it is possible to perform Taylor term exclu-
sion at any point in the integration interval or even at
points outside the interval. Such an approach is ob-
served to be effective if the function contains a sin-
gularity outside the integration interval and the Taylor
expansion is formed at a point distant to the singular-
ity.

7 Conclusion
In this work, the utilization of the fluctuation expan-
sion with extended basis set for numerical integration
is investigated. The results may be itemized as given
below.

• It is observed that the nodes and the weights of
the Gauss quadrature is related to the eigenpairs
of the matrix representation of the x̂ operator.
The inner product of the Hilbert space for fluc-
tuation investigations is determined by the in-
terval and the weight of the considered integra-
tion. New quadrature rules may be formed by
this method with the restriction that the first ba-
sis function must be chosen as u1(x) ≡ 1.

• The determination of the integral fluctuations is
independent of the function. The integral fluc-
tuations appear as important tools to investigate
the error of the quadratures. Note that the error
of certain numerical integrations has the integral
fluctuations multiplied by the value of the deriva-
tives of the function at certain points. If all the
integral fluctuations vanish, the numerical inte-
gration is exact. However, if that is not the case,
each contribution by the integral fluctuation may
add up or somewhat balance each other. There-
fore a powerful quadrature rule does not imply

that the numerical integration will give a more
accurate result compared to any other quadrature
rule for any function.

• Changes in the basis set of the Hilbert space
changes the nodes and the weights of the quadra-
ture. Such new quadratures may be used to form
better quadrature rules in accordance with the
given certain characteristics of the numerical in-
tegration problem under consideration.

• If the basis set for Gauss quadrature is used
with the exception that the nth basis function
is replaced by a linear combination of nth and
(n + 1)th basis function, a new quadrature may
be formed. If the coefficients of the linear com-
bination are chosen to annihilate the lowest or-
der nonzero integral fluctuation, Gauss quadra-
ture is formed. If the coefficients are chosen to
annihilate the second lowest order nonzero in-
tegral fluctuation, the higher order integral fluc-
tuations were observed to have smaller moduli.
Due to the definition of the fluctuation expan-
sion, such quadratures are effective in the inte-
gration of non-smooth functions. Such linear
combinations are also tried at other basis func-
tions taking into account the orthonormality and
linear independence of the basis functions. Us-
ing a linear combination at the smaller degree
basis functions, it was observed that the accu-
racy was not as well as replacing the nth basis
function. The reason is that such an approach in-
volves many more nonzero fluctuations.

• The method may be adapted to different integra-
tion intervals, weights and basis sets. Also, the
number of functions used in the linear combi-
nation may be increased. However such an ap-
proach would necessitate the solution of a non-
linear polynomial equation set with high preci-
sion.

• For future work, it is important to generalize the
method to the multiple integration of multivariate
functions.
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