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Abstract: ”Fluctuation free matrix representation approximation Method” developed by M. Demiralp can be
used in approximating the multiple remainder terms of the integral of the Multivariate Taylor expansion. This
provides us with a new numerical integration method for multivariate functions. However in this paper instead
of dealing with a single formula which takes care of the multiple remainder terms, a new approach is undertaken.
At every step of a multivariate integration only one variable is taken care of. Thus an iterative procedure which
speeds up the computation rate is obtained.
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1 Introduction
In the first part of this work we give a brief explana-
tion of the Fluctuationlessness Theorem [1–7], then
we make the necessary generalizations on the formal
structure of the Taylor expansion and define a weight
function and a set of orthonormal polynomials. Fi-
nally by making use of all ingredients we form the first
approximation function for the inner integral. Repeat-
ing the same procedure the outer integral is approxi-
mated. Then certain numerical results obtained by the
experiments are tabulated. At the final stage remarks
concerning the generalization of the method from bi-
variate to multivariate functions are made.

2 Fluctuationlessness Theorem

The Fluctuationlessness approximation is based on a
theorem which was conjectured and proven by M.
Demiralp. This theorem states that the matrix repre-
sentation of an algebraic operator which multiplies its
argument by a scalar univariate function, is identical
to the image of the independant variable’s matrix rep-
resentation over the same subspace via the same basis
set, under that univariate function, when the fluctua-
tion terms are ignored.
Mf standing for the matrix representation of the

function f , we can write down the following approxi-
mation

Mf = (u, fuT ) ≈ (u, tuT ) (1)

The function f = f(t) is defined over the interval
[a, b] including t = 0. In case where 0 is not included
a point inside the interval can be used as the expansion
point. ui(t)’s constitute orthogonal basis functions of
the Hilbert space from which our functions are cho-
sen. We define u = (u1(t), . . . , un(t)). The inner
product of two functions under a weight functionw(t)
is defined as follows

(g, h) =
∫ b

a
dtw(t)g(t)h(t) (2)

Now, if we expand f as

f(t) =
∞∑
i=0

fit
i (3)

and replace this expression in 1 we obtain

Mf =

(
u,
∞∑
i=0

fit
iuT

)
(4)

This can than be written as

Mf =
∞∑
i=1

fi(u, tiuT ) (5)

Here let us take two operators from Hilbert space,
namely L̂1 and L̂2, and write the following inner prod-
uct

(u, L̂1L̂2u
T ) = (u, L̂1[P̂ (n)+(Î−P̂ (n))]L̂2u

T ) (6)
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The following definitions being made

Îg =
∞∑
i=1

(uig)ui

P̂ (n)g =
n∑

i=1

(uig)ui (7)

we can rewrite 6 as

(u, L̂1L̂2u
T ) = (u, L̂1P̂

(n)L̂2u
T )

+ (u, L̂1(Î − P̂ (n))]L̂2u
T ) (8)

It’s clear that when n tends to infinity P̂ (n) tends to
Î , from which we deduce that Î − P̂ (n) tends to 0. In
this situation we are left with the fluctuationlessness
term only, which allows us to write the approximation
below

(u, L̂1L̂2u
T ) ≈ (u, L̂1P̂

(n)L̂2u
T )

=

(
u, L̂1

n∑
i=1

(ui, L̂2u
T )ui

)

=
n∑

i=1

(
u, L̂1(ui, L̂2u

T )ui

)
=

n∑
i=1

(u, L̂1ui)(ui, L̂2u
T )

= (u, L̂1u
T )(u, L̂2u

T ) (9)

Thus the approximation can also be written as

(u, L̂1L̂2u
T ) ≈ (u, L̂1u

T )(u, L̂2u
T ) (10)

Generalizing this we obtain the expression

(u, L̂1 . . . L̂Nu
T ) ≈ (u, L̂1u

T ) . . . (u, L̂Nu
T ) (11)

Going back to t̂

Mf =
∞∑
i=0

fi(u, t̂iuT )

≈
∞∑
i=0

fi(u, t̂uT )i

= f(u, t̂uT ) (12)

The argument being the matrix representation of the
variable t, we can write the above approximation as

Mf ≈ f(T) (13)

where T is an n× n symmetric matrix.

3 The Method

In search of a numerical approximation of the definite
double integral over a non-rectangular area we start
with the following special integral over a rectangular
geometry

I =
b1∫

a1

dx1

b2∫
a2

dx2f(x1, x2) (14)

Taking first into consideration the inner one

I2 =
b2∫

a2

dx2f(x1, x2) = f(x1, a2)(b2 − a2)

+
b2∫

a2

dx2(b2 − x2)
∂

∂x2
f(x1, x2) (15)

Generalizing this structure we obtain

I2 =
b2∫

a2

dx2f(x1, x2)

=
k1∑
i=0

(b2 − a2)i+1

(i+ 1)!
∂i

∂xi
2

f(x1, a2)

+
b2∫

a2

dx2
(b2 − x2)k1+1

(k1 + 1)!
∂k1+1

∂xk1+1
2

f(x1, x2)

(16)

We change the integration interval to [0, 1] by making
a change of variable
b2∫

a2

dx2f(x1, x2) =
k1∑
i=0

(b2 − a2)i+1

(i+ 1)!
∂i

∂xi
2

f(x1, a2)

+
(b2 − a2)k1+2

(k1 + 2)!

×
1∫

0

dt(k1 + 2)(1− t)k1+1

× ∂k1+1

∂xk1+1
2

f(x1, (b2 − a2)t+ a2)

(17)

We replace the variable t by its operator counterpart t̂
and the definite integral by its inner product represen-
tation
b2∫

a2

dx2f(x1, x2) =
k1∑
i=0

(b2 − a2)i+1

(i+ 1)!
∂i

∂xi
2

f(x1, a2)

+
(b2 − a2)k1+2

(k1 + 2)!
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×(u1,
∂k1+1

∂xk1+1
2

f(x1, (b2 − a2)t̂+ a2)u1) (18)

where

wk(t) ≡ (k1 +2)(1−t)k1+1, k1 = 1, 2, ... (19)

is a weight function.
To utilize the Fluctuationlessness Theorem in ap-

proximating the integral, we need to construct a ba-
sis set spanning the Hilbert space under consideration.
The elements of this basis set that we call um(t) can
be choosen as

um(t) =
√

2m+ k1√
k1 + 2

P
(k1+1,0)
m−1 (t), m = 1, 2, ...

(20)
with P

(k1+1,0)
m−1 (t) standing for the relevant Jacobi

polynomials. We can now write an approximation for
the integral over the unit interval

1∫
0

dtwk1+1(t) ∂k1+1

∂x
k1+1
2

f(x1, (b2 − a2)t+ a2)

≈ eT
1

∂k1+1

∂x
k1+1
2

f(x1, (b2 − a2)T(n1) + a2In1)e1 (21)

where T(n) stands for the (n × n) matrix representa-
tion of t and I represents the n-dimensional unit ma-
trix. e1 is the n-th dimensional unit vector with the
only non-zero component being the first one. Now we
embed it in its place

b2∫
a2

dx2f(x1, x2) ≈
k1∑
i=0

(b2−a2)i+1

(i+1)!
∂i

∂xi
2
f(x1, a2)+

(b2−a2)k1+2

(k1+2)! eT
1

∂k1+1

∂x
k1+1
2

f(x1, (b2 − a2)T(n1)

+a2In1)e1 (22)

For representation purposes we name the right-hand
side of 22

φk1,n1(a2, b2) =
k1∑
i=0

(b2 − a2)i+1

(i+ 1)!
∂i

∂xi
2

f(x1, a2)

+
(b2 − a2)k1+2

(k1 + 2)!
eT

1

∂k1+1

∂xk1+1
2

f(x1, (b2 − a2)T(n1)

+a2In1)e1 (23)

Thus, we can write the approximation in a simpler
form.

b2∫
a2

dx2f(x1, x2) = φk1,n1(a2, b2),

k1 = 2, 3, ..., n1 = 1, 2, ... (24)

Now, in order to obtain a scalar equivalent of the ex-
pression above we will proceed with the eigenvalues
and the eigenvectors of the T(n1) matrix.

T(n1)ti = τiti, i = 1, 2, ..., n1 (25)

Here none of the eigenvalues is multiple and the
eigenvectors are normalized in the Frobenius sense.
By the continuation we write down the spectral de-
composition of T(n1)

T(n1) =
n1∑
i=1

τititT
i (26)

Consequently

∂k1+1

∂x
k1+1
2

f(x1, (b2 − a2)T(n1) + a2In1)

=
n1∑
i=1

∂k1+1

∂x
k1+1
2

f(x1, (b2 − a2)τi + a2)titT
i (27)

Finally we obtain a function of a single variable.

g(x1) = φk1,n1(a2, b2)

=
k1∑
i=0

(b2 − a2)i+1

(i+ 1)!
∂i

∂xi
2

f(x1, a2)

+
(b2 − a2)k1+2

(k1 + 2)!

n1∑
i=1

∂k1+1

∂xk1+1
2

f(x1,

(b2 − a2)τi + a2)
(
eT

1 ti

)2
,

k1 = 2, 3, ..., n1 = 1, 2, ... (28)

Now that we have reduced the inner integral into
a function of single variable, we can proceed as in the
inner integral and integrate the outer one. But we re-
place x1 by x for simplicity.

b1∫
a1

dxg(x) = g(a1)(b1 − a1)

+
b1∫

a1

dx(b1 − x)g(1)(x) (29)

Then we generalize

b1∫
a1

dxg(x) =
k2∑
i=0

(b1−a1)i+1

(i+1)! g(i)(a1)

+
b1∫

a1

dx (b1−x)k2+1

(k2+1)! g(k2+1)(x) (30)
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and make the necessary change of variable to obtain
the new integration limits.

b1∫
a1

dxg(x) =
k2∑
i=0

(b1 − a1)i+1

(i+ 1)!
g(i)(a1)

+
(b1 − a1)k2+2

(k2 + 2)!

×
1∫

0

dt(k2 + 2)(1− t)k2+1

× g(k2+1)((b1 − a1)t+ a1) (31)

Proceeding in the same manner as in 18 we can write

b1∫
a1

dxg(x) =
k2∑
i=0

(b1 − a1)i+1

(i+ 1)!
g(i)(a1)

+
(b1 − a1)k2+2

(k2 + 2)!

×
(
v1, g

(k2+1)((b1 − a1)t̂+ a1)v1
)

(32)

Here again our weight function is

wk2+1(t) ≡ (k2 + 2)(1− t)k2+1, k2 = 1, 2, ...
(33)

and the orthonormal basis functions are

vm(t) =
√

2m+ k2√
k2 + 2

P
(k2+1,0)
m−1 (t), m = 1, 2, ...

(34)
with P (k2+1,0)

m−1 (t) standing for the Jacobi polynomials.
We can again write an approximation to the integral
over the unit interval

1∫
0

dtwk2+1(t)g(k2+1)((b1 − a1)t+ a1)

≈ eT
1 g

(k2+1)((b1 − a1)T(n2) + a1In2)e1 (35)

and obtain the approximation

b1∫
a1

dxg(x) ≈
k2∑
i=0

(b1 − a1)i+1

(i+ 1)!
g(i)(a1)

+
(b1 − a1)k2+2

(k2 + 2)!

× eT
1 g

(k2+1)((b1 − a1)T(n2) + a1In2)e1

(36)

We name the right-hand side of the last approximation
for the ease of notation

θk2,n2 (a1, a2) =
k2∑
i=0

(b1 − a1)i+1

(i+ 1)!
g(i)(a1)

+
(b1 − a1)k2+2

(k2 + 2)!

× eT
1 g

(k2+1)((b1 − a1)T(n2)

+ a1In2)e1 (37)

and the approximation can simply be written as fol-
lows

b1∫
a1

dxg(x) = θk2,n2(a1, b1),

k2 = 2, 3, ..., n2 = 1, 2, ... (38)

Finally, to get rid of the matrix entities, we start by
calculating the eigenvalues and the eigenvectors of the
T(n2) matrix

T(n2)ti = ξiti, i = 1, 2, ..., n2 (39)

where again none of the eigenvalues is multiple and
the eigenvectors are normalized in the Frobenius sense
and then by continuation we write down the spectral
decomposition of T(n2)

T(n2) =
n2∑
i=1

ξitit
T
i (40)

Hence

g(k2+1)((b1 − a1)T(n2) + a1In2)

=
n2∑
i=1

g(k2+1)((b1 − a1)ξi + a1)tit
T
i (41)

Therefore we get the final form of the approxima-
tion to the bivariate integration over a non-rectangular
area.

b1∫
a1

dxg(x) ≈
k2∑
i=0

(b2 − a2)i+1

(i+ 1)!
∂i

∂xi
2

f(x1, a2)

+
(b2 − a2)k2+2

(k2 + 2)!

×
n2∑
i=1

∂k2+1

∂xk2+1
2

f(x1, (b2 − a2)τi + a2)

×
(
eT

1 ti

)2

, (k2 = 2, 3, ..., n2 = 1, 2, ...) (42)
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4 An Easy Calculation of T(n)

Let us observe the structure of the matrix representa-
tion of t̂. In order to achieve this, we make use of the
three term recursion formula for Jacobi polynomials
P

(k+1,0)
m (t) and obtain the following three term recur-

sion between the orthonormal basis functions um(t)

tum(t) = αmum+1 + βmum(t) + αm−1um−1(t),
m = 1, 2, 3, ... (43)

where

αm ≡ m(m+ k + 1)
2m+ k + 1

1√
2m+ k

1√
2m+ k + 2

βm ≡ 2m(m− 1) + (k + 1)(2m− 1)
(2m+ k + 1)(2m+ k − 1)

(44)

Now, working on T = (ui, tuj) we can easily find out
that T matrix can be written in terms of αm’s and βm’s
as follows

T =


β1 α1 0 ...
α1 β2 α2 ...
0 α2 β3 ...
...

...
...

. . .

 (45)

T is in fact an infinite matrix since the operator t̂ is de-
fined on an infinite Hilbert space. However, by defini-
tion we have to use its finite n-dimensional truncation
which we symbolize as T(n). The (i, j)-th component
of T(n) can be calculated by T (n)

i,j = eT
i T(n)ej . This

yields the following

T
(n)
i,j = βiδi,j + αiδi,j−1 + αi−1δi,j+1,

1 ≤ i, j ≤ n (46)

Having obtained the components of T(n) We can
now easily calculate the eigenvalues and eigenvectors
of T(n) and embed them into our approximation.

5 Experimental Results

In this section we give results from the implemen-
tation of the algorithm on a Pentium IV 2.0 Ghz
processor and all the calculations were held with
Mathematica 7.0.0 [8]. The working precision was
22 and the results are tabulated with an accuracy
of 10. The first function is choosen from a text-
book example:f [x, y] = Exp[−(x − 2)2/4 − (y −
3)2/4]Cos[2x+ y − 7]

Three methods are used in integrating this func-
tion on a rectangular area: the first one is our ac-
tual iterative algorithm, the second is the symboli-
cally held iterative integration by Mathematica which
in fact gives us the exact result to be compared with,
and the third one is the built-in numerical integration
iteratively held by Mathematica [9]. Lower integra-
tion limits are x = 2, y = 3. The results can be seen
in Table 1 together with the timing (in seconds) at the
right of each column showing values.

As it can easily be seen the timing for our algo-
rithm is much better than the same iteration done sym-
bolically. But in fact a more relevant comparison is the
one made with the built-in Mathematica algorithm for
numerical integration which gives us about two fold
better results in timing for the same level of accuracy.

The second function is choosen to be:f [x, y] =
2y.Sin[x] + Cos[x]2

Three methods are used in integrating this func-
tion on a non-rectangular area: the first one is our
actual iterative algorithm, the second is the symboli-
cally held iterative integration by Mathematica which
in fact gives us the exact result to be compared with,
and the third one is the built-in numerical integration
iteratively held by Mathematica. Lower integration
limits are x = 0, y = Sin[x]. The upper limit of in-
tegration of y is y = Cos[x]. The results can be seen
in Table 2 together with the timing at the left of each
column.

This example which involves a non-constant in-
tegration limit in one variable emphasizes the power
of the method. It is obvious that the present method
provides a serious gain in time when applied to an in-
tegration over a non-rectangular area.

As an important remark we have to emphasize
that the n values which, in our two examples, are cho-
sen to start with relatively lower values and step up
with a value of 5, should in practice be chosen much
more systematically by watching the change in the in-
tegration results and comparing them with a predeter-
mined tolerance value.

6 Conclusion

It would be helpful to note that this iterative algorithm
is a generalization of the definite bivariate integration
over a rectangular area. This can also be generalized
to a broader range of integrals, namely multivariate
integrals. We can repeat the same iteration as many
times as needed. Another computational advantage is
that in this method the nested sums do not exist and
hence they are additive and not multiplicative, which
in fact decreases immensely the overall computation
time.
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n Upper Limits Exact Value Time Present Method Time Built-in Method Time
10 x = 3, y = 4 0.0931409270 9.671 0.0931409270 0.235 0.0931409270 0.297
15 x = 4, y = 5 -0.7447287576 7.625 -0.7447287576 0.469 -0.7447287576 0.812
20 x = 5, y = 6 -0.6371152492 8.500 -0.6371152492 0.781 -0.6371152492 1.391
25 x = 6, y = 7 -0.6240687828 7.313 -0.6240687828 1.296 -0.6240687828 2.016

Table 1: Comparison of exact integration values of f [x, y] := Exp[−(x − 2)2/4 − (y − 3)2/4]Cos[2x + y −
7] with the values obtained from present work results and the built-in numerical integration method applied by
Mathematica 7.00 (k = 5)

n Upper Limits Exact Value Time Present Method Time Built-in Method Time
5 x = Π/8 0.3583552320 2.781 0.3583552320 0.000 0.3583552320 0.297
10 x = Π/7 0.3971733701 3.485 0.3971733701 0.031 0.3971733701 0.265
15 x = Π/6 0.4411857195 0.484 0.4411857195 0.031 0.4411857195 0.266
20 x = Π/5 0.4859411442 1.875 0.4859411442 0.046 0.4859411442 0.297
25 x = Π/4 0.5118446353 0.406 0.5118446353 0.047 0.5118446353 0.250

Table 2: Comparison of exact integration values of f [x, y] := 2y.Sin[x] + Cos[x]2 with the values obtained from
present work results and the built-in numerical integration method applied by Mathematica 7.00 (k = 5)
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