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Abstract: A new and powerful method for matrix decomposition is developed in this work. It is similar to
singular value decomposition and the main idea comes from the univariate approximation of a function, given
on a planar grid’s nodes, by two variable high dimensional model representation. The proposed method is less
iteration dependent than the singular value decomposition and the components are determined via straightfor-
ward steps containing recursions. It seems to have more capabilities than the singular value decomposition as
an alternative method. An illustrative application is also given.
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1 Introduction
One of the widely used approaches in computer vision
is to consider the image’s pixel map and use the singu-
lar value decomposition of the corresponding matrix
for approximating and interpreting various features.
Singular value decomposition constructs a set of basis
matrices from a given matrix such that the basis ma-
trices are mutually orthonormal with respect to Frobe-
nius norm inducing inner product which is the trace
of the product of its first argument’s transpose with
the second argument. Basis matrices are linearly com-
bined to give the corresponding original matrix. The
linear combination coefficients are the singular values
of the related matrix and can take nonnegative values.
If we consider the matrix corresponding to an image,
and its singular value decomposition, then each basis
matrix multiplied by the corresponding singular value
can be interpreted as a subimage. The original image
is the linear combination of subimages. A careful nu-
merical experimentation on various images shows that
many important characteristics of an image can be ad-
equately approximated by linearly combining rather
small percentage of the basis matrices with dominant
singular values. For example, an image of400 × 500
pixels can have at most400 nonzero singular values.
If so then, say40 or 60, subimages coming from the
singular value decomposition may suffice for a suffi-
ciently good visualization. Assume that40 subimages
will be used. The original image contains2000000
pixels. As the worst case, we can assume that the pix-
els are all independent from each other. Each subim-
age has also2000000 pixels however they are pro-
duced from an outer product which has900 indepen-
dent values. Hence,40 subimages have a total of

36000 independent values. This means that an entity
with 2000000 values can be, approximately but effi-
ciently, characterized by a quite small number (36000)
of values. This is very similar to the principal compo-
nent analysis in statistics where covariance matrix is
the focus instead of the pixel map. Truncated singular
value decomposition approximation’s quality comes
from the specific nature of the images. Their basic
characteristics are generally contained in the first few
basis matrix of singular value decomposition. Nu-
merical experimentations show that the dominancy of
their singular values in first few components (for ex-
ample40) is about ninety or more percents. Truncated
singular value decomposition can also be used in data
compression.

Singular value decomposition is closely related
to matrix eigenvalue problems and requires iteration
unless the image under consideration has a very spe-
cific structure. Iteration is undesired because it in-
creases the total number of mathematical operations
and therefore the method’s cost, hence it is preferred
to avoid. Here we try to develop a new method to re-
solve an image to subimages by avoiding iteration as
much as possible. To this end we use the experiences
gathered from high dimensional model representation
(HDMR) of multivariate analysis. HDMR has been
developed in last two decades. Although it has ma-
tured considerably there are still new extensions and
applications to increase the method’s power. HDMR,
and especially its application on functions given not
analytically but by a set of data is the source of inspi-
ration for this work. The data given points are located
at the nodes of a rectangular hyperprismatic regular
grid without leaving any node empty. We are not go-
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ing to use all the theory of HDMR comprehensively.
Instead, we will take its univariance properties and
conceptually use them in the construction of the new
method decribed here.

Paper is organized as follows. Next section gives
the mainlines of the singular value decomposition
with a special emphasis on computational cost in-
creasing aspects. The third section covers a suffi-
ciently brief but detailed summary of HDMR. The
fourth section is devoted to the presentation of the
main conceptual and technical aspects of this work’s
new method. The fifth section presents an illustrative
application of the new method on decomposing and
reconstructing an image. The sixth section finalizes
the paper via concluding remarks.

2 Singular Value Decomposition

Consider anm × n type real (for simplicity) matrix
A which maps from then element cartesian vectors’
spaceKn to them element cartesian vectors’ space
Km. If m would be equal ton then we would be able
to define an eigenvalue problem onA since it would
transform from one element to the other in the same
space. Without confining ourselves to very limited
case ofm = n we try to find a way such that cer-
tain specific vectors inKn are transformed to them-
selves by using onlyA and certain related matrices.
To this end we can consider the transpose ofA, de-
noted byAT , which maps fromKm toKn. This urges
us to considerATA which is ann × n matrix and
maps fromKn to Kn. SinceATA is square we can
consider its eigenpairs. Thus, actingATA on one of
its eigenvectors scales that eigenvector. However this
is in fact a composite operation. In this action, first,
A takes that eigenvector to some other corresponding
vector, but not inKn, in Km. ThenAT maps the cor-
responding vector to the vector which is original vec-
tor’s scaled form inKn. A similar action is realized
by AAT , but this time, betweenKm andKm. Every-
thing remains valid for this time, with a difference, the
eigenvector is now inKm.

All these discussions motivate us to write

Au = σv,

ATv = σu, u ∈ Kn, v ∈ Km (1)

where σ is an arbitrary constant for this moment.
These equations can be put into the following more
amenable form

ATAu = σ2u,

AATv = σ2v, u ∈ Kn, v ∈ Km (2)

which define the eigenvalue problems ofATA and
AAT . SinceATA andAAT are symmetric and non-
negative definite their eigenvalues are also nonnega-
tive and, because of the symmetry, the eigenvectors
corresponding to different eigenvalues are mutually
orthogonal, separately for each matrix.

Let us focus on the eigenvalues first and assume
thatm < n. Since the rank ofA can be at mostm and
the rank of the product of two matrices can never in-
crease, one can prove that the rank of the matrixATA

can be at mostm. This implies that the matrixATA

should have a zero eigenvalue whose multiplicity is at
least(n − m). Therefore the number of nonzeroσ
values are at mostm. These discussions can be equiv-
alently applied on the case wheren < m.

The second important issue about the eigenval-
ues is the equivalence between the nonzero eigenval-
ues ofATA andAAT . This can be shown by using
the characteristic polynomials of both matrices. To
this end one can use the fact that the traces of the
same integer powers of these matrices are identical.
This means that the characteristic polynomial coeffi-
cients starting from the highest power should be same.
Therefore the characteristic polynomials should be
proportional by a factor of certain power of eigenvalue
parameter (power is at least(n − m) whenm < n).
Since the eigenvalues are the square ofσ values there
is a sign uncertainty in these values and general ten-
dency is naturally to choose positive values.

If we index the normalized eigenvectors in de-
scending corresponding eigenvalues (this is the gen-
eral tendency in scientific community) then we can
define the following orthogonal matrices

Qr ≡ [u1 ... un ] , Qℓ ≡ [v1 ... vm ] (3)

which enable us to write

QT
r ATAQr = QT

r ATQℓQ
T
ℓ AQr

=
(

QT
ℓ AQr

)T (

QT
ℓ AQr

)

= Λ (4)

where we have used the factQℓQ
T
ℓ = Im (Im sym-

bolizesm × m unit matrix) coming from orthonor-
mality andΛ stands for the diagonal matrix whose
diagonal elements areATA’s eigenvalues sorted in
decreasing order. If we define anm × n type matrix
Σ which has two horizontally located blocks, first, an
m×m diagonal block whose elements are theATA’s
eigenvalues’ positive square sorted in decreasing or-
der, and second,m × (n − m) type zero matrix then
it is not hard to get the following relation

Λ = ΣTΣ (5)
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whose comparison with (4) reveals

QT
ℓ AQr = Σ (6)

and therefore

A = QℓΣQT
r (7)

where we have used the orthonormalities of the matri-
cesQℓ andQr once more. This is the singular value
decomposition of the matrixA.

As we have seen the singular value decomposi-
tion is based on the solution of an eigenvalue prob-
lem. The eigenvalues and eigenvectors can only be
found by iterative methods unless the target matrixA

has a specific nature enabling us to work analytically.
In this work we try to get rid of iteration as much as
possible by constructing a new method.

Although we have given important aspects of the
singular value decomposition method for matrices one
can look at some papers [1–10] in the scientific litera-
ture for further readings.

3 High Dimensional Model Repre-
sentation (HDMR)

HDMR has been under development for multivariate
analysis since the 1990s. It is principally based on
the divide–and–conquer philosophy and is used to ap-
proximate a multivariate function in terms of less vari-
ate functions. Its expression is presented below for a
given multivariate function denoted byf (x1, ..., xN )

f (x1, ..., xN ) = f0 +

N
∑

i=1

fi (xi)

+
∑

i1,i2=0

i1<i2

fi1i2 (xi1 , xi2)

+ · · · + f12...N (x1, ..., xN ) (8)

where the independent variables are assumed to be in
a given rectangular hyperprism (xi ∈ [ ai, bi ] , (i =
1, ...,N)) and the “vanishing under any univariate in-
tegration”condition is imposed on the right hand side
components except the constant term. That is, the in-
tegral of any nonconstant term at the right hand side,
over its any independent variable and over the related
interval, vanishes. This means orthogonality amongst
the right hand side components in an appropriately
defined Hilbert space of square integrable multivari-
ate functions with respect to the HDMR’s integra-
tion geometry. The integration domain is restricted
to orthogonal geometries only, to enable the separa-
tion of the multivariate integrations to the consecu-
tive inependent univariate integrations. The general

tendency is to take the hyperprismatic geometry men-
tioned above. However, some other orthogonal ge-
ometries like hyperspherical or hyperelliptic regions
can also be equivalently used depending on the mod-
elling.

It is also possible to use a weight function for the
integration. However, the weight function is also re-
stricted. It should be a product of univariate weight
functions each of which depends on a different in-
dependent variable. Each univariate weight factor is
normalized to have unit integral value, for simplic-
ity. These restrictions on the HDMR geometry and
weight function are imposed to get compatibility and
uniqueness in the determination of HDMR compo-
nents. Otherwise, the basic assumption of (8) can
never be fulfilled.

The orthogonality conditions suffice to uniquely
determine all HDMR components as long as the re-
strictions on the HDMR’s geometry and weight are
fulfilled. Constant term is in fact the weighed aver-
age of the given function for the HDMR’s orthogonal
geometry (the rectangular hyperprism defined by the
cartesian product of the abovementioned intervals in
this work). Univariate terms correspond to variances,
or in other words, fluctuations in the direction defined
by the relevant independent variable in the space of all
independent variables. The bivariate terms are related
to the correlations between two relevant independent
variables. The other components can be interpreted in
similar ways.

What we have mentioned above were the mul-
tivariate functions which are given in analytic struc-
tures. However, in many applications, the target func-
tion is not known analytically, instead, its values at
certain, generally in finite number, points of the inde-
pendent variables’ space. Hence, the integrals appear-
ing in the structures of the HDMR components must
pick up the given function values only. Although there
may be different ways to this end, we use the linear
combination of Dirac delta functions in the HDMR
weights. Then all integrations turn out to be linear
combinations over given function values.

Although it may seem to be rather trivial, the
number of HDMR dimensions necessary for computer
vision is2 as long as the pixel map of the image is con-
sidered. There the pixel values are considered to be
values of a color intensity function and the indepen-
dent variables are taken as the horizontal and vertical
positions of the pixels. This defines a planar rectangu-
lar grid, on the nodes of which the color intensities are
given. Here we consider the case where a monochro-
matic image is given. This permits us to use just one
information for each pixel position. The most general
colored images then can be treated by considering the
matrices composed of main color component values
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separately as independent images. For example, the
red, blue, or green color intensities can be individually
considered as independent images. Then the original
image can be considered as the overlapping of these
images on the same frame.

If we focus on anm × n type monochromatic
image then we consider two independent variables
x1 ∈ [ 0, n + 1 ] (horizontal) andx2 ∈ [ 0,m + 1 ]
(vertical) and the color functionf (x1, x2) then the
corresponding HDMR can be written as follows

f (x1, x2) = f0 + f1 (x1) + f2 (x2)

+f12 (x1, x2) (9)

where

f0 =

∫ n+1

0
dx1W1 (x1)

∫ m+1

0
dx2W2 (x2) f (x1, x2) (10)

f1 (x1) =

∫ m+1

0
dx2W2 (x2) f (x1, x2) − f0 (11)

f2 (x2) =

∫ n+1

0
dx1W1 (x1) f (x1, x2) − f0 (12)

f12 (x1, x2) = f (x1, x2) − f0 − f1 (x1)

−f2 (x2) (13)

where the overall weight functionW (x1, x2) is taken
as the product of two univariate functions depending
on x1 and x2 respectively, as it should be to avoid
certain incompatibilities in the determination of the
HDMR components (these incompatibilities can be
removed by defining new type of HDMRs which are
out of the scope of this work). Hence we write

W (x1, x2) ≡ W1 (x1) W2 (x2) (14)

Sincex1 andx2 are continuous variables, the dis-
creteness in the function values should be provided by
the structures of the integrals where the weights are
the only agents to do so. Thus, we define the weights
as follows

W1 (x1) ≡ 1

n

n
∑

i1=1

δD (x1 − i1) ,

W2 (x2) ≡ 1

m

m
∑

i2=1

δD (x2 − i2) (15)

whereδD stands for Dirac delta function which re-
places the function’s argument by its support (i1 and

i2 above) if the support is an interior point in the in-
terval, otherwise the function’s argument is replaced
with the support and the resulting term is multiplied
by half (this explains why we have taken the inter-
vals as above, it was for making all independent vari-
able values interior points of the interval and we could
choose some other endpoints for the same purpose but
it would not change the results as long as the smallest
and/or largest independent variable values remain as
interior points). The utilization of the weights given
by (15) in (10), (11), (12), (13) produces the follow-
ing results

f0 =
1

mn

n
∑

i1=1

m
∑

i2=1

f (i1, i2) (16)

f1 (i1) =
1

m

m
∑

i2=1

f (i1, i2)−f0, i1 = 1, ..., n (17)

f2 (i2) =
1

n

n
∑

i1=1

f (i1, i2)−f0, i2 = 1, ...,m (18)

f12 (i1, i2) = f (i1, i2) − f0 − f1 (i1) − f2 (i2) ,

i1 = 1, ..., n, i2 = 1, ...,m (19)

which can be rewritten in the following matrix alge-
braic forms

f0 =
1

mn
wT

ℓ Fwr (20)

f1 =
1

m
Fwr (21)

f2 =
1

n
FTwℓ (22)

F12 = F − f0wℓw
T
r − f1w

T
r − wℓf

T
2 (23)

wherewℓ andwr are vectors withm andn elements
of 1 value respectively and the element of them × n
type matrixF at the intersection ofi1–th row withi2–
th column isf (i1, i2). The matrixF12 corresponds to
the bivariate component of the image’s HDMR. (23)
leads us to write the image’s HDMR as the following
matrix equality

F = f0wℓw
T
r + f1w

T
r + wℓf

T
2 + F12 (24)
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from which we can get the following univariate ap-
proximationFu by excluding the bivariate matrix

Fu =

(

f1 +
f0

2
wℓ

)

wT
r + wℓ

(

fT
2 +

f0

2
wT

r

)

(25)

This matrix is an approximation to the original im-
age, and typically contains the most dominant infor-
mation. In other words, its dominancy in norm square
may climb to ninety percents. However this does not
mean thatFu creates the display of the original im-
age. Instead, it contains horizontal and vertical lines
only. It is in fact the background. The picture details
are hidden in small deviations from this matrix, that is,
in bivariate terms. Hence, univariate HDMR does not
suffice for computer vision purposes. Bivariate term
should be somehow taken into consideration. Same
thing is valid also for singular value decomposition.
Its first dominant component behaves very similar to
HDMR’s univariate portion. However its construc-
tion is very complicated in comparison with HDMR’s
univariate approximation whose construction is quite
straightforward.

Although the information given here for HDMR
suffice for this work’s purposes interested reader can
find many HDMR related papers in scientific litera-
ture. Some of them [11–28] are included in the refer-
ence list of this paper.

4 HDMR Based Matrix Decomposi-
tion

Singular value decomposition of anm × n (m < n)
type matrixA can be written as a sum from (7) as
follows

A =

m
∑

i=1

σiuiv
T
i (26)

where the outer productsuiv
T
j (i = 1, ..., n; j =

1, ...,m) are mutually orthonormal with respect to
Frobenius matrix norm. Hence they form a set of
basis matrices. This urges us to seek a similar ma-
trix decomposition which does not involve this form
of one-rank outer products. As we have mentioned
in the previous section univariate HDMR truncation
(25) can be a good candidate for the construction of
the first basis matrix. Thus, we propose

M1 ≡ s1w
T
1 + w2s

T
2 (27)

where the column vectorsw1 andw2 haven andm el-
ements respectively. The elements ofw1 are all same
and have the value1/

√
n. Same thing is also valid for

w2 and the common values of the elements are1/
√

m
this time. These values set the square norms ofw1 and
w2 equal to1. s1 ands2 are determined to minimize
the following functional

∆1 (s1, s2) ≡ ‖A− M1‖2 (28)

which measures the deviation of the first basis matrix
M1 from the original matrixA.

If the gradient of the right hand side of (28) with
respect tos1 ands2 is separately set equal to zero then
the following equations are obtained

s1 +
(

w2w
T
1

)

s2 = Aw1 (29)

s2 +
(

w1w
T
2

)

s1 = ATw2 (30)

where we have used the factswT
1 w1 = 1 and

wT
2 w2 = 1. The elimination ofs2 between these two

equations results in
[

In − w2w
T
2

]

(s1 − Aw1) = 0 (31)

where the matrix enclosed between left and right
brackets has a nonempty nullspace spanned by the
vectorw2. This means

s1 = Aw1 + α1w2 (32)

whereα1 is arbitrary at this moment. Similar discus-
sions allow us to get the following result fors2

s2 = ATw2 + α2w1 (33)

whereα2 is also arbitrary at this point. To determine
α1 andα2 first we can obtain the following equality
from either (29) or (30) via multiplying both sides by
appropriate vectors

wT
2 s1 + wT

1 s2 = wT
2 Aw1 (34)

Similarly we can get the following equalities from
(32) and (33)

wT
2 s1 = α1 + wT

2 Aw1 (35)

wT
1 s2 = α2 + wT

2 Aw1 (36)

The last three equations mean

α1 + α2 + wT
2 Aw1 = 0 (37)

where one ofα1 andα2 can be chosen arbitrarily. To
provide a symmetric structure fors1 and s2 we can
takeα1 = α2 and obtain

α1 = α2 = −1

2
wT

2 Aw1 (38)
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The use of these formulae in the previous expressions
of s1 and s2 and then the reorganization of the results
enable us to write

s1 =

[

Im − 1

2
w2w

T
2

]

Aw1

s2 =

[

In − 1

2
w1w

T
1

]

ATw2

(39)

Now we define

A1 = A− M1, ∆1 = Tr
(

AT
1 A1

)

(40)

The matrixA1 correponds some portion of the bivari-
ate term in HDMR. Hence we do not expect that the
second basis matrix will have the univariance based
structure ofM1. However, we may try to maintain the
two one-rank matrix structure. This can be done by
changing the structures inw1 andw2 self-consistently
and we can use the orthonormalized forms of the vec-
torss2 ands1 for the vectorsw1 andw2 and symbol-
ize the new vectors byw3 andw4 respectively. The
new unknown vectors denoted bys3 and s4 are de-
termined by minimizing the norm square of the new
remainder matrix symbolized byA2 and defined as
A1 − s3w

T
3 − s4u

T
4 . We give only the results below

since the intermediate algebra is same as before

s3 =

[

Im − 1

2
w4w

T
4

]

A1w3

s4 =

[

In − 1

2
w3w

T
3

]

AT
1 w4

(41)

The new functional to be minimized for this case is as
follows

∆2 = Tr
(

AT
2 A2

)

(42)

This has been the second step of the basis matrix con-
struction. The results for thek-th optimization are

s2k−1 =

[

Im − 1

2
w2kw

T
2k

]

Ak−1w2k−1

s2k =

[

In − 1

2
w2k−1w

T
2k−1

]

AT
k−1w2k

(43)

and

Ak = Ak−1 − s2k−1w
T
2k−1 − s2kw

T
2k,

∆k = Tr
(

AT
k Ak

)

(44)

The vectorsw2k−1 andw2k for a specifick value may
become the left and right singular vectors ofA. Then

the recursion in (43) returns samew2k−1 andw2k vec-
tors and enters an infinite loop. As long as this does
not happen, the recursion continues to produce basis
matrices. However there is a possibility of producing
linearly dependent basis matrices. This must of course
be avoided. This is an open question yet but certain
modifications seem to be possible to get rid of these
types of undesired behaviours. What we expect is to
getmin(m,n) linearly independent basis matrices in
exactlymin(m,n) recursive steps. If the original ma-
trix A has the vectorw1 or w2 as one of its singular
vectors the recursion stops at the very beginning if a
control exists over infinite loops.

If the recursion continues untilk becomes equal
to min(m,n) and all produced basis matrices are lin-
early independent then we get the whole basis matrix
set whosek-th element is given by

Mk = u2k−1w
T
2k−1 + w2ku

T
2k,

k = 1, ...,min(m,n) (45)

The matrixA should be sum of these matrices as
follows

A =

min(m,n)
∑

k=1

Mk (46)

This sum has summands with generally nonunit norms
and the norm of each summand can be extracted as
a linear combination coefficient by making the sum-
mand matrix normalized to1 with respect to Frobe-
nius norm. There is no orthogonality amongst the
summands unless certain coincidences occur. Orthog-
onality is provided by using an appropriate method to
this end. If this is done and the resulting matrices are
denoted byNs then

(Ni,Nj) = δij , i, j = 1, ...,min(m,n) (47)

which permits us to write

A =

min(m,n)
∑

k=1

νkNk (48)

where

νk ≡ (Nk,A) , k = 1, ...,min(m,n) (49)

Theνk scalars are somehow corresponding to singular
values and may match them in certain cases.

5 An Illustrative Application: Image
Decomposition

We apply the presented method on an image in this
section. First five frames from decomposition are cu-
mulatively displayed below. That is, the first is the
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display of the first subimage, the second is the display
of the sum of first two subimages, and so on. The orig-
inal image is also given here at the right bottommost
location.

Figure 1: The comparison of the cumulative dis-
plays of first five subimages with the original image

As Figure 1 shows the first display is far from the
original image and without knowing the original im-
age it is almost impossible to recognize the picture al-
though there is some hidden information in the frame.
The quality increases as we proceed to the higher or-
der frames as the comparison with the sixth display
(original image) at the right bottommost shows.

The face images displayed here are taken from the
MIT CBCL face database [29]. Credit is hereby given
to the Massachusetts Institute of Technology and to
the Center for Biological and Computational Learning
for providing the database of facial images.

To get more clear idea about the quality increase
we give the 10th, 25th, and, 40th cumulative displays
together with the original display in Figure 2.

Figure 2: The comparison of the cumulative dis-
plays of 10th, 25th, 40th basis matrices with the orig-
inal image

As seen from Figure 2 the 40th display is almost
same as the original image although there are slight
differences which can not be noticed unless sufficient
attention is paid.

Before closing this section we need to make a
comparison with the most widely used method, sin-
gular value decomposition. We could do this by us-
ing the displays of the cumulative matrices but the
discrepancy between the present method and singu-
lar value decomposition is not visually distinguish-
able as the displays in Figure 3 show. Therefore we
compare the norm squares of the differences between
the cumulative display matrices and the original im-
age with respect to the basis matrix number. The plots
are given in Figure 4 where the dashed curve is for
singular value decomposition and remains less than
the solid curve which is produced from the present,
HDMR based, method in all frame number values.

Figure 3: The comparison of the cumulative dis-
plays of 40th basis matrices for present method (left)
and singular value decomposition
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Figure 4: The deviations of the subimage norm
squares for singular value decomposition and for the
present method from the original image

All numerical implementations in this sections
are realized by using Mathematica.

6 Concluding Remarks

In this work we have developed a new matrix decom-
position method whose construction is inspired by
the univariate truncation of two variable HDMR. The
method is similar to the singular value decomposition
of matrices, which uses single outer products as the
basis matrices. Whereas, each individual basis matrix
of the new method is taken as a sum of two outer prod-
ucts where there are four vectors, two of which are to
be determined and the remaining ones being given.
Unknown vectors are determined via the minimiza-
tion of the deviation between the basis matrix and the
matrix to be decomposed. The couple vector deter-
mined in this way is fed as the given vectors of the
next step where the deviation of the previous step is
used as the given matrix. This produces a recursive
but not iterative decomposition method. The method
does not guarantee the construction of a linearly inde-
pendent vector in each step. However, the steps where
no new vectors are generated to the outer products of
the construction correspond to singular vectors of the
target matrix and starts an infinite recursion which can
be stopped by a check and the aim is achieved since
singular vectors are also acceptable as what we desire
to get.

The presented method, because of its noniterative
nature, stands as a powerful candidate to take the place
of singular value decomposition in many applications.
We have applied it to computer vision and have found
that a given monochromatic image can be dissolved to
subimages with different dominancies such that first
few of them becomes capable of sufficiently well de-
scribing the original image. It is quite promising to
develop new tools for image processing and similar

areas.
This is the first step of the method’s construction

and there remains certain open questions we are in-
tensely dealing with. For example, to provide orthog-
onality in the resulting basis set is our next and ur-
gent step. The convergence properties should and will
also be investigated appropriately. The linear alge-
braic issues are also important and the author believes
that there appears to be important developments in the
horizon.
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